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Figure S1. Schematical illustration of preparation procedure of the LMAGS: Ce3+ PiG film-on-SP.



3

Figure S2. Photograph of the photo-sensitive paper upon blue laser irradiation
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Figure S3. Rietveld refinement on Lu2.0-xMg2Al1.5Ga0.5Si2O12: xCe3+ phosphor, showing the 

observed (black crosses) and calculated (red line) XRD profiles, and the difference between them 

(blue line).
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Figure S4. Rietveld refinement on Lu1.9Mg2Al2.0-yGaySi2O12: 0.1Ce3+ phosphor, showing the 

observed (black crosses) and calculated (red line) XRD profiles, and the difference between them 

(blue line).
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Figure S5. SEM observations on the cross section of LMAGS: Ce3+ PiG film-on-SP with different 

film thickness.
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Figure S6. PL spectra of Lu2.0-xMg2Al1.5Ga0.5Si2O12: xCe3+ PiG film-on-SP under 450 nm 
excitation.
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Figure S7. Relationship between log(x) and log(I/x) in the Lu2.0-xMg2Al1.5Ga0.5Si2O12: xCe3+ 

phosphor.

Discussions on Figure S7: 

In order to study the concentration quenching mechanism, the parameter of Rc 

reflecting the average distance of Ce3+ is introduced by using the following expression 

[1]:
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where V is the volume of unit cell, xc the critical concentration of activator and N 

the number of available sites for the dopant in a unit cell. Taken V=1688.219 Å3, 

xc=0.10, and N=8, Rc is evaluated to be ~16 Å. The electronic exchange interaction 

should be only effective at Rc＜5 Å to achieve energy transfer among Ce3+ ions. 

As such, the electric multipolar-multipolar interaction should be the main 

mechanism. Then, we adopted the Dexter theory to analyze the type of multipolar-
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multipolar interaction by the following equation [2]:

                         (2)
1

3/ 1 ( )I x K x





 
  

 

where K and β are constants, θ=6, 8. 10 means the electric multipole index 

corresponding to the dipole-dipole (d-d), dipole-quadrupole (d-q) and quadrupole- 

quadrupole (q-q) interaction, respectively. By plotting log(I/x) versus log(x), θ is 

calculated as 5.13, indicating that the main mechanism for concentration quenching in 

LMAGS: Ce3+ is the d-d electric multipolar-multipolar interaction.
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Figure S8. The measured luminescent curves of Lu1.9Mg2Al2.0-yGaySi2O12: 0.1Ce3+ PiG film-on-SP 

to calculate quantum efficiency.
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Figure S9. Temperature-dependent PL spectra in Lu1.9Mg2Al2.0-yGaySi2O12: 0.1Ce3+ PiG film-on-

SP from 300 to 600 K under 450 nm excitation.
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Figure S10. In-line transmittance spectra of sapphire, AR-coated sapphire and BP-coated sapphire.
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Figure S11. Pin dependent electroluminescent spectra of LMAGS: Ce3+ PiG film-on-SP with 

different mass ratios of LMAGS: Ce3+ phosphor to glass powders.



14

Figure S12. Pin dependent electroluminescent spectra of LMAGS: Ce3+ PiG film-on-SP with 

different film thickness.
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Figure S13. Pumping power dependent luminous efficacy of the LMAGS: Ce3+ PiG film-on-SP 

with (a) different weight ratios of LMAGS: Ce3+ phosphor to glass powders and (b) different film 

thicknesses.
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Figure S14. Pin dependent EL spectra of LMAGS: Ce3+ PiG film-on-SP with different Ga-
concentration: (a) y=0.00, (b) y=0.50, and (c) y=1.00; insets are the corresponding magnified spectra 
in the range of 500-700 nm. (d) Pin dependent EL spectra of Lu1.9Mg2Al2Si2O12: 0.1Ce3+ PiG film-
on-SP “phosphor wheel” measured under rotatory-reflective mode; insets are the digital photo of 
phosphor wheel (left) and the enlarged spectra in the region of 500-800 nm (right).
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Figure S15. Pumping power dependent luminous efficacy of the LMAGS: Ce3+ PiG film-on-SP 

with different Ga-concentration.
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Figure S16. Diffuse-reflectance spectrum of the un-doped LMAGS, inset shows the relationship of 

[αhʋ]2 versus photon energy hʋ to determine the optical bandgap of LMAGS.
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Figure S17. Local temperature of LMAGS: Ce3+ PiG film-on-SP with different Ga-concentration 

at the laser spot.
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Figure S18. the variations in chromaticity coordinates of LMAGS: Ce3+ PiG film-on-SP with 
different Ga-concentration.
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Figure S19. The derived Pin dependent luminous efficacy in rotatory-reflective mode.
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Figure S20. The incident power dependent absorption efficiencies of the LMAGS: Ce3+ PiG film-

on-SP under rotatory-reflective mode.
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Figure S21. EL spectra of LMAGS: Ce PiG film-on-SP with different Ce-concentration under 

different input power density in rotatory-reflective mode.
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Figure S22. EL spectra of LMAGS: Ce PiG film-on-SP with different Ga-concentration under 

different input power density in rotatory-reflective mode.
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