Supporting Information

A Time-Resolved and Visualized Host–Guest Self-assembly Behavior Controlled through Kinetic Trapping

Ying Zhang,^{‡a} Zhuoran Xu,^{‡a} Tao Jiang*^a, Yanyan Fu*^b and Xiang Ma*^a

*Corresponding Author

^a Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237 (China).

^b State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050 (China).

E-mail: 1048768259@qq.com (Tao Jiang);

fuyy@mail.sim.ac.cn (Yanyan Fu);

maxiang@ecust.edu.cn (Xiang Ma)

1. Materials, general procedures and syntheses

1.1 Materials. Unless stated otherwise, all reagents were purchased from Sigma-Aldrich or TCI Chemicals and used without further purification. Solvents were purified according to standard laboratory methods. The molecular structures were confirmed using ¹H NMR, ¹³C NMR and high-resolution ESI mass spectroscopy.

1.2. General. *p*-sulfonated calixarenes (SC4) was synthesized according to our previous work.¹ Other reagents used for the synthesis or measurements were commercially available without further purification. Water used in tests was ultrapure. ¹H NMR spectra were measured on a Brüker AV-400 spectrometer. The UV-vis absorption spectra and PL spectra were performed on a Varian Cary 500 spectrophotometer and a Horiba Fluoromax-4 at 25 °C, respectively. DLS were measured on MALV RN, ZETA SIZER, Model ZEN3600, 25°C. FESEM images were obtained by using a GeminiSEM 500 (droplets of the sample solution (5× 10⁻⁵ M) were applied to a silicon slice and dried in air at room temperature, and then coated with nano Au in a vacuum). TEM images were record on a JEOL JEM-1400 apparatus. The samples (5 × 10⁻⁵ M) were dropped on a perforated copper grid (400 mesh) covered with a carbon film (additional 1% wt PEG300 as stabilizer).

1.3 Synthesis and characterization of Py-TMA

1-((6-bromohexyl)oxy)pyrene (Py-Br) 1-Pyrenol 1.09 g (5 mmol) and cesium carbonate 3.25 g (10 mmol) were stirred at 82 °C under the protection of nitrogen. After 30 minutes, acetonitrile solution (10 mL) of 1,6-dibromohexane (2.43 g, 10 mmol) was injected and stirred for 24 hours, purified by column chromatography on silica (PE:DCM = 2:1) to obtain white solid 1.12 g. Yield: 67.9 %. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.46 (d, *J* = 9.2 Hz, 1H), 8.13 – 8.06 (m, 3H), 8.04 (d, *J* = 9.2 Hz, 1H), 7.98 – 7.92 (m, 2H), 7.88 (d, *J* = 9.0 Hz, 1H), 7.53 (d, *J* = 8.4 Hz, 1H), 4.33 (t, *J* = 6.4 Hz, 2H), 3.46 (t, *J* = 6.4 Hz, 2H), 2.07 – 1.98 (m, 2H), 1.98 – 1.91 (m, 2H), 1.72-1.64 (m, 2H), 1.64-1.58 (m, 2H).

N,N,N-trimethyl-6-(pyren-1-yloxy)hexan-1-aminium bromide (Py-TMA) 1-((6 bromohexyl)oxy)pyrene 330 mg (0.86 mmol) in 25 ml acetonitrile, stirred under the protection of nitrogen at 82 °C for 0.5 h, added excess trimethylamine (8.4 mmol), refluxed for 24 h, concentrated, precipitated in ethyl acetate (100 mL) to obtain white solid 264 mg. Yield: 69.8 %. ¹H NMR (600 MHz, DMSO- d_6) δ 8.38 (d, J = 9.2 Hz, 1H), 8.26 (d, J = 8.4 Hz, 1H), 8.20 (t, J = 6.4 Hz, 2H), 8.14 (d, J = 9.2 Hz, 1H), 8.08 (d, J = 9.0 Hz, 1H), 8.03 (t, J = 7.6 Hz, 1H), 7.98 (d, J = 9.0 Hz, 1H), 7.77 (d, J = 8.4 Hz, 1H), 4.39 (t, J = 6.4 Hz, 2H), 3.33 – 3.30 (m, 2H), 3.05 (s, 9H), 2.02 – 1.96 (m, 2H), 1.81-1.73 (m, 2H), 1.70-1.63 (m, 2H), 1.48-1.40 (m, 2H); HRMS (ESI⁺) calcd for C₂₅H₃₀ON⁺ *m/z* 360.2322; found *m/z* 360.2326.

Fig. S1 ¹H NMR spectrum (400 MHz) of Py-Br in CDCl₃.

Fig. S2 ¹H NMR spectrum (600 MHz) of Py-TMA in DMSO-d₆.

Fig. S3 ¹³C NMR (125 MHz) spectrum of Py-TMA in DMSO-d₆.

Fig. S4 HRMS (ESI) spectrum of Py-TMA.

Fig. S5 $^1\mathrm{H}$ NMR spectrum (400 MHz) of SC4 in D2O.

2. Research on particle enlargement and fluorescence-off phenomenon of Py-TMA/SC4 system

Fig. S6 Fluorescence excitation ($\lambda_{em} = 410 \text{ nm}$) and emission spectra ($\lambda_{ex} = 320 \text{ nm}$) of Py-TMA powder.

Fig. S7 a) UV-vis absorption and b) Optical transmittance spectra of Py-TMA at different concentrations in aqueous solution.

Fig. S8 a) Optical transmittance spectra of Py-TMA (0.05 mM) with the addition of SC4 and b) Dependence of the optical transmittance at 390 nm of Py-TMA (0.05 mM) with SC4 at different concentrations in water.

Fig. S9 a) UV–vis absorption spectra and b) Optical transmittance spectra of Py-TMA/SC4 with the addition of Py-TMA ([SC4] = 0.025 mM). c) Dependence of the optical transmittance at 390 nm on the Py-TMA concentration in the presence of SC4 (0.025 mM).

Fig. S10 a) UV-vis spectra of the aqueous solution containing Py-TMA and SC4 [Py-TMA] + [SC4] = $5*10^{-5}$ M. b) Job's plot showing 2:1 stoichiometry of the complex.

Fig. S11 Normalized emission spectrum of Py-TMA/SC4 with a) 0.5 equiv. and b) 2 equiv. SC4 after different intervals ([Py-TMA] = 0.05 mM).

Table S1. Detention time from cyan to blue of Py-TMA/SC4 with different proportions ([Py-TMA] = 0.05 mM).

Equivalent (SC4)	0.25	0.5	1	2
Detension	32 h	72 h	13 h	1 h

Table S2. Detention time from cyan to blue of Py-TMA/SC4 with different concentrations (0.5 equiv. SC4).

Concentration	1 µM	50 µM	75 µM	100 µM
(Py-TMA)				
Detension	0.5 h	72 h	50 h	53 h

Fig. S12 The FESEM images and corresponding DLS of Py-TMA/SC4 at (a, b) 0 h, (c, d) 12 h and (e, f) 72 h.

Fig. S13 The TEM images of Py-TMA/SC4 in 0 h at 298 K ([Py-TMA] = 0.05 mM, [SC4] = 0.025 mM).

Fig. S14 The TEM images of Py-TMA/SC4 in 72 h at 298 K ([Py-TMA] = 0.05 mM, [SC4] = 0.025 mM).

Fig. S15 a) UV–vis absorption spectra and b) Changes in the absorbance ratio for 380 nm to 340 nm ($A_{340 \text{ nm}}/A_{380 \text{ nm}}$) of Py-TMA/SC4 with time ([Py-TMA] = 0.05 mM, [SC4] = 0.025 mM).

Fig. S16 Fluorescence spectra of Py-TMA/SC4 at 495 nm after four consecutive hours of different temperature ([Py-TMA] = 0.05 mM, [SC4] = 0.025 mM) (λ_{ex} = 320 nm).

Fig. S17 Fluorescence spectra of Py-TMA/SC4 after resting for 72 hours and heating at 80°C for different time ([Py-TMA] = 0.05 mM, [SC4] = 0.025 mM) (λ_{ex} = 320 nm).

3. Construction of light-harvest system of Py-TMA/SC4@SC4

Fig. S18 a) Normalized intensity of absorption spectra (EB) (2.5 μ M) and fluorescence spectra (Py-TMA/SC4). b) Fluorescence spectra of Py-TMA/SC4 and Py-TMA/SC4@EB ([Py-TMA] = 0.05 mM, [SC4] = 0.025 mM, [SC4] = 0.5 μ M) (λ_{ex} = 320 nm).

$$\Phi_{ET} = 1 - \frac{I_{DA}}{I_D} = 1 - \frac{8.28}{571.70} = 98.55 \%$$

 Φ_{ET} : Energy-transfer efficiency

 I_{DA} , I_D : Fluorescence intensities of the donor in the presence and absence of the acceptor at 495 nm ($\lambda_{ex} = 320 \text{ nm}$)

Fig. S19 The fluorescence decay trace of Py-TMA/SC4 and Py-TMA/SC4@EB ([Py-TMA] = 0.05 mM, [SC4] = 0.025 mM, [SC4] = 0.5 μ M) (λ_{ex} = 320 nm).

Fig. S20 Fluorescence spectra of Py-TMA/SC4@EB with time ([Py-TMA] = 0.05 mM, [SC4] = 0.025 mM, [EB] =0.5 μ M) (λ_{ex} = 320 nm).

Fig. S21 Fluorescence excitation ($\lambda_{em} = 615 \text{ nm}$) and emission spectra ($\lambda_{ex} = 440 \text{ nm}$) of EB in water ([EB] = 2.5 μ M).

Fig. S22 Fluorescence spectra of Py-TMA and Py-TMA@EB in water ([Py-TMA] = 0.05 mM, [EB] = 2.5 μ M) (λ_{ex} = 320 nm).

Fig. S23 Fluorescence spectra of Py-TMA/SC4, Py-TMA/SC4@EB, SC4@EB and EB in water excited by 320 nm ([Py-TMA] = 0.05 mM, [SC4] = 0.025 mM, [EB] = 2.5μ M).

4. Reference

1. G. Qu, T. Jiang, T. Liu and X. Ma, ACS Appl. Mater. Interfaces, 2022, 14, 2023-2028.