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Chemicals and materials

All reagents were purchased commercially and used without further purification.
(NH4)s[MnMoyO3,]-8H,0 (MnMoy) was prepared according to the literature method.'
AgNO; (99%) and MnSO4-H,O (99%) were purchased from Macklin.
(NH4)6Mo070,4-4H,0 was purchased from Sigma-Aldrich. NH;OH, Phenethylamine
(PEA), triethylamine (TEA), N,N-Dimethylformamide (DMF), (NH,4),S,0g (98%),
1,2,4-triazole (trz, 98%), acetonitrile, acetic acid and N,H4 were obtained from Alfa
Aesar.
Characterization methods

The morphologies of the samples were studied on the ransmission electron
microscopy (TEM, JEOL 2010, 200 kV). The powder X-ray diffraction (PXRD)
patterns were performed on Rigaku/Max-2550 with Cu Ka radiation (A = 1.7890 A).
The element distribution was measured by Energy dispersive spectrometer (EDS) on
JEOL TEM. X-ray photoelectron spectroscopy (XPS) scans were carried on
multifunctional imaging electron spectrometer (Thermo ESCALAB 250XI). The
elemental analyses of H and N were conducted on a Vario EL III elemental analyzer,
and those of Mo, Mn and Ag were analyzed on a Jarrel-AshJ-A1100 (ICP) atomic
emission spectrometer. SERS testing was performed using a Raman spectrometer
(Labramis, Horiba Jobbin Yvon, Paris, France). The wavelength was 532 nm. The laser
power was 5 mW for all experiments. Spectra were collected with a 50-object lens for
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X-ray crystallography

Crystal data were collected on an Agilent Technology Eos Dual system with
focusing multilayer mirror optics and a Cu Ka source of A = 1.54184 A. Empirical
absorption corrections were applied to the intensities using the SADABS program. The
structures were solved using the program SHELXS97 and refined with the program
SHELXL-97. The positions of the metal atoms and their first coordination spheres were
located from direct-methods. Other non-hydrogen atoms were found in alternating
difference Fourier syntheses and least-squares refinement cycles. During the final
cycles, except for some solvent molecules, all other non-hydrogen atoms were refined
anisotropically. Hydrogen atoms were placed in calculated positions refined using
idealized geometries and assigned fixed isotropic displacement parameters. CCDC

number of 2086764 for AgeMnMaoy and 2097830 for Ag;MnMo,.



Supporting figures

Fig. S1 Coordination environment of Ag* and MnMoy polyoxoanion. Symmetric code:
#1 2-x,y, 1/2-z; #2 3/2-x, 1/2-y, -1/2+z; #3 1-x, y, 1/2-z; #4 -1+x, y, z; #5 -1/2+x, 1/2-

y, 1-z; #6 -1/2+x, 1/2+y, z; #7 1-x, 1-y, 1/2+z.



Fig. S2 Representation of 3D structure of AgeMnMo, along axis c.



Left Right

Fig. S3 Structures of left- and right- handed MnMoy polyoxoanions located in

Agz:MnMo,.



Fig. S4 (a) Representation of different chiral [MnMo¢O3,]® polyoxoanions in

AgzMnMoy. (b) 3D framework of AgsMnMaoy filled with [Ags(trz);]*".
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Fig. S5 Comparative FTIR curves for AgeMnMoy and MnMoy (a) and Agz;MnMos,,
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Fig. S6 (a) SERS spectra of Ag;MnMoy after reactions with different concentrations

OfN2H4 (10-4-1 .0 mg/L)
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Fig. S7 The Raman and SERS spectra of AgeMnMaoy and AggMnMo, in the presence

of 103 mg/L N,Hy, respectively.
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Fig. S8 SERS spectra of AgsMnMoy in different solvents (a) and different

concentrations of N,H, (10-4-1.0 mg/L) (b).

14



— AgMnMo,+1.0 mg/L N,H,
— Ag:MnMo,
- Pure Ag (ICSD 64706)

(b)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
2 Theta (degree)
Fig. S9 The TEM image (a) and PXRD pattern (b) of AgeMnMaoy in the presence of 1.0
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mg/L N2H4.
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Fig. S10 Raman spectra of AggMnMaoy at laser power (a) and sampling time (b). (c) A

set of Raman spectra of AggMnMaoy from 10 random positions. (d) The Raman intensity

at 945 cm’! from 10 random positions.
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Fig. S11 (a) A set of SERS spectra of AggMnMaoy exposed 103 mg/L N,H, from 20

random positions. (b) The SERS intensity at 945 cm-! from 20 random positions.
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Fig. S12 The histogram of SERS signal at 945 cm! of three AgeMnMoy SERS

substrates exposed to 10~ mg/L N,H,.
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Fig. S13 TEM images of AggMnMao, before (a) and after (b) N,H, treatment (inset of
b: The HRTEM of AggMnMo, after N,H, treatment). The overlay distribution of

elements (c) and elemental mappings of Mo (d), Ag (e) and Mn (f).
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Fig. S14 AgNPs size distribution for AgsMnMoy after N,H, treatment.
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Fig. S15 PXRD patterns of AggMnMoy without and with the presence of N,Hy.
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Fig.S16 XPS survey spectra of AggMnMaoy without and with the presence of N,Hy.
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Fig. S17 XPS analysis of AggMnMaoy before and after reduction by N,H, for O 1s.
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Fig.S18 TEM images of Ag;MnMaoy before (a) and after (b) N H, treatment. The
overlay distribution of elements (c) and Elemental mappings of Mo (d), Ag (¢) and Mn

(f) in AgsMnMo,.
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Fig. S19 XPS spectra of survey (a), Mo 3d (b), Mn 2p (¢) and Ag 3d (d) of Ag;MnMos,.
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Fig.S20 UV-vis absorbance spectra of AggMnMaoy and its reduced state by reaction
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Table S1 Crystal Data and Structure for complexes AgeMnMoy and Ag;MnMo.

Compound

AgsMnMoy

Agz;MnMoy

Empirical formula
Formula weight

T (K)

Space group

Crystal system

al A

b/ A

c/A

al®

pre

y!°

V /A3

Z

D./gcm3

F (000)

Reflns collected / unique
Riing)

Goodness-of-fit on F?

final R indices
[1>20(1)]
R indices
(All data)

CCDC

H4036AgsMn; Moy

2145.62
293(2)
222,
Orthorhombic
10.9514(9)
24.5879(17)
15.3537(10)
90)

90

90
4134.3(5)

4

3.441
3892.0
6190/2919
0.0444

1.047

R*=0.0791
WR,®=0.2013
R#=0.0803
WR,®=0.2026

2086764

H34CcH24N9O41AgeMn Moy

2427.77
293(2)
Pa_3

Cubic
21.4897(2)
21.4897(2)
21.4897(2)
90

90

90
9924.1(3)
8

3.218
8832.0
26361 /2924
0.0619

0.953

R*=0.0294
wR,*=0.0701
R*=0.0332
wR,*=0.0721

2097830

Ry = ZIFo| = [Fll/ZIFo}. ® wRy = {XIW(F* = FEPVXIwWF?) T3,
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Table S2. Raman and SERS vibrational frequencies (cm™) of AggMnMoy?.

SERS Raman Vibrational
assignments
945 945 v Mo-Oy
898 898 v Mo-O,—Mo
630 v Mn-O,—Mo
531 534 v Mo-O.~Mo
347 353 0 Mo-O.~Mo

2y, stretching; o, bending.
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Table S3. Comparison of different methods for detecting N,Hj.

Method Linear range Limit of detection References
fluorometry 0.75-1.5uM 204 nM 2
fluorometry 0-15uM 0.16 uM 3
fluorometry 0-75uM 82 nM 4
fluorometry 0-15uM 0.075 uM 5
fluorometry 0-6uM 90 nM 6
fluorometry 0-500 uM 0.3 uM 7
fluorometry 0—-50uM 81.8 nM 8
chromatography 0-0.06 mM 0.013 mM 9
chromatography 0.05-1uM 9.6 nM 10
SERS 1010 10° M 85 pM 11
SERS 10°- 107 M 38 pM 12
SERS 103 — 101 mg/L 40 pg/L 2 pM)  This work
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