Supporting Information

Ratiometric SERS Detection of N₂H₄ by Porous Ag(I)-linked Waugh-type Polyoxometalate as Efficient Label-free Substrate

Jie Wang, Jia-Yuan Zhang, Wen-Jing Zhu, Bin Qi, Jun-Peng Wang,

Guang-Gang Gao,* Lin-Lin Fan, and Hong Liu*

School of Materials Science and Engineering, University of Jinan, Jinan, 250022,

China.

* Corresponding authors.

E-mail: mse gaogg@ujn.edu.cn (G.-G. Gao), mse_liuh@ujn.edu.cn (H. Liu).

Contents

Chemicals and materials

Characterization methods

X-ray crystallography

Supporting Figures

Fig. S1 Coordination numbers and modes of MnMo₉ and Ag(I) in Compound **Ag₆MnMo₉**. Symmetric codes: #1 2-x, y, 1/2-z; #2 3/2-x, 1/2-y, -1/2+z; #3 1-x, y, 1/2-z; #4 -1+x, y, z; #5 -1/2+x, 1/2-y, 1-z; #6 -1/2+x, 1/2+y, z; #7 1-x, 1-y, 1/2+z.

Fig. S2 Representation of 3D structure of Ag_6MnMo_9 along *c* axis.

Fig. S3 Structures of left- and right- handed MnMo₉ polyoxoanions located in Ag₃MnMo₉.

Fig. S4 (a) Representation of different chiral [MnMo₉O₃₂]⁶⁻ polyoxoanions in **Ag₃MnMo**₉. (b) 3D framework of **Ag₃MnMo**₉ filled with [Ag₃(trz)₃]³⁺. The hydrogen atoms are omitted for clarity.

Fig. S5 Comparative FTIR curves for Ag₆MnMo₉ and MnMo₉ (a) and Ag₃MnMo₉, MnMo₉ and trz (b).

Fig. S6 (a) SERS spectra of Ag_3MnMo_9 after reactions with different concentrations of N₂H₄ (10⁻⁴-1.0 mg/L).

Fig. S7 The Raman and SERS spectra of Ag_6MnMo_9 and Ag_6MnMo_9 in the presence of 10⁻³ mg/L N₂H₄, respectively.

Fig. S8 SERS spectra of Ag₆MnMo₉ in different solvents (a) and different

concentrations of N_2H_4 (10⁻⁴-1.0 mg/L) (b).

Fig. S9 The TEM image (a) and PXRD pattern (b) of Ag_6MnMo_9 in the presence of 1.0 mg/L N₂H₄.

Fig. S10 Raman spectra of Ag₆MnMo₉ at laser power (a) and sampling time (b). (c) A set of Raman spectra of Ag₆MnMo₉ from 10 random positions. (d) The Raman intensity at 945 cm⁻¹ from 10 random positions.

from 20 random positions. (b) The SERS intensity at 945 cm⁻¹ from 20 random positions.

Fig. S11 (a) A set of SERS spectra of Ag_6MnMo_9 exposed 10⁻³ mg/L N₂H₄

Fig. S12 The histogram of SERS signal at 945 cm⁻¹ of three Ag_6MnMo_9 SERS substrates exposed to 10^{-3} mg/L N₂H₄.

Fig. S13 TEM images of Ag_6MnMo_9 before (a) and after (b) N_2H_4 treatment (inset of b: The HRTEM of Ag_6MnMo_9 after N_2H_4 treatment). The overlay distribution of elements (c) and elemental mappings of Mo (d), Ag (e) and Mn (f).

Fig. S14 AgNPs size distribution for Ag_6MnMo_9 after N_2H_4 treatment.

Fig. S15 PXRD patterns of Ag_6MnMo_9 without and with the presence of N_2H_4 .

Fig. S16 XPS survey spectra of Ag_6MnMo_9 without and with the presence of N_2H_4 .

Fig. S17 XPS analysis of Ag_6MnMo_9 before and after reduction by N_2H_4 for O 1s.

Fig. S18 TEM images of Ag_3MnMo_9 before (a) and after (b) N_2H_4 treatment. The overlay distribution of elements (c) and elemental mappings of Mo (d), Ag (e) and Mn (f) in Ag_3MnMo_9 .

Fig. S19 (a) XPS survey spectra of **Ag₃MnMo**₉ before and after reduction by N₂H₄; the core level XPS spectra for Mo 3d (b), Mn 2p (c) and Ag 3d (d).

Fig. S20 UV-vis absorbance spectra of Ag_6MnMo_9 and its reduced state by reaction with N₂H₄.

Table S1 Crystal Data and Structure for complexes Ag_6MnMo_9 and Ag_3MnMo_9 .

Table S2 Raman and SERS vibrational frequencies (cm^{-1}) of Ag₆MnMo₉^a.**Table S3** Comparison of different methods for detecting N₂H₄.

Chemicals and materials

All reagents were purchased commercially and used without further purification. $(NH_4)_6[MnMo_9O_{32}]\cdot 8H_2O$ (MnMo_9) was prepared according to the literature method.¹ AgNO₃ (99%) and MnSO₄·H₂O (99%) were purchased from Macklin. $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$ was purchased from Sigma-Aldrich. NH₄OH, Phenethylamine (PEA), triethylamine (TEA), N,N-Dimethylformamide (DMF), (NH₄)₂S₂O₈ (98%), 1,2,4-triazole (trz, 98%), acetonitrile, acetic acid and N₂H₄ were obtained from Alfa Aesar.

Characterization methods

The morphologies of the samples were studied on the ransmission electron microscopy (TEM, JEOL 2010, 200 kV). The powder X-ray diffraction (PXRD) patterns were performed on Rigaku/Max-2550 with Cu K α radiation (λ = 1.7890 Å). The element distribution was measured by Energy dispersive spectrometer (EDS) on JEOL TEM. X-ray photoelectron spectroscopy (XPS) scans were carried on multifunctional imaging electron spectrometer (Thermo ESCALAB 250XI). The elemental analyses of H and N were conducted on a Vario EL III elemental analyzer, and those of Mo, Mn and Ag were analyzed on a Jarrel-AshJ-A1100 (ICP) atomic emission spectrometer. SERS testing was performed using a Raman spectrometer (Labramis, Horiba Jobbin Yvon, Paris, France). The wavelength was 532 nm. The laser power was 5 mW for all experiments. Spectra were collected with a 50-object lens for 4 s.

X-ray crystallography

Crystal data were collected on an Agilent Technology Eos Dual system with focusing multilayer mirror optics and a Cu K α source of $\lambda = 1.54184$ Å. Empirical absorption corrections were applied to the intensities using the SADABS program. The structures were solved using the program SHELXS97 and refined with the program SHELXL-97. The positions of the metal atoms and their first coordination spheres were located from direct-methods. Other non-hydrogen atoms were found in alternating difference Fourier syntheses and least-squares refinement cycles. During the final cycles, except for some solvent molecules, all other non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in calculated positions refined using idealized geometries and assigned fixed isotropic displacement parameters. CCDC number of 2086764 for Ag₆MnMo₉ and 2097830 for Ag₃MnMo₉.

Supporting figures

Fig. S1 Coordination environment of Ag⁺ and MnMo₉ polyoxoanion. Symmetric code: #1 2-x, y, 1/2-z; #2 3/2-x, 1/2-y, -1/2+z; #3 1-x, y, 1/2-z; #4 -1+x, y, z; #5 -1/2+x, 1/2y, 1-z; #6 -1/2+x, 1/2+y, z; #7 1-x, 1-y, 1/2+z.

Fig. S2 Representation of 3D structure of Ag_6MnMo_9 along axis *c*.

Left

Right

Fig. S3 Structures of left- and right- handed MnMo₉ polyoxoanions located in Ag₃MnMo₉.

Fig. S4 (a) Representation of different chiral $[MnMo_9O_{32}]^{6-}$ polyoxoanions in Ag₃MnMo₉. (b) 3D framework of Ag₃MnMo₉ filled with $[Ag_3(trz)_3]^{3+}$.

Fig. S5 Comparative FTIR curves for Ag₆MnMo₉ and MnMo₉ (a) and Ag₃MnMo₉, MnMo₉ and trz (b).

Fig. S6 (a) SERS spectra of Ag_3MnMo_9 after reactions with different concentrations of N_2H_4 (10⁻⁴-1.0 mg/L).

Fig. S7 The Raman and SERS spectra of Ag₆MnMo₉ and Ag₆MnMo₉ in the presence

of 10⁻³ mg/L N_2H_4 , respectively.

Fig. S8 SERS spectra of Ag_6MnMo_9 in different solvents (a) and different concentrations of N_2H_4 (10⁻⁴-1.0 mg/L) (b).

Fig. S9 The TEM image (a) and PXRD pattern (b) of Ag_6MnMo_9 in the presence of 1.0 mg/L N₂H₄.

Fig. S10 Raman spectra of Ag_6MnMo_9 at laser power (a) and sampling time (b). (c) A set of Raman spectra of Ag_6MnMo_9 from 10 random positions. (d) The Raman intensity at 945 cm⁻¹ from 10 random positions.

Fig. S11 (a) A set of SERS spectra of Ag_6MnMo_9 exposed 10⁻³ mg/L N₂H₄ from 20 random positions. (b) The SERS intensity at 945 cm⁻¹ from 20 random positions.

Fig. S12 The histogram of SERS signal at 945 cm⁻¹ of three Ag_6MnMo_9 SERS substrates exposed to 10^{-3} mg/L N₂H₄.

Fig. S13 TEM images of Ag_6MnMo_9 before (a) and after (b) N_2H_4 treatment (inset of b: The HRTEM of Ag_6MnMo_9 after N_2H_4 treatment). The overlay distribution of elements (c) and elemental mappings of Mo (d), Ag (e) and Mn (f).

Fig. S14 AgNPs size distribution for Ag_6MnMo_9 after N_2H_4 treatment.

Fig. S15 PXRD patterns of Ag₆MnMo₉ without and with the presence of N₂H₄.

Fig.S16 XPS survey spectra of Ag_6MnMo_9 without and with the presence of N_2H_4 .

Fig. S17 XPS analysis of Ag_6MnMo_9 before and after reduction by N_2H_4 for O 1s.

Fig.S18 TEM images of Ag_3MnMo_9 before (a) and after (b) N_2H_4 treatment. The overlay distribution of elements (c) and Elemental mappings of Mo (d), Ag (e) and Mn (f) in Ag_3MnMo_9 .

Fig. S19 XPS spectra of survey (a), Mo 3d (b), Mn 2p (c) and Ag 3d (d) of Ag₃MnMo₉.

Fig.S20 UV-vis absorbance spectra of Ag_6MnMo_9 and its reduced state by reaction

with N₂H₄.

Compound	Ag ₆ MnMo ₉	Ag ₃ MnMo ₉
Empirical formula	$H_4O_{36}Ag_6Mn_1Mo_9$	$H_{24}C_{6}H_{24}N_{9}O_{41}Ag_{6}Mn_{1}Mo_{9}$
Formula weight	2145.62	2427.77
T (K)	293(2)	293(2)
Space group	<i>C</i> 222 ₁	$Pa\bar{3}$
Crystal system	Orthorhombic	Cubic
<i>a</i> / Å	10.9514(9)	21.4897(2)
<i>b</i> / Å	24.5879(17)	21.4897(2)
<i>c</i> / Å	15.3537(10)	21.4897(2)
<i>a</i> / °	90)	90
eta / °	90	90
γ/°	90	90
V / Å ³	4134.3(5)	9924.1(3)
Ζ	4	8
$D_{\rm c}$ / g cm ⁻³	3.441	3.218
F (000)	3892.0	8832.0
Reflns collected / unique	6190 / 2919	26361 / 2924
$R_{(int)}$	0.0444	0.0619
Goodness-of-fit on F^2	1.047	0.953
final <i>R</i> indices $[I>2\sigma(I)]$ <i>R</i> indices (All data) CCDC	$R_{1^{a}} = 0.0791$ $wR_{2^{b}} = 0.2013$ $R_{1^{a}} = 0.0803$ $wR_{2^{b}} = 0.2026$ 2086764	$R_{1^{a}} = 0.0294$ $wR_{2^{b}} = 0.0701$ $R_{1^{a}} = 0.0332$ $wR_{2^{b}} = 0.0721$ 2097830
	2000/04	2071030

Table S1 Crystal Data and Structure for complexes Ag₆MnMo₉ and Ag₃MnMo₉.

^a $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0||$. ^b $wR_2 = \{\sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2] \}^{1/2}$.

SERS	Raman	Vibrational assignments
945	945	υ Mo–O _d
898	898	υ Mo–O _b –Mo
	630	υ Mn–O _a –Mo
531	534	υ Mo–O _c –Mo
347	353	δ Mo–O _c –Mo

Table S2. Raman and SERS vibrational frequencies (cm^{-1}) of $Ag_6MnMo_9^a$.

^a v, stretching; δ , bending.

Method	Linear range	Limit of detection	References
fluorometry	$0.75-1.5\;\mu M$	204 nM	2
fluorometry	$0-15 \ \mu M$	0.16 µM	3
fluorometry	$0-75\;\mu M$	82 nM	4
fluorometry	$0-15 \ \mu M$	0.075 μM	5
fluorometry	$0-6 \ \mu M$	90 nM	6
fluorometry	$0-500\ \mu M$	0.3 µM	7
fluorometry	$0-50\ \mu M$	81.8 nM	8
chromatography	0 - 0.06 mM	0.013 mM	9
chromatography	$0.05 - 1 \ \mu M$	9.6 nM	10
SERS	10 ⁻¹⁰ – 10 ⁻⁹ M	85 pM	11
SERS	$10^{-9} - 10^{-7} \text{ M}$	38 pM	12
SERS	$10^{-3} - 10^{-10} \text{ mg/L}$	40 pg/L (2 pM)	This work

Table S3. Comparison of different methods for detecting N_2H_4 .

References

- 1 L. C. W. Baker, T. J. R. Weakley, J. Inorg. Nucl. Chem. 1966, 28, 447-454.
- 2 S. K. Samanta, K. Maiti, S. S. Ali, U. N. Guria, A. Ghosh, P. Datta, A. K. Mahapatra, *Dyes Pigm.*, 2020, **173**, 107997.
- 3 J. P. Wang, C. R. Wang, S. Jiang, W. Y. Ma, B. Xu, L. J. Liu, W. J. Tian, J. Mater. Chem. C, 2022, 10, 2807-2813.
- 4 Y. Wang, X. L. Xue, Q. Zhang, K. P. Wang, S. J. Chen, L. S. Tang, Z. Q. Hu, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2022, 279, 121406.
- L. Y. Wang, S. Q. Xin, F. R. Xie, X. G. Ran, H. Tang, D. R. Cao, *J. Mater. Chem.* C, 2022, 10, 14605-14615.
- Q. Q. Lai, S. F. Si, T. Y. Qin, B. J. Li, H. X. Wu, B. Liu, H. H. Xu, C. Zhao, Sens.
 Actuators B Chem., 2020, 307, 127640.
- C. H. Zeng, Z. Y. Xu, C. Song, T. Y. Qin, T. H. Jia, C. Zhao, L. Wang, B. Liu, X. J.
 Peng, J. Hazard. Mater., 2023, 445, 130415.
- 8 S. Q. Zhang, Y. Xie, L. Q. Yan, Acta A Mol. Biomol. Spectrosc., 2020, 230, 118028.
- 9 R. Sharma, S. H. Jung, H. I. Lee, ACS Appl. Polym. Mater., 2021, 3, 6632-6641.
- Y. Zhang, Y. Zhang, D. Zhang, S. D. Li, C. Jiang, Y. Su, Sens. Actuators B Chem., 2019, 285, 607-616
- 11 X. Gu, J. P. Camden, Anal. Chem., 2015, 87, 6460-6464.
- G. D. Xu, N. Guo, Q. J. Zhang, T. T. Wang, P. Song, L. X. Xia, *J. Hazard. Mater.*, 2022, **424**, 127303.