Supporting Information

Highly Efficient and Stable Cs₂TeCl₆:Cr³⁺ Perovskite Microcrystals for White Light Emitting Diodes

Lu Zi,^a Wen Xu,^{*ab} Zhijiang Song,^c Rui Sun,^a Sen Liu,^a Tianyu Xie,^a Jinyang Zhu,^c Siyu Lu,^d and Hongwei Song^{*a}

^a State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, Jilin, P. R. China.

^b Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600, P. R. China.

^c State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, P. R. China.

^d Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450000, P. R. China.

*E-mail: Prof. Wen Xu (xuwen@dlnu.edu.cn); Prof. Hongwei Song (songhw@jlu.edu.cn)

Experimental section

Chemicals

Cesium chloride (CsCl, 99.9%), hydrochloric acid (HCl, 37 wt% in water, Sinopharm Chemical Reagent Co., Ltd.), tellurium dioxide (TeO₂, 99.99%), bismuth chloride (BiCl₃, 99%), manganese chloride tetrahydrate (MnCl₂·4H₂O, 99%), chromium chloride hexahydrate (CrCl₃·6H₂O, 99%), cadmium chloride hemi (CdCl₂·5/2H₂O, 98%), isopropyl alcohol, acetone (\geq 99.5%) and acetonitrile were purchased from Macklin. (CH₃COO)₃Ce·xH₂O (99.9%), (CH₃COO)₃Sm·xH₂O (99.9%), (CH₃COO)₃Eu·xH₂O (99.9%), (CH₃COO)₃Yb·4H₂O (99.9%) were purchased from Sigma-Aldrich. All chemicals were used as received without any further purification.

Synthesis of Cr³⁺ doped Cs₂TeCl₆ microcrystals (MCs)

The Cs₂TeCl₆:Cr³⁺ MCs were synthesized via a solvothermal method with some modification.^[1-2] 2 mmol CsCl, 1 mmol TeO₂ and a certain amount of CrCl₃·6H₂O were dissolved in 5 ml HCl and then stirred overnight at 30°C and transferred to a polytetrafluoroethylene (PTFE) container. Subsequently, the container was placed in the oven at 180 °C for 12 hours, it was cooled to room temperature at 6-8 °C/h. The products were centrifugation, washed with isopropyl alcohol, acetone and acetonitrile in sequence. Finally, the Cs₂TeCl₆:Cr³⁺ MCs were dried at 60 °C in a vacuum oven for 24 h before use.

Fabrication of WLEDs

The WLEDs were constructed using commercial UV LED chip (382 nm), yellow phosphor ($Cs_2TeCl_6:Cr^{3+}$ MCs), and blue phosphor ($BaMgAl_{10}O_{17}:Eu^{2+}$ MCs). The

two phosphors are thoroughly mixed with epoxy resin and then coated on the UV LED chips, finally solidified at 80 °C for 1 hour to fabricate the WLEDs.

Characterization

UV-visble absorption spectra were obtained with a Shimadzu UV-1700 PC UV/Visble scanning spectrophotometer in the range from 300 nm to 1100 nm. Powder X-ray diffraction (XRD) patterns were recorded by using a Rigaku TTRIII Xray diffractometer at 200 mA and 40 kV with Cu K α radiation ($\lambda = 1.5406$ Å). The scan range was set from 5° to 70° with the scanning rate of 10° /min. The morphology of the products was recorded with a JEOL JSM-7500F scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) analysis and mapping. Trace-Metal Analysis was carried out using inductively coupled plasma optical emission spectrometry (ICP-OES) on a Varian720-ES ICP-optical emission spectrometer. The X-ray photoelectron spectroscopy (XPS) was performed on the Kratos Axis Ultra DLD spectrometer equipped with a monochrome Al Ka X-ray source (hv = 1486.6 eV), which was operated by a drive power of 150 W with a multichannel plate and a delay line detector under 1.0×10^{-9} Torr vacuum. Photoluminescence spectra recorded Shimadzu RF-6000 were on а spectrofluorometer. The PL decay curves were measured on a FLS 920-stm spectrometer Edinburgh Instruments and collected by PerkinElmer LS 55 fluorescence spectrometer. The PLQY of the samples were acquired using a fluorescence spectrofluorometer (FLS980, Edinburgh Instruments) equipped with an integrating sphere. All of the measurements were performed at room temperature.

Supplementary Figures and Tables:

Sample	M:(Te+M)	Nominal/mol%	Actual/mol%
Cr	1:200	0.5	0.03
Cr	1:50	2	0.66
Cr	1:20	5	1.34
Cr	1:10	10	3.57
Cr	3:20	15	4.89
Cr	1:5	20	6.73
Mn	3:20	15	5.12
Cd	3:20	15	4.96
Bi	3:20	15	4.77
Ce	3:20	15	2.63
Yb	3:20	15	2.84
Sm	3:20	15	2.58
Eu	3:20	15	2.71

Table S1 The data of metal ions (M) mole percent (mol %) in $Cs_2TeCl_6:M$ MCs measured by ICP-OES.

Atom	Ox	wyck	site	x/a	y/b	z/c
Tel	4	4a	m-3m	0	0	0
Cs1	1	8c	-43m	1/4	1/4	1/4
C11	-1	24e	4m.m	0.264	0	0

Table S2 Atomic coordinates for Cs2TeCl6.

Table S3 Crystallographic data and parameters of the Rietveld refinement of Cs_2TeCl_6 and $Cs_2TeCl_6:Cr^{3+}MCs$.

Sample	Cs ₂ TeCl ₆	$Cs_2TeCl_6:Cr^{3+}$				
2θ range	10	$^{\circ} \le \theta \le 70^{\circ}$				
Temperature (K)		298				
Crystal system		Cubic				
Space group		Fm3-m				
Ζ		4				
a = b = c (Å)	10.500	10.473				
$\alpha = \beta = \gamma \; (deg)$		90				
Volume (Å ³)	1157.798	1148.765				
X-ray source		Cu Kal				
Wavelength / Å		1.5406				
R _p (%)	6.75	6.25				
R _{wp} (%)	6.12	5.68				
χ^2	1.86	1.68				

Vector	Length	Angle	Degrees
Te1-Cs1 × 8	4.53500(4)	Cl1-Te1-Cl1	90.000(0)
Te1-Cl1 × 6	2.76947(3)	Cl1-Te1-Cl1	180.000(0)
Cs1-Cs1 × 6	5.23657(6)	Cs1-Cs1-Cl1	45.048(0)
Cs1-Cl1 × 12	3.70590(3)		

Table S4 Selected bond distances (Å) and angles (deg.) for Cs₂TeCl₆.

Table S5 Selected bond distances (Å) and angles (deg.) for $Cs_2TeCl_6:Cr^{3+}$.

Vector	Length	Angle	Degrees
Te1-Cs1 × 8	4.54686(1)	Cl1-Te1-Cl1	90.000(0)
Tel-Cll × 6	2.57832(1)	Cl1-Te1-Cl1	180.000(0)
$Cs1-Cs1 \times 6$	5.25026(2)	Cs1-Cs1-Cl1	45.005(0)
Cs1-Cl1 × 12	3.71279(1)		

Table 50 The LQT of eff doped C32 Teel6 Mes.				
Sample	PLQY(Vis)			
-	[%]			
Cs ₂ TeCl ₆	6.7			
Cs ₂ TeCl ₆ :Cr ³⁺ (0.03 %)	11.2			
Cs ₂ TeCl ₆ :Cr ³⁺ (0.66 %)	29.3			
Cs ₂ TeCl ₆ :Cr ³⁺ (1.34 %)	55.5			
Cs ₂ TeCl ₆ :Cr ³⁺ (3.57 %)	73.9			
Cs ₂ TeCl ₆ :Cr ³⁺ (4.89 %)	81.5			
$Cs_2TeCl_6:Cr^{3+}$ (6.73%)	53.4			

Table S6 The PLQY of Cr³⁺ doped Cs₂TeCl₆ MCs.

Current(mA)	Х	У	CCT (K)	R _a
5	0.3217	0.3506	5893	79.3
15	0.3208	0.3508	5779	79.9
25	0.3225	0.3503	5826	81.3
35	0.3216	0.3512	5801	81.7
45	0.3231	0.3520	5922	81.6
55	0.3209	0.3497	5703	81.8

 Table S7 Photometric results of the WLEDs working at different drive currents.

 Table S8. Summary of the optically excited WLEDs performance.

Emitters	CIE	CCT	CRI	luminous	Ref.
	(x, y)	(K)		efficiency	
				(lm/W)	
Cs ₂ SnCl ₆ :1.1%Bi ³⁺ /0.2	(0.34, 0.37)	5233	73	-	3
%Te ⁴⁺					
$Cs_2SnCl_6:Bi^{3+}/0.049\% Te^{4+}$	(0.33, 0.33)	5613	-	26.65	4
$Cs_2AgIn_{0.883}Bi_{0.167}Cl_6$	(0.42, 0.39)	3260	87	-	5
CsCu ₂ I ₃	(0.35, 0.36)	5035	-	-	6
Cs ₂ (Na, Ag)InCl ₆ :7.09%Ho ³⁺	(0.39, 0.46)	-	75.4	-	7
$Cs_2HfCl_6{:}Bi^{3+}\!/0.01\%Te^{4+}$	(0.31, 0.32)	6866	84.5	4.25	8
$Cs_2ZrCl_6{:}1.5\%Sb^{3+}$	(0.32, 0.33)	5438	96	-	9
$(NH_4)_2 SnCl_6: 0.5\% Te^{4+}$	(0.39, 0.38)	3855	83	31	10
$Cs_2SnCl_6:2.75\%Bi^{3+}$	(0.36, 0.37)	4486	-	-	11
Cs ₂ TeCl ₆ :4.89%Cr ³⁺	(0.32, 0.35)	5826	81.3	19.34	This
					work

Fig. S1 XRD patterns of pure Cs_2TeCl_6 and various Cr^{3+} doped Cs_2TeCl_6 MCs.

Fig. S2 Diameter distribution of Cs₂TeCl₆:Cr³⁺ (4.89 %) MCs.

Fig. S3 High-resolution XPS analysis of pure Cs_2TeCl_6 and Cs_2TeCl_6 : $Cr^{3+}MCs$.

Fig. S4 Absorption spectra of various Cr³⁺ doped Cs₂TeCl₆ MCs.

Fig. S5 (a) Emission spectra. (b) Emission dynamics of pure and various Cr^{3+} doped Cs_2TeCl_6 MCs monitored at 590 nm.

Fig. S6 PLQY of various Cr³⁺ doped Cs₂TeCl₆ MCs.

Fig. S7 The excitation spectra monitored at 560, 580, and 600 nm for Cs₂TeCl₆:Cr³⁺

MCs.

Fig. S8 Temperature-dependent PL spectra (T = 10-300 K) for Cs₂TeCl₆ MCs.

Fig. S9 (a) Fitting curve of the FWHM as a function of temperature. (b) Extracted PL intensity versus 1/T and the corresponding fitting result.

Fig.S10 Normalized PL spectra of just-prepared and heat-treated Cs_2TeCl_6 :4.89% Cr^{3+} samples.

Fig.S11 TG and DSC curves of Cs₂TeCl₆:4.89%Cr³⁺ MCs.

Fig. S12 EL spectra of the WLEDs at different operating times driven the current of 25 mA.

References

1 Y. Yao, S. W. Zhang, Z. J. Liu, C. Y. Wang, P. Liu, L. Ma, G. D. Wei, F. Y.

Kang, RSC Adv., 2021, 11 (42), 26415-26420.

- 2 F. Zhang, X. Chen, X. F. Qi, W. Q. Liang, M. Wang, Z. Z. Ma, X. Z. Ji, D. W. Yang, M. C. Jia, D. Wu, X. J. Li, Y. Zhang, Z. F. Shi, C. X. Shan, *Nano Lett.*, 2022, 22 (12), 5046-5054.
- W. Zhang, W. Zheng, L. Y. Li, P. Huang, Z. L. Gong, Z. W. Zhou, J. Y. Sun, Y.
 Yu, X. Y. Chen, *Angew. Chem. Int. Ed.*, 2022, 61 (9), e202116085.
- 4 Y. Zhong, Y. E. Huang, T. Deng, Y. T. Lin, X. Y. Huang, Z. H. Deng, K. Z. Du, *Inorg. Chem.*, 2021, 60 (22), 17357-17363.
- M. B. Gray, J. D. Majher, T. A. Strom, P. M. Woodward, *Inorg. Chem.*, 2019, 58 (19), 13403-13410.
- 6 R. C. Lin, Q. L. Guo, Q. Zhu, Y. M. Zhu, W. Zheng, F. Huang, *Adv. Mater.*, 2019, 31 (46), 1905079.
- S. R. Li, Q. S. Hu, J. J. Luo, T. Jin, J. Liu, J. H. Li, Z. F. Tan, Y. B. Han, Z. Zheng, T. Y. Zhai, H. S. Song, L. Gao, G. D. Niu, J. Tang, *Adv. Opt. Mater.*, 2019, 7 (23), 1901098.
- W. Yang, P. P. Dang, G. D. Zhang, H. Z. Lian, G. G. Li, J. Lin, *Inorg. Chem.*, 2022, 61 (15), 5903-5911.
- 9 F. Zhang, X. Chen, X. F. Qi, W. Q. Liang, M. Wang, Z. Z. Ma, X. Z. Ji, D. W. Yang, M. Jia, D. Wu, X. J. Li, Y. Zhang, Z. F. Shi, C. X. Shan, *Nano Lett.*, 2022, 22 (12), 5046-5054.
- 10 Z. Y. Li, C. Y. Zhang, B. Li, C. Lin, Y. Li, L. Wang, R. J. Xie, *Chem. Eng. J.*, 2021, 420, 129740.
- Z. F. Tan, J. H. Li, C. Zhang, Z. Li, Q. S. Hu, Z. W. Xiao, T. Kamiya, H. Hosono,
 G. D. Niu, E. Lifshitz, Y. B. Cheng, J. Tang, *Adv. Funct. Mater.*, 2018, 28 (29),
 1801131.