Supporting Information

Flow-type hydrogen peroxide fuel cells with hemin-modified buckypaper catalysts

Seon-Min Jeon^{a,&}, Jungyeon Ji^{b,&} and Yongchai Kwon^{a,b,*}

[a] Department of New and Renewable Energy Convergence, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
[b] Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea

Figure S1. CV curves of (a) BP/PEI/hemin(25mg) and (b) BP/PEI/hemin(50mg) in the presence of H_2O_2 . For the tests, 0.01 M PBS (pH 7.4) served as the electrolyte under N_2 conditions and the potential scan rate was 20 mV s⁻¹.

Figure S2. CV curves showing H_2O_2 oxidation reaction by BP/CoPc in the presence of 10mM H_2O_2 . For the tests, 0.01 M PBS (pH 7.4) served as the electrolyte under N_2 conditions and the potential scan rate was 20 mV s⁻¹.

Figure S3. Stability of catalysts estimated by the periodic measurements of their catalytic activity for 15 days.