NOTE AFTER FIRST PUBLICATION:

This version of the ESI replaces the previous version published on 5 April 2023.

Molecular geometry and TADF photophysics:

the strange case of DMAC-py-TRZ

Ettore Crovini, ^{a‡} Rama Dhali, ^{b‡} Dianming Sun,^a Tomas Matulaitis, ^a Thomas Comerford, ^a Alexandra M. Z. Slawin,^a Cristina Sissa,^b Francesco Azzolin,^b Francesco Di Maiolo,^b Anna Painelli,*^b and Eli Zysman-Colman*^a

^a Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK. E-mail: <u>eli.zysman-colman@st-andrews.ac.uk</u>; Web: <u>http://www.zysman-colman.com</u>; Tel: +44 (0)1334 463826
 ^bDepartment of Chemistry, Life Science and Environmental, Sustainability, University of Parma, 43124 Parma, Italy

[‡] These authors contributed equally to this work.

SUPPORTING INFORMATION

General Methods	S2
Experimental Section	
Crystal structure	
DFT Calculations	
References	

General Methods

General Synthetic Procedures. The following starting materials were synthesized according to literature materials, **DMAC**.¹All other reagents and solvents were obtained from commercial sources and used as received. Air-sensitive reactions were performed under a nitrogen atmosphere using Schlenk techniques, no special precautions were taken to exclude air or moisture during work-up and crystallisation. Flash column chromatography was carried out using silica gel (Silia-P from Silicycle, 60 Å, 40-63 µm). Analytical thin-layer-chromatography (TLC) was performed with silica plates with aluminum backings (250 µm with F-254 indicator). TLC visualization was accomplished by 254/365 nm UV lamp. HPLC analysis was conducted on a Shimadzu LC-40 HPLC system. HPLC traces were performed using a Shim-pack GIST 3µm C18 reverse phase analytical column. GCMS analysis was conducted using a Shimadzu QP2010SE GC-MS equipped with a Shimadzu SH-Rtx-1 column (30 m x 0.25 mm). ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Bruker Advance spectrometer (500 MHz for ¹H, 125 MHz for ¹³C, 471 MHz for ¹⁹F and 202 MHz for ³¹P). The following abbreviations have been used for multiplicity assignments: "s" for singlet, "d" for doublet, "t" for triplet, "q" for quartet, "m" for multiplet, and "br" for broad. ¹⁹F and ³¹P NMR spectra were recorded with proton decoupling. ¹H and ¹³C NMR spectra were referenced residual solvent peaks with respect to TMS ($\delta = 0$ ppm). Melting points were measured using open-ended capillaries on an Electrothermal 1101D Mel-Temp apparatus and are uncorrected. High-resolution mass spectrometry (HRMS) was performed by EPSRC National Mass Spectrometry Service Centre (NMSSC). Elemental analyses were performed by Mr. Stephen Boyer, London Metropolitan University or the School of Geosciences at the University of Edinburgh.

Electrochemistry measurements. Cyclic Voltammetry (CV) and Differential Pulse Voltammetry analyses were performed on an Electrochemical Analyzer potentiostat model 620D from CH Instruments. Sample of **DMAC-TRZ and DMAC-py-TRZ** were prepared in DCM that was degassed by sparging with DCM-saturated nitrogen gas for 10 minutes before measurements. All measurements were performed in 0.1 M DCM solution of tetrabutylammonium hexafluorophosphate, which was used as the supporting electrolyte. An Ag/Ag⁺ electrode was used as the reference electrode while a glassy carbon electrode and a platinum wire were used as the working electrode and counter electrode, respectively. The redox potentials are reported relative to a saturated calomel electrode (SCE) with a ferrocene/ferrocenium (Fc/Fc⁺) redox couple as the internal standard (0.46 V vs SCE for DCM ²).

Photophysical measurements—Optically dilute solutions of concentrations on the order of 10^{-5} M were prepared in HPLC grade methyl-cyclohexane, toluene, DCM, THF, and MeCN for absorption and emission analysis. Absorption spectra were recorded at room temperature on a Shimadzu UV-1800 double beam spectrophotometer with a 1 cm quartz cuvette. Molar absorptivity determination was verified by linear least-squares fit of values obtained from at least five independent solutions at varying concentrations with absorbance ranging from 1.66 × 10^{-5} to 1.93×10^{-6} M.

For emission studies, aerated solutions were bubbled with compressed air for 5 minutes and spectra were taken using the same cuvette as for the absorption analysis. Degassed solutions were prepared via three freeze-pump-thaw cycles and spectra were taken using a home-made Schlenk quartz cuvette. Steady-state emission, excitation spectra and time-resolved emission spectra were recorded at 298 K using an Edinburgh Instruments F980. Samples were excited at 340 nm for steady-state measurements and at 378 nm for time-resolved measurements. Photoluminescence quantum yields for solutions were determined using the optically dilute method ³ in which four sample solutions with absorbances of ca. 0.103, 0.065, 0.052 and 0.047 for DMAC-py-TRZ, and 0.098, 0.081, 0.061 and 0.041 for DMAC-TRZ at 360 nm were used. The Beer-Lambert law was found to remain linear at the concentrations of the solutions. For each sample, linearity between absorption and emission intensity was verified through linear regression analysis with the Pearson regression factor (R^2) for the linear fit of the data set surpassing 0.9. Individual relative quantum yield values were calculated for each solution and the values reported represent the slope obtained from the linear fit of these results. The equation $\Phi_s = \Phi_r(A_r/A_s)(I_s/I_r)(n_s/n_r)^2$ was used to calculate the relative quantum yield of the sample, where (Φ_r) is the absolute quantum yield of the external reference quinine sulfate ($\Phi_r = 54.6\%$ in 1 N H₂SO₄).⁴ A stands for the absorbance at the excitation wavelength, I is the integrated area under the corrected emission curve and n is the refractive index of the solvent. The subscripts "s" and "r" representing sample and reference, respectively. The experimental uncertainty in the emission quantum yields is conservatively estimated to be 10%, though we have found that statistically, we can reproduce Φ_{PL} values to 3% relative error. Thin-film Φ_{PL} measurements were performed using an integrating sphere in a Hamamatsu C9920-02 system. A xenon lamp coupled to a monochromator enabled excitation selectivity, chosen here to be 340 nm. The output was then fed into the integrating sphere via a fibre, exciting the sample. PL spectra were collected with a multimode fibre and detected with a back-thinned CCD. Doped thin films were prepared by mixing sample (10 wt%) and host material in Chlorobenzene solution, followed by spin-casting on a quartz substrate. The Φ_{PL} of the films were then measured in air and by purging the integrating sphere with flowing N₂ gas. Time-resolved PL measurements of the thin films were carried out using the time-correlated single-photon counting technique. The samples were excited at 378 nm by a pulsed laser diode (Picoquant, model PLS 370) and were kept in a vacuum of $< 8 \times 10^{-4}$ mbar.

The singlet-triplet splitting energy, ΔE_{ST} , was estimated by recording the prompt fluorescence spectra and phosphorescence emission at 77 K. The films were excited either by a Q-switched Nd:YAG laser emitting at 343 nm (Laser-export) or by a femtosecond optical parametric amplifier emitting at 320 nm (Orpheus-N, Light Conversion). Emission from the samples was focused onto a spectrograph (Chromex imaging, 250is spectrograph) and detected on a sensitive gated iCCD camera (Stanford Computer Optics, 4Picos) having a sub-nanosecond resolution. Prompt fluorescence spectra were measured 1 ns after the excitation of the femtosecond laser with iCCD exposure time of 100 ns. Phosphorescence spectra were measured 1 ms after the excitation of the Nd:YAG laser with iCCD exposure time of 8.5 ms.

Low-temperature emission measurements in 2-MeTHF and room temperature emission in polyTHF were collected with a FLS1000 Edinburgh fluorimeter, equipped with a gated PMT detector. Low-temperature measurements were performed using a liquid nitrogen cooled optical cryostat (OptistatDN, Oxford Instrument) equipped with temperature controller (ITC601, Oxford Instrument). 2-MeTHF was stored over molecular sieves for 1 night and filtered, and the sample was rapidly cooled down to 77 K to obtain transparent glasses.

Fitting time-resolved luminescence measurements: Time-resolved PL measurements were fitted to a sum of exponentials decay model with chi-squared (χ^2) values between 1 and 2, using the EI FLS980 software. Each component of the decay is assigned a weight, (w_i), which is the contribution of the emission from each component to the total emission.

The average lifetime was then calculated using the following:

• Two exponential decay model:

$$\tau_{AVG} = \tau_1 w_1 + \tau_2 w_2$$

with weight defined as $w_1 = \frac{A1\tau_1}{A1\tau_1 + A2\tau_2}$ and $w_2 = \frac{A2\tau_2}{A1\tau_1 + A2\tau_2}$ where A1 and A2 are the preexponential-factors of each component.

Experimental Section

Synthesis

2-(4-fluorophenyl)-4,6-diphenyl-1,3,5-triazine (F-py-TRZ)

To a mixture of 2-chloro-4,6-diphenyl-1,3,5-triazine (1.30 g, 5.00 mmol, 1 equiv.) and (6-fluoropyridin-3-yl)boronic acid (0.78 g, 5.50 mmol, 1.1 equiv.) were added 40 mL of THF and 10 mL 2 M K₂CO₃ aqueous solution followed by bubbling with N₂ through the solution for 10 min and heating to reflux for 12 h under a N₂ atmosphere. The reaction was diluted with water, and the organic layer was extracted with dichloromethane (DCM) (3×50 mL). The organic phase was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The product was obtained as a white solid after recrystallization from THF (1.31 g). Yield: 80%. **R**_{*t*}: 0.81 (EtOAc: hexane = 1:4 on silica gel). **Mp**: 245-250 °C. ¹H NMR (500 MHz, CDCl₃) δ (**ppm**): 9.59-9.58 (d, 1H), 9.12-9.08 (m, 1H), 8.76-8.74 (m, 4H), 7.67 – 7.63 (m, 2H), 7.63 – 7.57 (m, 4H), 7.14-7.12 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ (**ppm**): 171.99, 169.38, 167.08, 165.13, 149.86, 149.73, 141.84, 141.77, 135.81, 133.07, 130.36, 130.32, 129.16, 128.91, 109.84, 109.54. **GC-MS retention time:** 12.024 min; **Mass Theoretical:** (C₂₀H₁₃FN₄) 328.35 g/mol; **Mass Found:** 328 g/mol.

Figure S2. ¹⁹F NMR of F-py-TRZ in CDCl₃

Figure S3. ¹³C NMR of F-py-TRZ in CDCl₃.

Sample Information
: Admin
: 08/03/2022 15:51:06
: Unknown
:1
: F-py-TRZ
:
: [1]=1
:1
:1
: 60
: 1.00
: S:\Ettore\080322\F-py-TRZ.qgd
: S:\Ettore\080322\F-py-TRZ.qgd
: S:\standard method 1 for RTX-1 column 330 injection-long.qgm
: S:\standard method 1 for RTX-1 column 330 injection-long.qgm
:
: S:\auto tuning result\03022022.qgt
: Admin
: 08/03/2022 16:25:43

Line#:1 R.Time:12.025(Sean#:1084) MassPeaks:581 RawMode:Single 12.025(1084) BasePeak:103.10(3337273) BG Mode:None Group 1 - Event 1 Sean

Figure S4. GC-MS trace of F-py-TRZ.

10-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)pyridin-2-yl)-9,9-dimethyl-9,10-dihydroacridine (DMAC-py-TRZ)

To Cs₂CO₃ (1.03 g, 3 mmol, 3.1 equiv.) in a Schlenk flask was added DMAC (0.24 g, 1.1 mmol, 1.1 equiv.) and 10 mL of anhydrous DMF under N₂. The suspension was stirred for 30 min at room temperature. F-py-TRZ (0.33 g, 1.0 mmol, 1.0 equiv.,) was then added and the reaction was heated to reflux for 24 h. The reaction went from white to yellow/orange to dark red with increasing temperature. The reaction was diluted with water, and the organic layer was extracted with dichloromethane (DCM) $(3 \times 50 \text{ mL})$. The organic phase was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The target product was obtained as a yellow solid after purification by column chromatography on silica gel using 5:1 hexane/DCM as eluent followed by recrystallization in THF/MeOH. (0.30 g). Yield: 60%. Rf: 0.81 (EtOAc: hexane = 1:4 on silica gel). Mp: 260-270 °C. ¹H NMR (500 MHz, CDCl₃) δ (ppm): 9.76 (d, 1H), 8.82-8.74 (m, 4H), 7.80-7.78 (m, 2H), 7.63 – 7.55 (m, 5H), 7.52-7.50 (m, 2H), 7.377.30 (m, 1H), 7.25 – 7.22 (m, 1H), 1.60 (s, 4H) ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 171.58, 170.22, 158.42, 150.44, 141.43, 140.13, 138.30, 136.30, 132.69, 129.06, 128.79, 126.18, 125.21, 125.06, 124.62, 124.05, 110.63, 37.94, 27.51. HPLC retention time: 5.039; purity: 99.98%; HR-MS (Xevo G2-XS QTof) [M+H]⁺ Calculated: (C₃₅H₂₇N₅) 517.6400; Found: 518.2336.

Figure S5. ¹H NMR of DMAC-py-TRZ in CDCl₃.

Figure S6. ¹³C NMR of DMAC-py-TRZ in CDCl₃.

HPLC Trace Report31Aug2021

<Sample Information>

Sample Name Sample ID	EC-2894-DMAC-py-TRZ		
Method Filename	: 95% Acetonitrile 5 Water 20 mins.lcr	n	
Batch Filename	: EC-2591-2713-2894-DMAC-py-TRZ	-recryst-MeCN-95-t	ry2.lcb
Vial #	: 1-5	Sample Type	Unknown
Injection Volume	: 10 uL		
Date Acquired	: 31/08/2021 12:13:23	Acquired by	: System Administrator
Date Processed	: 31/08/2021 12:33:26	Processed by	: System Administrator

<Chromatogram>

<Peak Table>

Detect	or A 254nm					
Peak#	Ret. Time	Area	Height	Area%	Area/Height	Width at 5% Height
1	0.994	1528	485	0.019	3.152	
2	5.039	7924891	970451	99.981	8.166	0.305
Total		7926419	970936	100.000		

Figure S7. HPLC analysis report for DMAC-py-TRZ.

Figure **S8.** HRMS analysis report for **DMAC-py-TRZ**.

Crystal structure

DMAC-py-TRZ

Data Collection

A colourless prism crystal of $C_{38}H_{36}N_4O_2$ having approximate dimensions of 0.200 x 0.100 x 0.100 mm was mounted in a loop. All measurements were made on a Rigaku XtaLAB P100 diffractometer using multi-layer mirror monochromated Cu-Ka radiation.

Cell constants and an orientation matrix for data collection corresponded to a primitive monoclinic cell with dimensions:

a = 9.13283(11) Å b = 27.2082(2) Å b = $107.9900(13)^{0}$ c = 13.18180(16) Å V = 3115.38(6) Å³

For Z = 4 and F.W. = 580.73, the calculated density is 1.238 g/cm^3 . The reflection conditions of:

h0l: l = 2n 0k0: k = 2n

uniquely determine the space group to be:

The data were collected at a temperature of $-100 \pm 1^{\circ}$ C to a maximum 2q value of 136.6°.

Data Reduction

Of the 31449 reflections were collected, where 5667 were unique ($R_{int} = 0.0229$). Data were collected and processed using CrysAlisPro (Rigaku Oxford Diffraction).⁵

The linear absorption coefficient, m, for Cu-Ka radiation is 6.092 cm⁻¹. An empirical absorption correction was applied which resulted in transmission factors ranging from 0.738 to 0.941. The data were corrected for Lorentz and polarization effects. A correction for secondary extinction was applied (coefficient = 0.018550).⁶

Structure Solution and Refinement

The structure was solved by direct methods⁷ and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement⁸ on F² was based

on 5667 observed reflections and 402 variable parameters and converged (largest parameter shift was 0.01 times its esd) with unweighted and weighted agreement factors of:

 $R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo| = 0.0564$

wR2 = $[\Sigma (w (Fo^2 - Fc^2)^2) / \Sigma w (Fo^2)^2]^{1/2} = 0.1413$

The goodness of fit^{*} was 1.12. Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.29 and -0.39 $e^-/Å$, respectively.⁷

*Goodness of fit is defined as:

$$[Sw(F_0^2-F_c^2)^2/(N_0-N_v)]^{1/2}$$

where:

 N_o = number of observations N_v = number of variables

Neutral atom scattering factors were taken from International Tables for Crystallography (IT), Vol. C, Table 6.1.1.4.⁹ Anomalous dispersion effects were included in Fcalc;¹⁰ the values for Df' and Df" were those of Creagh and McAuley¹¹. The values for the mass attenuation coefficients are those of Creagh and Hubbell.¹² All calculations were performed using the CrystalStructure¹³ crystallographic software package except for refinement, which was performed using SHELXL Version 2018/3⁸.

Experimental details

A. Crystal Data

Empirical Formula	$C_{38}H_{36}N_4O_2$
Formula Weight	580.73
Crystal Color, Habit	colourless, prism
Crystal Dimensions	0.200 X 0.100 X 0.100 mm
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	a = 9.13283(11) Å b = 27.2082(2) Å c = 13.18180(16) Å β = 107.9900(13) ⁰ V = 3115.38(6) Å ³
Space Group	P2 ₁ /c (#14)
Z value	4
D _{calc}	1.238 g/cm ³
F ₀₀₀	1232.00
μ(CuKα)	6.092 cm ⁻¹

B. Intensity Measurements

Diffractometer	XtaLAB P100
Radiation	CuK α (λ = 1.54184 Å) multi-layer mirror monochromated
Temperature	-100.0°C
Detector Aperture	83.8 x 33.5 mm
Data Images	3982 exposures
Pixel Size	0.172 mm
$2\theta_{max}$	136.6°
No. of Reflections Measured	Total: 31449 Unique: 5667 (R _{int} = 0.0229)
Corrections	Lorentz-polarization Absorption (trans. factors: 0.738 - 0.941) Secondary Extinction (coefficient: 1.85500e-002)

C. Structure Solution and Refinement

Structure Solution 2018/2)	Direct Methods (SHELXT Version
Refinement	Full-matrix least-squares on F ²
Function Minimized	$\Sigma \text{ w } (\text{Fo}^2 - \text{Fc}^2)^2$
Least Squares Weights	w = 1/ [$\sigma^2(Fo^2)$ + (0.0770 · P) ² + 0.7854 · P] where P = (Max(Fo ² ,0) + 2Fc ²)/3
$2\theta_{max}$ cutoff	136.6°
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	5667
No. Variables	402
Reflection/Parameter Ratio	14.10
Residuals: R1 (I>2.00s(I))	0.0564
Residuals: R (All reflections)	0.0571
Residuals: wR2 (All reflections)	0.1413
Goodness of Fit Indicator	1.121
Max Shift/Error in Final Cycle	0.005
Maximum peak in Final Diff. Map	0.29 e⁻/ų
Minimum peak in Final Diff. Map	-0.39 e ⁻ /ų

atom	Х	у	Z	B _{eq}
041	0.1125(2)	0.53242(8)	0.02043(17)	7.91(5)
042	0.40324(18)	0.53301(6)	0.01557(15)	6.70(4)
N1	0.87448(13)	0.67025(4)	0.85205(10)	3.05(2)
N24	0.30531(13)	0.55040(4)	0.53282(9)	2.97(2)
N26	0.23761(13)	0.46683(4)	0.49053(9)	3.01(2)
N28	0.46715(13)	0.48661(4)	0.62798(10)	3.09(2)
C2	0.86471(15)	0.68804(5)	0.95008(11)	2.74(2)
C3	0.73333(16)	0.67846(5)	0.98011(12)	3.18(3)
C4	0.72070(18)	0.69588(6)	1.07545(12)	3.50(3)
C5	0.83891(19)	0.72329(6)	1.14257(12)	3.57(3)
C6	0.96857(17)	0.73285(5)	1.11304(12)	3.25(3)
C7	0.98561(16)	0.71610(5)	1.01737(11)	2.76(2)
C8	1.12447(16)	0.73144(5)	0.98341(11)	2.97(3)
C9	1.13877(16)	0.69915(5)	0.89223(11)	2.82(2)
C10	1.27510(17)	0.69847(5)	0.86597(12)	3.43(3)
C11	1.29273(18)	0.67112(6)	0.78225(13)	3.69(3)
C12	1.17088(18)	0.64306(5)	0.72162(12)	3.49(3)
C13	1.03336(17)	0.64289(5)	0.74494(12)	3.23(3)
C14	1.01558(16)	0.67071(5)	0.82997(11)	2.78(2)
C15	1.1009(2)	0.78520(5)	0.94478(14)	4.06(3)
C16	1.27382(19)	0.72833(8)	1.07786(14)	4.49(4)
C17	0.75803(16)	0.63651(5)	0.79213(11)	3.04(3)
C18	0.64376(16)	0.65261(5)	0.70309(11)	2.96(3)
C19	0.53457(16)	0.61955(5)	0.64324(11)	2.90(2)
C20	0.54155(16)	0.57029(5)	0.67265(11)	2.91(3)
C21	0.65760(19)	0.55460(6)	0.76280(13)	3.78(3)
C22	0.76522(19)	0.58751(6)	0.82240(13)	3.88(3)
C23	0.43084(16)	0.53395(5)	0.60736(11)	2.87(2)
C25	0.21315(16)	0.51525(5)	0.47561(11)	2.85(2)
C27	0.36514(16)	0.45461(5)	0.56817(11)	2.91(2)
C29	0.07363(16)	0.53085(5)	0.38987(11)	3.12(3)
C30	0.04337(19)	0.58031(6)	0.36601(13)	3.70(3)
C31	-0.0879(2)	0.59447(7)	0.28679(14)	4.39(3)
C32	-0.1910(2)	0.55953(7)	0.23051(14)	4.67(4)
C33	-0.1626(2)	0.51032(7)	0.25298(14)	4.52(3)
C34	-0.03071(18)	0.49586(6)	0.33202(13)	3.80(3)
C35	0.39853(17)	0.40177(5)	0.59082(11)	3.01(3)

Tał	ole	S1.	Atomic	coord	linates	and	B _{iso} /	'B _{eq}
-----	-----	-----	--------	-------	---------	-----	--------------------	------------------

atom	Х	у	Z	B _{eq}
C36	0.28492(18)	0.36640(5)	0.55072(13)	3.47(3)
C37	0.3171(2)	0.31724(6)	0.57454(15)	4.14(3)
C38	0.4615(2)	0.30303(6)	0.63764(15)	4.36(3)
C39	0.5766(2)	0.33787(6)	0.67545(14)	4.16(3)
C40	0.54490(18)	0.38702(6)	0.65279(12)	3.53(3)
C41	0.1069(4)	0.56877(16)	0.0951(2)	9.44(10)
C42	0.4227(3)	0.57921(8)	-0.0218(2)	6.78(6)

Table S1. Atomic coordinates and B_{iso}/B_{eq} (continued	l)
---	----

 $\mathsf{B}_{\mathsf{eq}} = 8/3 \ \pi^2 (\mathsf{U}_{11}(\mathsf{aa}^*)^2 + \mathsf{U}_{22}(\mathsf{bb}^*)^2 + \mathsf{U}_{33}(\mathsf{cc}^*)^2 + 2\mathsf{U}_{12}(\mathsf{aa}^*\mathsf{bb}^*)\mathsf{cos}\ \gamma + 2\mathsf{U}_{13}(\mathsf{aa}^*\mathsf{cc}^*)\mathsf{cos}\ \beta + 2\mathsf{U}_{23}(\mathsf{bb}^*\mathsf{cc}^*)\mathsf{cos}\ \alpha)$

atom	Х	У	Z	B _{iso}
H3	0.65172	0.65971	0.93429	3.818
H4	0.63094	0.68906	1.09493	4.202
H5	0.83094	0.73540	1.20826	4.279
H6	1.04936	0.75158	1.15975	3.897
H10	1.35949	0.71760	0.90732	4.121
H11	1.38746	0.67159	0.76653	4.426
H12	1.18163	0.62394	0.66404	4.193
H13	0.94976	0.62368	0.70283	3.876
H15A	1.09188	0.80626	1.00287	4.877
H15B	1.00670	0.78769	0.88404	4.877
H15C	1.18917	0.79581	0.92287	4.877
H16A	1.26128	0.74684	1.13842	5.388
H16B	1.35908	0.74231	1.05689	5.388
H16C	1.29619	0.69386	1.09842	5.388
H18	0.63953	0.68619	0.68262	3.557
H19	0.45524	0.63066	0.58227	3.474
H21	0.66278	0.52104	0.78345	4.542
H22	0.84394	0.57663	0.88395	4.654
H30	0.11361	0.60454	0.40453	4.442
H31	-0.10751	0.62835	0.27088	5.270
H32	-0.28153	0.56943	0.17627	5.610
H33	-0.23355	0.48633	0.21421	5.429
H34	-0.01112	0.46191	0.34697	4.559
H36	0.18542	0.37602	0.50707	4.168
H37	0.23947	0.29320	0.54729	4.968
H38	0.48219	0.26935	0.65529	5.233
H39	0.67703	0.32792	0.71682	4.990
H40	0.62328	0.41088	0.67959	4.241
H41A	0.19136	0.59213	0.10309	11.325
H41B	0.11697	0.55329	0.16404	11.325
H41C	0.00831	0.58620	0.07009	11.325
H41	0.15914	0.50761	0.05266	9.492
H42A	0.50011	0.57768	-0.05928	8.136
H42B	0.45713	0.60208	0.03830	8.136
H42C	0.32470	0.59065	-0.07108	8.136
H42	0.44419	0.53213	0.08203	8.039

Table S2. Atomic coordinates and $\mathrm{B}_{\mathrm{iso}}$ involving hydrogen atoms

Table S3. Anisotropic displacement parameters

atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
041 0.0039(11)	0.0987(13)	0.0977(13)	0.1166(14)	-0.0039(10)	0.0514(11)	-
042	0.0846(11)	0.0596(9)	0.1128(13)	0.0042(7)	0.0341(9)	0.0198(8)
N1	0.0370(6)	0.0349(6)	0.0428(7)	-0.0060(5)	0.0105(5)	-0.0090(5)
N24	0.0390(6)	0.0312(6)	0.0418(6)	-0.0041(5)	0.0112(5)	-0.0055(5)
N26	0.0396(6)	0.0306(6)	0.0431(6)	-0.0028(5)	0.0113(5)	-0.0052(5)
N28	0.0405(7)	0.0307(6)	0.0441(7)	-0.0034(5)	0.0101(5)	-0.0048(5)
C2	0.0381(7)	0.0247(6)	0.0396(7)	0.0018(5)	0.0092(6)	-0.0002(5)
C3	0.0396(7)	0.0315(7)	0.0483(8)	-0.0019(5)	0.0114(6)	-0.0016(6)
C4	0.0452(8)	0.0393(8)	0.0521(9)	0.0021(6)	0.0204(7)	0.0023(6)
C5	0.0558(9)	0.0388(8)	0.0423(8)	0.0034(6)	0.0173(7)	-0.0020(6)
C6	0.0465(8)	0.0320(7)	0.0417(8)	-0.0015(6)	0.0089(6)	-0.0037(6)
C7	0.0383(7)	0.0242(6)	0.0392(7)	0.0017(5)	0.0074(5)	0.0004(5)
C8	0.0377(7)	0.0297(7)	0.0429(8)	-0.0032(5)	0.0086(6)	-0.0041(5)
С9	0.0384(7)	0.0269(6)	0.0402(7)	0.0002(5)	0.0095(6)	0.0022(5)
C10	0.0401(8)	0.0390(8)	0.0506(8)	-0.0026(6)	0.0128(6)	-0.0001(6)
C11	0.0437(8)	0.0454(8)	0.0549(9)	0.0044(6)	0.0207(7)	0.0029(7)
C12	0.0544(9)	0.0358(7)	0.0450(8)	0.0073(6)	0.0190(7)	-0.0000(6)
C13	0.0464(8)	0.0312(7)	0.0434(8)	-0.0004(6)	0.0112(6)	-0.0034(6)
C14	0.0386(7)	0.0265(6)	0.0391(7)	0.0010(5)	0.0101(6)	0.0014(5)
C15	0.0657(10)	0.0290(7)	0.0673(10)	-0.0056(7)	0.0315(8)	-0.0030(7)
C16	0.0411(8)	0.0729(12)	0.0509(9)	-0.0017(8)	0.0059(7)	-0.0167(8)
C17	0.0380(7)	0.0347(7)	0.0423(8)	-0.0059(6)	0.0117(6)	-0.0079(6)
C18	0.0408(7)	0.0296(7)	0.0432(7)	-0.0032(5)	0.0143(6)	-0.0045(5)
C19	0.0361(7)	0.0334(7)	0.0398(7)	-0.0011(5)	0.0108(6)	-0.0047(5)

C20	0.0384(7)	0.0314(7)	0.0412(7)	-0.0035(5)	0.0129(6)	-0.0057(6)
C21	0.0542(9)	0.0315(7)	0.0495(9)	-0.0059(6)	0.0034(7)	0.0003(6)
C22	0.0514(9)	0.0370(8)	0.0476(9)	-0.0045(6)	-0.0013(7)	-0.0016(6)
C23	0.0389(7)	0.0311(7)	0.0401(7)	-0.0034(5)	0.0141(6)	-0.0038(5)
C25	0.0377(7)	0.0313(7)	0.0408(7)	-0.0024(5)	0.0145(6)	-0.0052(5)
C27	0.0392(7)	0.0319(7)	0.0403(7)	-0.0032(5)	0.0138(6)	-0.0049(5)
C29	0.0401(8)	0.0372(7)	0.0411(7)	-0.0005(6)	0.0122(6)	-0.0062(6)
C30	0.0492(9)	0.0376(8)	0.0505(9)	0.0028(6)	0.0106(7)	-0.0044(6)
C31	0.0586(10)	0.0478(9)	0.0551(10)	0.0127(8)	0.0098(8)	0.0004(7)
C32	0.0505(10)	0.0698(12)	0.0493(9)	0.0127(8)	0.0036(7)	-0.0017(8)
C33	0.0496(9)	0.0600(11)	0.0533(10)	-0.0049(8)	0.0027(7)	-0.0109(8)
C34	0.0474(9)	0.0420(8)	0.0497(9)	-0.0036(7)	0.0073(7)	-0.0073(7)
C35	0.0438(8)	0.0309(7)	0.0412(7)	-0.0010(6)	0.0152(6)	-0.0044(5)
C36	0.0471(8)	0.0333(7)	0.0520(8)	-0.0038(6)	0.0161(7)	-0.0071(6)
C37	0.0604(10)	0.0319(8)	0.0697(11)	-0.0071(7)	0.0269(8)	-0.0087(7)
C38	0.0691(11)	0.0303(8)	0.0720(11)	0.0066(7)	0.0301(9)	0.0015(7)
C39	0.0544(9)	0.0429(9)	0.0605(10)	0.0090(7)	0.0174(8)	0.0044(7)
C40	0.0458(8)	0.0376(8)	0.0492(8)	-0.0010(6)	0.0123(7)	-0.0020(6)
C41	0.0891(19)	0.198(4)	0.0699(16)	0.006(2)	0.0225(14)	-0.031(2)
C42	0.0812(15)	0.0580(12)	0.1149(19)	-0.0057(11)	0.0249(14)	0.0176(12)

The general temperature factor expression: $exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^{*b^*}U_{12}hk + 2a^{*c^*}U_{13}hl + 2b^{*c^*}U_{23}kl))$

Table S4. Fragment Analysis

fragment:	1 0(41)	C(41)			
fragment:	2 0(42)	C(42)			
fragment:	3				
0	N(1)	N(24)	N(26)	N(28)	C(2)
	C(3)	C(4)	C(5)	C(6)	C(7)
	C(8)	C(9)	C(10)	C(11)	C(12)
	C(13)	C(14)	C(15)	C(16)	C(17)
	C(18)	C(19)	C(20)	C(21)	C(22)
	C(23)	C(25)	C(27)	C(29)	C(30)
	C(31)	C(32)	C(33)	C(34)	C(35)
	C(36)	C(37)	C(38)	C(39)	C(40)

Table S5. Bond lengths (Å)

atom	atom	distance	atom	atom	distance
041	C41	1.407(4)	042	C42	1.382(3)
N1	C2	1.408(2)	N1	C14	1.406(2)
N1	C17	1.4418(17)	N24	C23	1.3358(16)
N24	C25	1.3415(17)	N26	C25	1.3405(17)
N26	C27	1.3335(16)	N28	C23	1.3369(17)
N28	C27	1.3394(17)	C2	C3	1.399(2)
C2	C7	1.4085(18)	C3	C4	1.381(2)
C4	C5	1.384(2)	C5	C6	1.381(3)
C6	C7	1.394(2)	C7	C8	1.528(2)
C8	С9	1.527(2)	C8	C15	1.5419(19)
C8	C16	1.5391(19)	С9	C10	1.392(2)
С9	C14	1.4028(18)	C10	C11	1.381(2)
C11	C12	1.382(2)	C12	C13	1.382(2)
C13	C14	1.403(2)	C17	C18	1.3791(17)
C17	C22	1.387(2)	C18	C19	1.3928(18)

C19	C20	1.3912(19)	C20	C21	1.3927(19)
C20	C23	1.4843(18)	C21	C22	1.381(2)
C25	C29	1.4804(17)	C27	C35	1.4808(19)
C29	C30	1.390(2)	C29	C34	1.395(2)
C30	C31	1.380(2)	C31	C32	1.382(2)
C32	C33	1.378(3)	C33	C34	1.384(2)
C35	C36	1.394(2)	C35	C40	1.393(2)
C36	C37	1.385(2)	C37	C38	1.379(2)
C38	C39	1.389(2)	C39	C40	1.381(2)

atom 041	atom H41	distance 0.840	atom 042	atom H42	distance 0.840
C3	Н3	0.950	C4	H4	0.950
C5	Н5	0.950	C6	H6	0.950
C10	H10	0.950	C11	H11	0.950
C12	H12	0.950	C13	H13	0.950
C15	H15A	0.980	C15	H15B	0.980
C15	H15C	0.980	C16	H16A	0.980
C16	H16B	0.980	C16	H16C	0.980
C18	H18	0.950	C19	H19	0.950
C21	H21	0.950	C22	H22	0.950
C30	H30	0.950	C31	H31	0.950
C32	H32	0.950	C33	H33	0.950
C34	H34	0.950	C36	H36	0.950
C37	H37	0.950	C38	H38	0.950
C39	H39	0.950	C40	H40	0.950
C41	H41A	0.980	C41	H41B	0.980
C41	H41C	0.980	C42	H42A	0.980
C42	H42B	0.980	C42	H42C	0.980

Table 6. Bond lengths involving hydrogens (Å)

Table S7. Bond angles (⁰)

atom	atom	atom	angle	atom	atom	atom	angle
LΖ	NI 11845(1	C14 3)	120.58(11)	LZ	N I	CI/	
C14	N1 114.93(1	C17	117.41(12)	C23	N24	C25	
C25	N26	C27	115.09(11)	C23	N28	C27	
N1	C2	C3	119.90(11)	N1	C2	C7	
С3	C2	C7	119.79(14)	C2	С3	C4	
С3	120.90(1 C4	.3) C5	119.93(16)	C4	C5	C6	
C5	C6	.5) C7	122.58(13)	C2	C7	C6	
C2	117.52(1 C7	.4) C8	121.59(13)	C6	C7	C8	
C7	120.70(1 C8	.2) C9	110.74(11)	C7	C8	C15	
C7	108.19(1 C8	.3) C16	110.88(13)	С9	C8	C15	
С9	108.85(1 C8	.3) C16	109.59(13)	C15	C8	C16	
C8	108.53(1 C9	.3) C10	120.28(12)	C8	С9	C14	
C10	122.00(1 C9	.4) C14	117.69(14)	С9	C10	C11	
C10	122.68(1 C11	.3) C12	119.20(16)	C11	C12	C13	
C12	119.86(1 C13	.5) C14	120.88(13)	N1	C14	С9	
N1	120.30(1 C14	.3) C13	120.01(12)	С9	C14	C13	
N1	119.69(1 C17	.5) C18	120.02(12)	N1	C17	C22	
C18	119.53(1 C17	.1) C22	120.41(12)	C17	C18	C19	
C18	119.88(1 C19	.3) C20	120.08(11)	C19	C20	C21	
C19	119.36(1 C20	.2) C23	121.05(11)	C21	C20	C23	
C20	119.55(1 C21	.3) C22	120.46(15)	C17	C22	C21	
N24	119.81(1 C23	.3) N28	125 10(12)	N24	(23	C20	
N20	118.65(1	.2)	116 24(11)	N24	C25	N26	
1120	023 124.82(1	.1)	110.24(11)	IN 24	620	N20	

N24	C25	C29	117.87(12)	N26	C25	C29					
	117.32	2(11)									
N26	C27	N28	125.00(12)	N26	C27	C35					
	118.26	5(11)									
N28	C27	C35	116.74(11)	C25	C29	C30					
	120.95	5(12)									
C25	C29	C34	120.21(12)	C30	C29	C34					
	118.84										
C29	C30	C31	120.48(14)	C30	C31	C32					
	120.20	120.20(17)									
C31	C32	C33	120.08(15)	C32	C33	C34					
	120.00	0(16)									
C29	C34	C33	120.40(15)	C27	C35	C36					
	120.73(12)										
C27	C35	C40	119.90(13)	C36	C35	C40					
	119.37(13)										
C35	C36	C37	119.98(13)	C36	C37	C38					
	120.28	8(15)									
C37	C38	C39	120.12(15)	C38	C39	C40					
	119.87	7(15)									
C35	C40	C39	120.33(14)								

Table S8. Bond angles involving hydrogens (⁰)

atom	atom	atom	angle	atom	atom	atom	angle
C41	041	H41	109.5	C42	042	H42	109.5
C2	C3	H3	119.5	C4	C3	H3	119.6
C3	C4	H4	120.0	C5	C4	H4	120.0
C4	C5	H5	120.4	C6	C5	H5	120.4
C5	C6	H6	118.7	C7	C6	H6	118.7
C9	C10	H10	118.7	C11	C10	H10	118.7
C10	C11	H11	120.4	C12	C11	H11	120.4
C11	C12	H12	120.1	C13	C12	H12	120.1
C12	C13	H13	119.6	C14	C13	H13	119.6
C8	C15	H15A	109.5	C8	C15	H15B	109.5
C8	C15	H15C	109.5	H15A	C15	H15B	109.5
H15A	C15	H15C	109.5	H15B	C15	H15C	109.5
C8	C16	H16A	109.5	C8	C16	H16B	109.5
C8	C16	H16C	109.5	H16A	C16	H16B	109.5
H16A	C16	H16C	109.5	H16B	C16	H16C	109.5
C17	C18	H18	120.1	C19	C18	H18	120.1
C18	C19	H19	119.9	C20	C19	H19	120.0
C20	C21	H21	119.8	C22	C21	H21	119.8
C17	C22	H22	120.1	C21	C22	H22	120.1
C29	C30	H30	119.8	C31	C30	H30	119.8
C30	C31	H31	119.9	C32	C31	H31	119.9
C31	C32	H32	120.0	C33	C32	H32	120.0
C32	C33	H33	120.0	C34	C33	H33	120.0
C29	C34	H34	119.8	C33	C34	H34	119.8
C35	C36	H36	120.0	C37	C36	H36	120.0
C36	C37	H37	119.9	C38	C37	H37	119.9
C37	C38	H38	119.9	C39	C38	H38	119.9
C38	C39	H39	120.1	C40	C39	H39	120.1
C35	C40	H40	119.8	C39	C40	H40	119.8
041	C41	H41A	109.5	041	C41	H41B	109.5
041	C41	H41C	109.5	H41A	C41	H41B	109.5
H41A	C41	H41C	109.5	H41B	C41	H41C	109.5
042	C42	H42A	109.5	042	C42	H42B	109.5
042	C42	H42C	109.5	H42A	C42	H42B	109.5
H42A	C42	H42C	109.5	H42B	C42	H42C	109.5

Table S9. Torsion Angles(0)(Those having bond angles > 160 or < 20 degrees are excluded.)</td>

atom1	atom2	atom3	atom4	angle	atom1	atom2	atom3	atom4	angle
C2	N1	C14	C9	-15.47(18)	C2	N1	C14	C13	
	164.94	(10)							
C14	N1	C2	C3	-167.08(10)	C14	N1	C2	C7	13.91(17)
C2	N1	C17	C18	104.27(15)	C2	N1	C17	C22	-
78.10(1	L6)								
C17	N1	C2	C3	-8.89(17)	C17	N1	C2	C7	
	172.09	(10)							
C14	N1	C17	C18	-96.85(15)	C14	N1	C17	C22	80.77(17)
C17	N1	C14	C9	-173.87(10)	C17	N1	C14	C13	6.53(17)
C23	N24	C25	N26	1.6(2)	C23	N24	C25	C29	-
178.63	(13)								
C25	N24	C23	N28	-0.8(2)	C25	N24	C23	C20	
	178.44	(13)							
C25	N26	C27	N28	-1.3(2)	C25	N26	C27	C35	
	178.86	(13)							
C27	N26	C25	N24	-0.7(2)	C27	N26	C25	C29	
	179.61	(13)							
C23	N28	C27	N26	2.1(2)	C23	N28	C27	C35	-
178.11	(13)								
C27	N28	C23	N24	-1.0(2)	C27	N28	C23	C20	
	179.82	(13)							
N1	C2	ัC3	C4	-179.46(10)	N1	C2	C7	C6	
	179.66	(10)							
N1	C2	C7	C8	4.69(18)	C3	C2	C7	C6	0.65(18)
C3	C2	C7	C8	-174.32(11)	C7	C2	C3	C4	-0.44(19)
C2	C3	C4	C5	0.1(2)	C3	C4	C5	C6	-0.0(2)
C4	C5	C6	C7	0.3(2)	C5	C6	C7	C2	-0.6(2)
C5	C6	C7	C8	174.45(12)	C2	C7	C8	C9	-
19.22(1	16)								
C2	C7	C8	C15	99.99(13)	C2	C7	C8	C16	-
141.11	(11)								
C6	C7	C8	C9	165.97(11)	C6	C7	C8	C15	-
74.82(1	(4)			20007 (22)		U 7		010	
C6	C7	C8	C16	44.08(16)	C7	C8	<u>C9</u>	C10	-
164 49	(10)	00	010	1100(10)	u ,	40	U ,	010	
C7	(10)	69	C14	17 75(16)	C15	C8	69	C10	76 69(14)
C15	C8	C9	C14	-101 06(14)	C16	C8	C9	C10	-
41 85(1	17)		UII	101.00(11)	010	00	0,	010	
C16	C8	69	C14	140 39(13)	C8	69	C10	C11	-
177 98	(11)	67	CIT	140.57(15)	0	67	010	CII	
177.50 C8		C14	N1	-1 63(10)	CB	CO	C14	C13	
60	177.07	(10)	INI	-1.03(19)	60	69	014	C13	
C10	1/1.7/	(10) (11/	N1	-170 M(11)	C10	CQ	C1A	C12	0 16(19)
C10	C0	C14		-1/7.44[11] 0.12(10)	C10	C10	C14	C10	0.10(10)
C14	67 611	C10		-0.12[12]	67 611	C10		C14	-0.1(2)
C10	CII	CIZ	C13	0.3(2)	CII	C1Z	C13	C14	-0.3(2)

C12	C13	C14	N1	179.66(11)	C12	C13	C14	С9	0.06(19)
N1	C17	C18	C19	177.77(13)	N1	C17	C22	C21	-
177.3	9(14)								
C18	C17	C22	C21	0.2(3)	C22	C17	C18	C19	0.2(2)
C17	C18	C19	C20	-0.6(2)	C18	C19	C20	C21	0.6(2)
C18	C19	C20	C23	-177.18(13)	C19	C20	C21	C22	-0.2(3)
C19	C20	C23	N24	-13.8(2)	C19	C20	C23	N28	
	165.5	0(14)							
C21	C20	C23	N24	168.44(15)	C21	C20	C23	N28	-12.3(2)
C23	C20	C21	C22	177.60(14)	C20	C21	C22	C17	-0.2(3)
N24	C25	C29	C30	3.2(2)	N24	C25	C29	C34	-
176.3	3(13)								
N26	C25	C29	C30	-177.09(13)	N26	C25	C29	C34	3.4(2)
N26	C27	C35	C36	-14.7(2)	N26	C27	C35	C40	
	165.2	2(13)							
N28	C27	C35	C36	165.44(13)	N28	C27	C35	C40	-14.6(2)
C25	C29	C30	C31	-179.24(14)	C25	C29	C34	C33	
	178.9	2(14)							
C30	C29	C34	C33	-0.6(3)	C34	C29	C30	C31	0.3(3)
C29	C30	C31	C32	0.2(3)	C30	C31	C32	C33	-0.3(3)
C31	C32	C33	C34	0.0(3)	C32	C33	C34	C29	0.4(3)
C27	C35	C36	C37	-178.62(14)	C27	C35	C40	C39	
	179.2	0(13)							
C36	C35	C40	C39	-0.8(2)	C40	C35	C36	C37	1.4(3)
C35	C36	C37	C38	-0.2(3)	C36	C37	C38	C39	-1.6(3)
C37	C38	C39	C40	2.2(3)	C38	C39	C40	C35	-1.0(3)

 Table S10.
 Possible hydrogen bonds

Donor	Н	Acceptor	DA	D-H	HA	D-HA
041	H41	041	2.635(3)	0.84	2.61	82.70
041	H41	042	2.676(3)	0.84	2.52	91.26

Symmetry Operators:

(1) -X,-Y+1,-Z

atom N1	atom C8	distance 2.9225(17)	atom N24	atom C19	distance
N24	2.8566(17) C27 2.8233(18)	2.6742(17)	N24	C30	
N26	C23 2.7986(17)	2.6725(17)	N26	C34	
N26	C36 2.7742(19)	2.8410(17)	N28	C21	
N28	C25	2.6729(16)	N28	C40	2.795(2)
C2	C5	2.790(2)	C2	С9	2.849(2)
C2	C15 3.3975(18)	3.426(2)	C2	C18	
C2	C22 2 7478(18)	3.193(2)	С3	C6	
C3	C17	2.800(2)	C3	C18	3.557(2)
C3	C22	3.302(2)	C4	C7	2.808(2)
C6	C15	3.173(3)	C6	C16	2.967(3)
C7	C14	2.850(2)	С9	C12	2.807(2)
C10	C13	2.7442(19)	C10	C15	3.194(2)
C10	C16	2.912(3)	C11	C14	2.790(2)
C13	C17	2.776(2)	C13	C18	3.438(2)
C13	C22	3.295(3)	C14	C15	3.446(2)
C14	C18	3.3261(19)	C14	C22	3.197(2)
C17	C20	2.7771(18)	C18	C21	2.772(2)
C19	C22	2.7752(19)	C29	C32	2.780(2)
C30	C33	2.767(2)	C31	C34	2.763(2)
C35	C38	2.777(2)	C36	C39	2.774(2)
C37	C40	2.770(2)			

Table S11. Intramolecular contacts less than 3.60 Å $\,$

atom N1	atom H3	distance 2.600	atom N1	atom H13	distance 2.604
N1	H15B	3.396	N1	H18	2.612
N1	H22	2.611	N24	H19	2.553
N24	H30	2.503	N26	H34	2.471
N26	H36	2.538	N28	H21	2.451
N28	H40	2.478	C2	H4	3.275
C2	H6	3.255	C2	H15B	3.238
C2	H18	3.490	C2	H22	3.144
C3	H5	3.253	C3	H22	3.331
C4	Н6	3.237	C5	Н3	3.249
C6	H4	3.245	C6	H15A	2.894
C6	H15B	3.480	C6	H16A	2.617
C6	H16C	3.236	C7	Н3	3.285
C7	H5	3.286	C7	H15A	2.667
C7	H15B	2.670	C7	H15C	3.338
C7	H16A	2.665	C7	H16B	3.364
C7	H16C	2.772	C8	H6	2.676
C8	H10	2.662	С9	H11	3.285
С9	H13	3.281	С9	H15A	3.345
С9	H15B	2.681	С9	H15C	2.679
С9	H16A	3.350	С9	H16B	2.728
С9	H16C	2.657	C10	H12	3.244
C10	H15B	3.510	C10	H15C	2.925
C10	H16B	2.674	C10	H16C	3.013
C11	H13	3.248	C12	H10	3.235
C13	H11	3.253	C13	H22	3.400
C14	H10	3.249	C14	H12	3.279
C14	H15B	3.268	C14	H18	3.409

Table S12. Intramolecular contacts less than 3.60 Å involving hydrogens

C14	H22	3.195	C15	H6	3.148
C15	H10	3.150	C15	H16A	2.728
C15	H16B	2.637	C15	H16C	3.351
C16	Н6	2.671	C16	H10	2.615
C16	H15A	2.687	C16	H15B	3.352
C16	H15C	2.677	C17	Н3	2.445
C17	H13	2.418	C17	H19	3.256
C17	H21	3.253	C18	Н3	3.032
C18	H13	2.904	C18	H22	3.257
C19	H21	3.261	C20	H18	3.269
C20	H22	3.265	C21	H13	3.547
C21	H19	3.263	C22	Н3	2.838
C22	H13	2.817	C22	H18	3.258
C23	H19	2.670	C23	H21	2.638
C25	H30	2.661	C25	H34	2.652
C27	H36	2.664	C27	H40	2.644
C29	H31	3.261	C29	H33	3.269
C30	H32	3.250	C30	H34	3.257
C31	H33	3.249	C32	H30	3.249
C32	H34	3.248	C33	H31	3.248
C34	H30	3.258	C34	H32	3.250
C35	H37	3.264	C35	H39	3.264
C36	H38	3.253	C36	H40	3.265
C37	H39	3.255	C38	H36	3.253
C38	H40	3.255	C39	H37	3.256
C40	H36	3.265	C40	H38	3.254
Н3	H4	2.325	Н3	H18	3.363
Н3	H22	3.058	H4	Н5	2.339
Н5	Н6	2.317	Н6	H15A	2.671
H6	H16A	2.044	H6	H16B	3.503

H6	H16C	3.054	H10	H11	2.317
H10	H15C	2.681	H10	H16A	3.522
H10	H16B	2.084	H10	H16C	2.828
H11	H12	2.339	H12	H13	2.327
H13	H18	3.244	H13	H22	3.114
H15A	H16A	2.548	H15A	H16B	2.901
H15B	H16B	3.542	H15C	H16A	3.021
H15C	H16B	2.440	H15C	H16C	3.551
H18	H19	2.343	H19	H30	3.349
H21	H22	2.329	H21	H40	3.268
H30	H31	2.325	H31	H32	2.330
H32	H33	2.328	H33	H34	2.331
H34	H36	3.286	H36	H37	2.333
H37	H38	2.326	H38	H39	2.339
H39	H40	2.330	H41A	H41	2.387
H41B	H41	2.049	H41C	H41	2.592
H42A	H42	2.420	H42B	H42	2.003
H42C	H42	2.538			
atom 041	atom 041 ¹	distance 2.635(3)	atom 041	atom 042	distance 2.676(3)
-------------	--------------------------	----------------------	-------------	------------------	----------------------
041	C41 ¹	3.468(4)	041	C42	3.306(4)
042	041	2.676(3)	042	0422	2.639(3)
042	C41	3.335(4)	042	C42 ²	3.431(3)
N24	N28 ³	3.5421(19)	N24	C40 ³	3.581(2)
N26	C20 ³	3.521(2)	N26	C34 ⁴	3.578(2)
N28	N24 ³	3.5421(19)	N28	C23 ³	3.548(2)
N28	C25 ³	3.585(2)	N28	C33 ⁴	3.592(3)
C11	C19 ⁵	3.564(2)	C11	C42 ⁶	3.527(3)
C16	C39 ⁷	3.597(2)	C19	C11 ⁸	3.564(2)
C19	C35 ³	3.375(2)	C19	C36 ³	3.465(3)
C20	N26 ³	3.521(2)	C20	C27 ³	3.596(2)
C23	N28 ³	3.548(2)	C23	C27 ³	3.404(2)
C25	N28 ³	3.585(2)	C25	C34 ⁴	3.451(3)
C27	C20 ³	3.596(2)	C27	C23 ³	3.404(2)
C27	C32 ⁴	3.511(3)	C27	C33 ⁴	3.547(3)
C31	C36 ⁴	3.367(3)	C31	C41	3.580(4)
C32	C27 ⁴	3.511(3)	C33	N28 ⁴	3.592(3)
C33	C27 ⁴	3.547(3)	C34	N26 ⁴	3.578(2)
C34	C25 ⁴	3.451(3)	C35	C19 ³	3.375(2)
C36	C19 ³	3.465(3)	C36	C31 ⁴	3.367(3)
C39	C16 ⁷	3.597(2)	C40	N24 ³	3.581(2)
C41	0411	3.468(4)	C41	042	3.335(4)
C41	C31	3.580(4)	C42	041	3.306(4)

Table S13. Intermolecular contacts less than 3.60 Å

$(42 042^2 3.431(3) (42 0)$	CII ⁹	3.527(3)
---------------------------------	------------------	----------

Symmetry Operators:

(1) -X,-Y+1,-Z	(2) -X+1,-Y+1,-Z
(3) -X+1,-Y+1,-Z+1	(4) -X,-Y+1,-Z+1
(5) X+1,Y,Z	(6) X+1,Y,Z+1
(7) -X+2,-Y+1,-Z+2	(8) X-1,Y,Z
(9) X-1,Y,Z-1	

atom 041	atom H21 ¹	distance 3.120	atom 041	atom H22 ²	distance 2.824
041	H22 ¹	3.200	041	H41B ³	3.549
041	H41C ³	3.499	041	H41 ³	2.606
041	H42C	3.027	041	H42	2.884
042	H21 ¹	3.245	042	H32 ⁴	3.161
042	H33 ³	2.992	042	H41A	3.007
042	H41	2.522	042	H42A ⁵	3.141
042	H42 ⁵	2.801	N1	H5 ⁶	3.142
N1	H41C ⁷	3.580	N24	H12 ⁸	3.079
N24	H34 ⁹	3.532	N24	H40 ¹	3.241
N26	H13 ¹	3.577	N28	H33 ⁹	3.487
C2	H37 ¹⁰	3.019	C2	H41C ⁷	3.259
C3	H10 ⁸	3.419	C3	H11 ⁸	3.528
C3	H37 ¹⁰	3.161	C3	H38 ¹⁰	3.317
C3	H41C ⁷	3.489	C3	H42A ¹¹	3.412
C3	H42B ¹¹	3.531	C4	H10 ⁸	3.410
C4	H16B ⁸	3.473	C4	H31 ⁷	3.159
C4	H37 ¹⁰	3.182	C4	H42B ¹¹	3.438
C5	H15B ¹²	3.091	C5	H18 ¹²	3.202
C5	H31 ⁷	3.043	C5	H37 ¹⁰	3.048
C6	H15B ¹²	3.525	C6	H37 ¹⁰	2.880
C7	H37 ¹⁰	2.876	C7	H41C ⁷	3.596
С9	H5 ⁶	3.570	С9	H6 ⁶	3.211
С9	H42C ⁷	3.365	C10	H3 ⁴	3.441

Table S14. Intermolecular contacts less than 3.60 Å involving hydrogens

C10	H6 ⁶	3.166	C10	H16A ⁶	3.316
C10	H38 ¹³	3.016	C10	H42B ⁷	3.531
C10	H42C ⁷	3.044	C11	H3 ⁴	3.287
C11	H6 ⁶	3.123	C11	H16A ⁶	2.885
C11	H19 ⁴	3.575	C11	H38 ¹³	3.317
C11	H42A ⁷	3.460	C11	H42C ⁷	2.875
C12	H6 ⁶	3.091	C12	H15A ⁶	3.074
C12	H16A ⁶	3.379	C12	H34 ¹	3.208
C12	H42C ⁷	3.017	C13	H6 ⁶	3.103
C13	H34 ¹	3.080	C13	H36 ¹	3.345
C13	H42C ⁷	3.316	C14	H5 ⁶	3.205
C14	H6 ⁶	3.167	C14	H42C ⁷	3.485
C15	H5 ⁶	3.371	C15	H30 ¹⁴	3.055
C15	H31 ¹⁴	3.423	C15	H37 ¹⁰	3.150
C15	H39 ¹³	3.560	C16	H4 ⁴	3.373
C16	H38 ¹⁵	3.536	C16	H39 ¹⁵	3.020
C17	H11 ⁸	3.431	C18	H5 ⁶	3.484
C18	H11 ⁸	2.767	C19	H11 ⁸	2.793
C19	H12 ⁸	3.320	C20	H11 ⁸	3.491
C20	H12 ⁸	3.566	C21	H41B ¹	3.544
C21	H41 ¹	3.011	C21	H42A ¹¹	3.170
C21	H42 ¹	3.434	C22	H41C ⁷	3.334
C22	H41 ¹	3.031	C22	H42A ¹¹	3.271
C23	H12 ⁸	3.575	C23	H33 ⁹	3.421
C25	H34 ⁹	3.453	C25	H40 ¹	3.513

C29	H40 ¹	3.547	C29	H41B	3.181
C30	H15A ¹⁶	3.533	C30	H36 ⁹	3.277
C30	H40 ¹	3.289	C30	H41B	3.031
C31	H15B ¹⁶	3.462	C31	H36 ⁹	3.212
C31	H41B	3.041	C31	H41C	3.245
C32	H41B	3.198	C32	H41C	3.269
C32	H42 ⁸	3.385	C33	H41B	3.333
C34	H12 ¹	3.546	C34	H13 ¹	3.398
C34	H41B	3.318	C35	H19 ¹	3.106
C36	H13 ¹	3.378	C36	H19 ¹	3.359
C36	H31 ⁹	3.245	C37	H15A ¹⁷	3.568
C37	H15B ¹⁷	3.269	C37	H18 ¹	3.533
C37	H31 ⁹	3.524	C38	H10 ¹⁸	3.004
C38	H15C ¹⁸	3.525	C38	H16A ¹⁵	3.514
C38	H16C ¹⁵	3.501	C39	H10 ¹⁸	3.554
C39	H15C ¹⁸	3.046	C39	H16A ¹⁵	3.359
C39	H16C ¹⁵	2.973	C39	H19 ¹	3.428
C39	H41A ¹	3.580	C40	H19 ¹	3.135
C40	H30 ¹	3.436	C40	H41A ¹	3.419
C41	H21 ¹	3.299	C41	H22 ²	3.071
C41	H40 ¹	3.268	C41	H41 ³	3.330
C41	H42C	3.435	C41	H42	3.293
C42	H3 ¹⁹	3.202	C42	H32 ⁴	3.135
C42	H33 ³	3.145	C42	H41A	3.074
C42	H41	3.466	C42	H42 ⁵	3.447

H3	C10 ⁸	3.441	Н3	C11 ⁸	3.287
Н3	C42 ¹¹	3.202	Н3	H10 ⁸	3.024
Н3	H11 ⁸	2.743	Н3	H38 ¹⁰	3.301
Н3	H42A ¹¹	2.642	Н3	H42B ¹¹	3.000
Н3	H42C ¹¹	3.511	H4	C16 ⁸	3.373
H4	H10 ⁸	3.013	H4	H16B ⁸	2.783
H4	H16C ⁸	3.075	H4	H18 ¹²	3.579
H4	H31 ⁷	3.224	H4	H32 ⁷	3.443
H4	H42B ¹¹	2.819	H5	N1 ¹²	3.142
H5	C9 ¹²	3.570	Н5	C14 ¹²	3.205
H5	C15 ¹²	3.371	Н5	C18 ¹²	3.484
H5	H15B ¹²	2.458	Н5	H18 ¹²	2.712
H5	H31 ⁷	3.032	H5	H37 ¹⁰	3.591
H5	H37 ²⁰	3.561	H6	C9 ¹²	3.211
H6	C10 ¹²	3.166	Н6	C11 ¹²	3.123
H6	C12 ¹²	3.091	Н6	C13 ¹²	3.103
H6	C14 ¹²	3.167	Н6	H12 ¹²	3.590
H6	H15B ¹²	3.278	Н6	H15C ¹²	3.548
H6	H37 ¹⁰	3.353	H6	H39 ¹⁵	3.325
H10	C3 ⁴	3.419	H10	C4 ⁴	3.410
H10	C38 ¹³	3.004	H10	C39 ¹³	3.554
H10	H3 ⁴	3.024	H10	H4 ⁴	3.013
H10	H16A ⁶	3.513	H10	H38 ¹³	2.343
H10	H39 ¹³	3.385	H10	H42B ⁷	3.564
H10	H42C ⁷	3.488	H11	$C3^4$	3.528

H11	C17 ⁴	3.431	H11	C18 ⁴	2.767
H11	C19 ⁴	2.793	H11	C20 ⁴	3.491
H11	H3 ⁴	2.743	H11	H16A ⁶	2.811
H11	H16B ⁶	3.571	H11	H18 ⁴	2.873
H11	H19 ⁴	2.907	H11	H38 ¹³	2.966
H11	H42A ⁷	3.376	H11	H42C ⁷	3.243
H12	N24 ⁴	3.079	H12	C19 ⁴	3.320
H12	C20 ⁴	3.566	H12	C23 ⁴	3.575
H12	C341	3.546	H12	H6 ⁶	3.590
H12	H15A ⁶	2.778	H12	H19 ⁴	3.017
H12	H30 ⁴	3.325	H12	H33 ¹	3.366
H12	H34 ¹	2.786	H12	H36 ¹	3.414
H12	H42C ⁷	3.450	H13	N26 ¹	3.577
H13	C341	3.398	H13	C36 ¹	3.378
H13	H34 ¹	2.529	H13	H36 ¹	2.659
H15A	C12 ¹²	3.074	H15A	C30 ¹⁴	3.533
H15A	C37 ¹⁰	3.568	H15A	H12 ¹²	2.778
H15A	H19 ¹⁴	3.593	H15A	H30 ¹⁴	2.787
H15A	H31 ¹⁴	3.520	H15A	H36 ¹⁰	3.135
H15A	H37 ¹⁰	2.913	H15B	C5 ⁶	3.091
H15B	C6 ⁶	3.525	H15B	C31 ¹⁴	3.462
H15B	C37 ¹⁰	3.269	H15B	H5 ⁶	2.458
H15B	H6 ⁶	3.278	H15B	H30 ¹⁴	3.076
H15B	H31 ¹⁴	2.751	H15B	H36 ¹⁰	3.531
H15B	H37 ¹⁰	2.675	H15C	C38 ¹³	3.525

H15C	C39 ¹³	3.046	H15C	H6 ⁶	3.548
H15C	H19 ¹⁴	3.342	H15C	H30 ¹⁴	2.790
H15C	H31 ¹⁴	3.501	H15C	H38 ¹³	3.535
H15C	H39 ¹³	2.653	H16A	C10 ¹²	3.316
H16A	C11 ¹²	2.885	H16A	C12 ¹²	3.379
H16A	C38 ¹⁵	3.514	H16A	C39 ¹⁵	3.359
H16A	H10 ¹²	3.513	H16A	H11 ¹²	2.811
H16A	H38 ¹⁵	3.024	H16A	H39 ¹⁵	2.726
H16B	C4 ⁴	3.473	H16B	$H4^4$	2.783
H16B	H11 ¹²	3.571	H16B	H18 ¹⁴	3.236
H16B	H19 ¹⁴	3.556	H16C	C38 ¹⁵	3.501
H16C	C39 ¹⁵	2.973	H16C	$H4^4$	3.075
H16C	H38 ¹⁵	3.403	H16C	H39 ¹⁵	2.444
H16C	H41A ⁷	2.936	H16C	H42B ⁷	3.122
H18	C5 ⁶	3.202	H18	C37 ¹	3.533
H18	H4 ⁶	3.579	H18	H5 ⁶	2.712
H18	H11 ⁸	2.873	H18	H16B ¹⁶	3.236
H18	H37 ¹	3.576	H18	H38 ¹⁰	3.520
H19	C11 ⁸	3.575	H19	C351	3.106
H19	C36 ¹	3.359	H19	C391	3.428
H19	C40 ¹	3.135	H19	H11 ⁸	2.907
H19	H12 ⁸	3.017	H19	H15A ¹⁶	3.593
H19	H15C ¹⁶	3.342	H19	H16B ¹⁶	3.556
H19	H40 ¹	3.490	H21	0411	3.120
H21	0421	3.245	H21	C41 ¹	3.299

H21	$H41A^1$	3.502	H21	H41B ¹	2.785
H21	H41 ¹	2.398	H21	H42A ¹¹	3.284
H21	H42 ¹	2.695	H22	0417	2.824
H22	041 ¹	3.200	H22	C41 ⁷	3.071
H22	H41A ⁷	3.596	H22	H41C ⁷	2.463
H22	H41 ⁷	3.578	H22	H41 ¹	2.443
H22	H42A ¹¹	3.446	H30	C15 ¹⁶	3.055
H30	C40 ¹	3.436	H30	H12 ⁸	3.325
H30	H15A ¹⁶	2.787	H30	H15B ¹⁶	3.076
H30	H15C ¹⁶	2.790	H30	H36 ⁹	3.326
H30	H39 ¹	3.388	H30	H40 ¹	2.971
H30	H41B	3.472	H31	C4 ²	3.159
H31	C5 ²	3.043	H31	C15 ¹⁶	3.423
H31	C36 ⁹	3.245	H31	C37 ⁹	3.524
H31	H4 ²	3.224	H31	H5 ²	3.032
H31	H15A ¹⁶	3.520	H31	H15B ¹⁶	2.751
H31	H15C ¹⁶	3.501	H31	H36 ⁹	3.221
H31	H41B	3.484	H31	H41C	3.342
H32	O42 ⁸	3.161	H32	C42 ⁸	3.135
H32	H4 ²	3.443	H32	H41C	3.386
H32	H42A ⁸	3.137	H32	H42B ⁸	2.667
H32	H42 ⁸	2.632	H33	042 ³	2.992
H33	N28 ⁹	3.487	H33	C23 ⁹	3.421
H33	C42 ³	3.145	H33	H12 ¹	3.366
H33	H42A ³	3.172	H33	H42C ³	2.769

H33	H42 ⁸	3.175	H34	N24 ⁹	3.532
H34	C12 ¹	3.208	H34	C13 ¹	3.080
H34	C25 ⁹	3.453	H34	H12 ¹	2.786
H34	H13 ¹	2.529	H36	C13 ¹	3.345
H36	C30 ⁹	3.277	H36	C31 ⁹	3.212
H36	H12 ¹	3.414	H36	H13 ¹	2.659
H36	H15A ¹⁷	3.135	H36	H15B ¹⁷	3.531
H36	H30 ⁹	3.326	H36	H31 ⁹	3.221
H37	C2 ¹⁷	3.019	H37	C3 ¹⁷	3.161
H37	C4 ¹⁷	3.182	H37	C5 ¹⁷	3.048
H37	C6 ¹⁷	2.880	H37	C7 ¹⁷	2.876
H37	C15 ¹⁷	3.150	H37	H5 ¹⁷	3.591
H37	H5 ²⁰	3.561	H37	H6 ¹⁷	3.353
H37	H15A ¹⁷	2.913	H37	H15B ¹⁷	2.675
H37	H18 ¹	3.576	H38	C3 ¹⁷	3.317
H38	C10 ¹⁸	3.016	H38	C11 ¹⁸	3.317
H38	C16 ¹⁵	3.536	H38	H3 ¹⁷	3.301
H38	H10 ¹⁸	2.343	H38	H11 ¹⁸	2.966
H38	H15C ¹⁸	3.535	H38	H16A ¹⁵	3.024
H38	H16C ¹⁵	3.403	H38	H18 ¹⁷	3.520
H39	C15 ¹⁸	3.560	H39	C16 ¹⁵	3.020
H39	H6 ¹⁵	3.325	H39	H10 ¹⁸	3.385
H39	H15C ¹⁸	2.653	H39	H16A ¹⁵	2.726
H39	H16C ¹⁵	2.444	H39	H30 ¹	3.388
H39	H41A ¹	3.170	H40	$N24^1$	3.241

H40	C25 ¹	3.513	H40	C29 ¹	3.547
H40	C30 ¹	3.289	H40	C41 ¹	3.268
H40	H19 ¹	3.490	H40	H30 ¹	2.971
H40	H41A ¹	2.843	H40	$H41B^{1}$	2.794
H41A	042	3.007	H41A	C391	3.580
H41A	C40 ¹	3.419	H41A	C42	3.074
H41A	H16C ²	2.936	H41A	H21 ¹	3.502
H41A	H22 ²	3.596	H41A	H39 ¹	3.170
H41A	H40 ¹	2.843	H41A	H42B	2.824
H41A	H42C	2.912	H41A	H42	2.910
H41B	041 ³	3.549	H41B	C21 ¹	3.544
H41B	C29	3.181	H41B	C30	3.031
H41B	C31	3.041	H41B	C32	3.198
H41B	C33	3.333	H41B	C34	3.318
H41B	H21 ¹	2.785	H41B	H30	3.472
H41B	H31	3.484	H41B	H40 ¹	2.794
H41B	H41 ³	3.580	H41B	H42	3.525
H41C	041 ³	3.499	H41C	N1 ²	3.580
H41C	C2 ²	3.259	H41C	C3 ²	3.489
H41C	C7 ²	3.596	H41C	C22 ²	3.334
H41C	C31	3.245	H41C	C32	3.269
H41C	H22 ²	2.463	H41C	H31	3.342
H41C	H32	3.386	H41C	H41 ³	3.153
H41	041 ³	2.606	H41	042	2.522
H41	C21 ¹	3.011	H41	C22 ¹	3.031

H41	C41 ³	3.330	H41	C42	3.466
H41	H21 ¹	2.398	H41	H22 ²	3.578
H41	H22 ¹	2.443	H41	H41B ³	3.580
H41	H41C ³	3.153	H41	H41 ³	2.838
H41	H42C	3.402	H41	H42	2.598
H42A	042 ⁵	3.141	H42A	C3 ¹⁹	3.412
H42A	C11 ²	3.460	H42A	C21 ¹⁹	3.170
H42A	C22 ¹⁹	3.271	H42A	H3 ¹⁹	2.642
H42A	H11 ²	3.376	H42A	H21 ¹⁹	3.284
H42A	H22 ¹⁹	3.446	H42A	H32 ⁴	3.137
H42A	H33 ³	3.172	H42A	H42 ⁵	3.061
H42B	C3 ¹⁹	3.531	H42B	C4 ¹⁹	3.438
H42B	C10 ²	3.531	H42B	H3 ¹⁹	3.000
H42B	H4 ¹⁹	2.819	H42B	H10 ²	3.564
H42B	H16C ²	3.122	H42B	H32 ⁴	2.667
H42B	H41A	2.824	H42C	041	3.027
H42C	C9 ²	3.365	H42C	C10 ²	3.044
H42C	C11 ²	2.875	H42C	C12 ²	3.017
H42C	C13 ²	3.316	H42C	C14 ²	3.485
H42C	C41	3.435	H42C	H3 ¹⁹	3.511
H42C	H10 ²	3.488	H42C	H11 ²	3.243
H42C	H12 ²	3.450	H42C	H33 ³	2.769
H42C	H41A	2.912	H42C	H41	3.402
H42	041	2.884	H42	0425	2.801
H42	C21 ¹	3.434	H42	C32 ⁴	3.385

H42	C41	3.293	H42	C42 ⁵	3.447
H42	H21 ¹	2.695	H42	H32 ⁴	2.632
H42	H33 ⁴	3.175	H42	H41A	2.910
H42	H41B	3.525	H42	H41	2.598
H42	H42A ⁵	3.061	H42	H42 ⁵	3.184

Symmetry Operators:

(1) -X+1,-Y+1,-Z+1	(2) X-1,Y,Z-1
(3) -X,-Y+1,-Z	(4) X+1,Y,Z
(5) -X+1,-Y+1,-Z	(6) X,-Y+2,Z
(7) X+1,Y,Z+1	(8) X-1,Y,Z
(9) -X,-Y+1,-Z+1	(10) -X+1,Y+1/2,-Z+1/2+1
(11) X,Y,Z+1	(12) X,-Y+2,Z+1
(13) -X+2,Y+1/2,-Z+1/2+1	(14) X+1,-Y+2,Z+1
(15) -X+2,-Y+1,-Z+2	(16) X-1,-Y+2,Z
(17) -X+1,Y+1/2-1,-Z+1/2+1	(18) -X+2,Y+1/2-1,-Z+1/2+1
(19) X,Y,Z-1	(20) -X+1,-Y+1,-Z+2

DMAC-TRZ Data Collection

A colorless platelet crystal of $C_{35}H_{27}N_5$ having approximate dimensions of 0.100 x 0.050 x 0.010 mm was mounted in a loop. All measurements were made on a Rigaku XtaLAB P100 diffractometer using multi-layer mirror monochromated Cu-Ka radiation.

Cell constants and an orientation matrix for data collection corresponded to a primitive orthorhombic cell with dimensions:

a = 35.6867(10) Å b = 18.671(5) Å c = 8.1489(16) Å V = 5429.7(18) Å³

For Z = 8 and F.W. = 517.63, the calculated density is 1.266 g/cm³. The reflection conditions of:

0kl: k = 2n h0l: l = 2n hk0: h = 2n

uniquely determine the space group to be:

Pbca (#61)

The data were collected at a temperature of $-100 \pm 1^{\circ}$ C to a maximum 2q value of 136.1°.

Data Reduction

Of the 53594 reflections were collected, where 4924 were unique ($R_{int} = 0.0694$); equivalent reflections were merged. Data were collected and processed using CrystalClear (Rigaku).¹⁴

The linear absorption coefficient, μ , for Cu-K α radiation is 5.939 cm⁻¹. An empirical absorption correction was applied which resulted in transmission factors ranging from 0.754 to 0.994. The data were corrected for Lorentz and polarization effects. A correction for secondary extinction⁶ was applied (coefficient = 0.000980).

Structure Solution and Refinement

The structure was solved by direct methods⁷ and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement⁸ on F² was based

on 4924 observed reflections and 364 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

 $R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo| = 0.0401$

wR2 = $[\Sigma (w (Fo^2 - Fc^2)^2) / \Sigma w (Fo^2)^2]^{1/2} = 0.1175$

The goodness of fit^{*} was 1.04. Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.23 and -0.26 e⁻/Å³, respectively.

*Goodness of fit is defined as:

 $[\Sigma w (F_0^2 - F_c^2)^2 / (N_0 - N_v)]^{1/2}$

where:

 N_o = number of observations N_v = number of variables

Neutral atom scattering factors were taken from International Tables for Crystallography (IT), Vol. C, Table 6.1.1.4⁹. Anomalous dispersion effects were included in Fcalc¹⁰; the values for Df' and Df" were those of Creagh and McAuley¹¹. The values for the mass attenuation coefficients are those of Creagh and Hubbell¹². All calculations were performed using the CrystalStructure¹³ crystallographic software package except for refinement, which was performed using SHELXL Version 2018/3⁸.

Experimental details

A. Crystal Data

Empirical Formula	$C_{35}H_{27}N_5$
Formula Weight	517.63
Crystal Color, Habit	colorless, platelet
Crystal Dimensions	0.100 X 0.050 X 0.010 mm
Crystal System	orthorhombic
Lattice Type	Primitive
Lattice Parameters	a = $35.6867(10)$ Å b = $18.671(5)$ Å c = $8.1489(16)$ Å V = $5429.7(18)$ Å ³
Space Group	Pbca (#61)
Z value	8
D _{calc}	1.266 g/cm ³
F ₀₀₀	2176.00
μ(СиКα)	5.939 cm ⁻¹

B. Intensity Measurements

Diffractometer	XtaLAB P100		
Radiation	CuKα (λ = 1.54187 Å) multi-layer mirror monochromated		
Voltage, Current	40kV, 30mA		
Temperature	-100.0°C		
Detector Aperture	83.8 x 33.5 mm		
Data Images	3983 exposures		
Pixel Size	0.172 mm		
$2\theta_{max}$	136.1°		
No. of Reflections Measured	Total: 53594 Unique: 4924 (R _{int} = 0.0694)		
Corrections	Lorentz-polarization Absorption (trans. factors: 0.754 - 0.994) Secondary Extinction (coefficient: 9.80000e-004)		

C. Structure Solution and Refinement

Structure Solution 2018/2)	Direct Methods (SHELXT Version
Refinement	Full-matrix least-squares on F ²
Function Minimized	$\Sigma \text{ w } (\text{Fo}^2 - \text{Fc}^2)^2$
Least Squares Weights	w = 1/ [$\sigma^2(Fo^2)$ + (0.0761 · P) ² + 0.5544 · P] where P = (Max(Fo ² ,0) + 2Fc ²)/3
$2\theta_{max}$ cutoff	136.1°
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	4924
No. Variables	364
Reflection/Parameter Ratio	13.53
Residuals: R1 (I>2.00σ(I))	0.0401
Residuals: R (All reflections)	0.0495
Residuals: wR2 (All reflections)	0.1175
Goodness of Fit Indicator	1.042
Max Shift/Error in Final Cycle	0.001
Maximum peak in Final Diff. Map	0.23 e⁻/ų
Minimum peak in Final Diff. Map	-0.26 e ⁻ /Å ³

atom	Х	у	Z	B _{eq}
N1	0.35315(3)	0.50418(6)	0.45742(13)	2.75(2)
N18	0.40003(3)	0.44006(6)	0.59632(16)	3.82(2)
N24	0.50397(3)	0.43057(5)	0.82992(12)	2.523(19)
N26	0.56064(3)	0.48702(6)	0.91070(12)	2.81(2)
N28	0.51722(3)	0.54957(5)	0.74298(12)	2.603(19)
C2	0.32577(4)	0.45081(7)	0.49687(15)	2.78(2)
C3	0.33072(4)	0.38039(7)	0.44741(17)	3.35(3)
C4	0.30319(4)	0.33033(8)	0.4807(2)	4.05(3)
C5	0.27102(4)	0.35066(9)	0.5619(2)	4.25(3)
С6	0.26589(4)	0.42141(8)	0.60902(18)	3.77(3)
C7	0.29307(4)	0.47303(7)	0.57694(15)	2.99(2)
C8	0.28957(4)	0.55235(8)	0.62473(17)	3.29(3)
С9	0.30586(4)	0.59660(7)	0.48421(16)	3.01(2)
C10	0.29127(4)	0.66189(7)	0.43067(19)	3.75(3)
C11	0.30733(4)	0.69910(8)	0.3011(2)	4.17(3)
C12	0.33756(4)	0.67051(8)	0.21769(19)	3.86(3)
C13	0.35257(4)	0.60568(8)	0.26762(17)	3.35(3)
C14	0.33759(4)	0.57063(7)	0.40278(15)	2.77(2)
C15	0.31330(5)	0.56522(9)	0.78115(18)	4.08(3)
C16	0.24875(4)	0.57314(9)	0.6598(2)	4.43(3)
C17	0.38953(3)	0.50112(7)	0.52078(14)	2.71(2)
C19	0.43430(4)	0.43748(7)	0.66566(18)	3.39(3)
C20	0.45924(3)	0.49429(6)	0.66290(14)	2.51(2)
C21	0.44759(4)	0.55586(7)	0.58128(16)	3.13(2)
C22	0.41301(4)	0.55897(7)	0.50949(15)	3.05(2)
C23	0.49549(3)	0.49107(6)	0.74803(13)	2.31(2)
C25	0.53675(3)	0.43168(6)	0.90905(14)	2.46(2)
C27	0.54931(3)	0.54493(7)	0.82742(14)	2.61(2)
C29	0.54754(4)	0.36694(7)	1.00349(14)	2.86(2)
C30	0.52275(4)	0.30991(7)	1.01993(16)	3.42(3)
C31	0.53374(5)	0.24886(9)	1.1056(2)	4.45(3)
C32	0.56927(5)	0.24519(10)	1.1731(2)	5.30(4)
C33	0.59357(5)	0.30179(11)	1.1587(2)	5.03(4)
C34	0.58289(4)	0.36292(9)	1.07577(16)	3.74(3)
C35	0.57338(4)	0.60954(7)	0.83184(16)	3.27(3)
C36	0.60613(4)	0.61048(10)	0.92601(19)	4.42(3)
C37	0.62769(6)	0.67236(12)	0.9317(2)	6.04(5)
C38	0.61732(7)	0.73266(11)	0.8457(3)	6.34(5)
C39	0.58515(6)	0.73182(9)	0.7526(2)	5.38(4)
C40	0.56316(5)	0.67055(8)	0.74502(19)	4.05(3)

Table S15.	Atomic cooi	dinates and	l B _{iso} /B _{eq}

 $B_{eq} = 8/3 p^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)cos g + 2U_{13}(aa^*cc^*)cos b + 2U_{23}(bb^*cc^*)cos a)$

atom	Х	У	Z	B _{iso}
H3	0.35288	0.36662	0.39104	4.020
H4	0.30645	0.28194	0.44760	4.854
H5	0.25226	0.31607	0.58573	5.101
H6	0.24349	0.43483	0.66402	4.519
H10	0.26988	0.68127	0.48403	4.496
H11	0.29753	0.74437	0.26971	4.999
H12	0.34798	0.69521	0.12656	4.627
H13	0.37305	0.58527	0.20960	4.021
H15A	0.31216	0.61599	0.81126	4.891
H15B	0.33939	0.55169	0.75983	4.891
H15C	0.30338	0.53613	0.87133	4.891
H16A	0.23365	0.56588	0.56077	5.316
H16B	0.24760	0.62362	0.69244	5.316
H16C	0.23892	0.54320	0.74875	5.316
H19	0.44172	0.39453	0.71908	4.065
H21	0.46382	0.59610	0.57539	3.752
H22	0.40533	0.60082	0.45235	3.658
H30	0.49843	0.31258	0.97293	4.099
H31	0.51689	0.20983	1.11769	5.337
H32	0.57689	0.20319	1.22985	6.357
H33	0.61785	0.29889	1.20602	6.039
H34	0.59964	0.40231	1.06793	4.491
H36	0.61357	0.56913	0.98561	5.299
H37	0.64992	0.67308	0.99578	7.247
H38	0.63230	0.77467	0.85070	7.610
H39	0.57795	0.77338	0.69311	6.455
H40	0.54103	0.67034	0.68020	4.857

Table S16. Atomic coordinates and B_{iso} involving hydrogen atoms

Table S17. Anisotropic	splacement parameters
------------------------	-----------------------

atom	U ₁₁	U22	U33	U ₁₂	U13	U23
N1	0.0315(5)	0.0363(6)	0.0368(6)	0.0023(4)	-0.0003(4)	0.0042(4)
N18	0.0420(7)	0.0425(7)	0.0607(8)	0.0004(5)	-0.0078(6)	-0.0003(6)
N24	0.0342(5)	0.0295(5)	0.0322(5)	0.0020(4)	0.0011(4)	0.0010(4)
N26	0.0351(6)	0.0381(6)	0.0335(5)	0.0016(4)	0.0008(4)	-0.0042(4)
N28	0.0364(6)	0.0294(5)	0.0331(5)	-0.0001(4)	0.0046(4)	-0.0021(4)
C2	0.0338(6)	0.0374(7)	0.0343(6)	0.0007(5)	-0.0016(5)	0.0051(5)
C3	0.0390(7)	0.0384(7)	0.0499(8)	0.0055(6)	0.0004(6)	0.0046(6)
C4	0.0510(9)	0.0347(7)	0.0681(10)	0.0018(6)	-0.0041(7)	0.0081(7)
C5	0.0489(8)	0.0475(8)	0.0651(9)	-0.0092(7)	0.0022(7)	0.0150(7)
C6	0.0401(7)	0.0560(9)	0.0471(8)	-0.0026(7)	0.0071(6)	0.0078(6)
C7	0.0376(7)	0.0440(7)	0.0322(6)	0.0013(6)	0.0001(5)	0.0034(5)
C8	0.0387(7)	0.0480(8)	0.0384(7)	0.0046(6)	0.0018(5)	-0.0065(6)
C9	0.0373(7)	0.0368(7)	0.0403(7)	0.0011(5)	-0.0075(5)	-0.0065(5)
C10	0.0452(8)	0.0375(7)	0.0597(9)	0.0067(6)	-0.0122(7)	-0.0110(6)
C11	0.0585(9)	0.0318(7)	0.0679(10)	-0.0027(6)	-0.0259(8)	0.0053(7)
C12	0.0506(8)	0.0434(8)	0.0525(8)	-0.0111(6)	-0.0160(6)	0.0127(6)
C13	0.0407(7)	0.0443(8)	0.0424(7)	-0.0051(6)	-0.0058(6)	0.0060(6)
C14	0.0350(6)	0.0333(6)	0.0368(7)	0.0004(5)	-0.0073(5)	0.0010(5)
C15	0.0564(9)	0.0595(10)	0.0389(8)	0.0019(7)	-0.0004(6)	-0.0082(7)
C16	0.0454(8)	0.0646(10)	0.0583(9)	0.0085(7)	0.0086(7)	-0.0109(8)
C17	0.0331(6)	0.0407(7)	0.0292(6)	0.0055(5)	0.0017(5)	-0.0011(5)
C19	0.0371(7)	0.0366(7)	0.0550(8)	0.0017(5)	-0.0060(6)	0.0011(6)
C20	0.0344(6)	0.0330(6)	0.0279(6)	0.0036(5)	0.0027(5)	-0.0021(5)
C21	0.0394(7)	0.0415(7)	0.0379(7)	0.0035(6)	0.0027(5)	0.0077(6)
C22	0.0356(7)	0.0446(7)	0.0356(7)	0.0070(5)	-0.0005(5)	0.0131(6)
C23	0.0330(6)	0.0281(6)	0.0266(5)	0.0029(5)	0.0048(4)	-0.0017(4)
C25	0.0324(6)	0.0342(6)	0.0269(6)	0.0056(5)	0.0041(5)	-0.0032(5)
C27	0.0338(6)	0.0342(6)	0.0312(6)	0.0001(5)	0.0053(5)	-0.0067(5)
C29	0.0330(0) 0.0419(7)	0.0312(0) 0.0392(7)	0.0012(0) 0.0277(6)	0.0113(6)	0.0058(5)	0.0007(5)
C30	0.0502(8)	0.0394(7)	0.0402(7)	0.0103(6)	0.0085(6)	0.0056(6)
C31	0.0502(0)	0.0351(7) 0.0454(8)	0.0102(7)	0.0154(8)	0.02000(0)	0.0000(0)
C32	0.0690(11)	0.0736(12)	0.0587(10)	0.0367(10)	0.0221(0)	0.0351(9)
C33	0.0536(9)	0.0861(13)	0.0507(10)	0.0261(9)	0.00221(0)	0.0288(9)
C34	0.0330(3)	0.0620(9)	0.0315(7) 0.0356(7)	0.0201(7) 0.0133(7)	0.00016(6)	0.0200(9)
C35	0.0442(7)	0.0020(7)	0.0398(7)	-0.0089(6)	0.0118(6)	-0.0127(6)
C36	0.0112(7)	0.0655(10)	0.0499(8)	-0.0186(8)	0.0110(0) 0.0042(7)	-0.0162(7)
C37	0.0323(5) 0.0727(12)	0.0000(10) 0.0926(15)	0.0177(0)	-0.0452(11)	0.0012(7)	-
0.0275(11)	0.0727(12)	0.0920(10)	0.0012(11)	0.0102(11)	0.0002())	
C38	0 1008(15)	0.0681(13)	0.0720(12)	-0.0526(12)	0 0 2 8 7 (1 1)	_
0.0000(1.0	0.1000(13)	0.0001(13)	0.0720(12)	-0.0320(12)	0.0207(11)	-
0.0303(10)					
C39	0.0907(13)	0.0413(9)	0.0723(11)	-0.0224(9)	0.0309(10)	-
0.0159(8)						
C40	0.0593(9)	0.0383(8)	0.0562(9)	-0.0094(7)	0.0162(7)	-
0.0085(6)						

The general temperature factor expression: $exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^{*b^*}U_{12}hk + 2a^{*c^*}U_{13}hl + 2b^{*c^*}U_{23}kl))$

Table S18. Bond lengths (Å)

atom N1	atom C2	distance 1.4321(18)	atom N1	atom C14	distance 1.4304(17)
N1	C17	1.3983(15)	N18	C17	1.3487(17)
N18	C19	1.3481(18)	N24	C23	1.3464(15)
N24	C25	1.3359(15)	N26	C25	1.3396(16)
N26	C27	1.3391(17)	N28	C23	1.3402(15)
N28	C27	1.3388(15)	C2	C3	1.3865(19)
C2	C7	1.3999(19)	C3	C4	1.383(2)
C4	C5	1.378(2)	C5	C6	1.388(2)
C6	C7	1.392(2)	C7	C8	1.536(2)
C8	С9	1.527(2)	C8	C15	1.549(2)
C8	C16	1.534(2)	С9	C10	1.3955(19)
С9	C14	1.399(2)	C10	C11	1.387(2)
C11	C12	1.383(2)	C12	C13	1.385(2)
C13	C14	1.3882(19)	C17	C22	1.3701(18)
C19	C20	1.3848(18)	C20	C21	1.3917(17)
C20	C23	1.4691(15)	C21	C22	1.367(2)
C25	C29	1.4838(17)	C27	C35	1.4813(18)
C29	C30	1.3908(19)	C29	C34	1.394(2)
C30	C31	1.393(2)	C31	C32	1.384(2)
C32	C33	1.372(3)	C33	C34	1.380(3)
C35	C36	1.398(2)	C35	C40	1.390(2)
C36	C37	1.389(3)	C37	C38	1.377(3)
C38	C39	1.377(3)	C39	C40	1.389(2)

Table S19. Bond lengths involving hydrogens (Å)

atom C3	atom H3	distance 0.950	atom C4	atom H4	distance 0.950
C5	Н5	0.950	C6	H6	0.950
C10	H10	0.950	C11	H11	0.950
C12	H12	0.950	C13	H13	0.950
C15	H15A	0.980	C15	H15B	0.980
C15	H15C	0.980	C16	H16A	0.980
C16	H16B	0.980	C16	H16C	0.980
C19	H19	0.950	C21	H21	0.950
C22	H22	0.950	C30	H30	0.950
C31	H31	0.950	C32	H32	0.950
C33	H33	0.950	C34	H34	0.950
C36	H36	0.950	C37	H37	0.950
C38	H38	0.950	C39	H39	0.950
C40	H40	0.950			

Table S20. Bond angles (⁰)

atom	atom	atom	angle	atom	atom	atom	angle
C2	N1	C14	114.11(11)	C2	N1	C17	121.48(11)
C14	N1	C17	120.72(11)	C17	N18	C19	118.27(11)
C23	N24	C25	115.03(10)	C25	N26	C27	115.18(10)
C23	N28	C27	115.24(10)	N1	C2	C3	120.51(12)
N1	C2	C7	117.85(11)	C3	C2	C7	121.52(13)
C2	C3	C4	119.56(13)	C3	C4	C5	119.98(14)
C4	C5	C6	120.32(14)	C5	C6	C7	121.01(13)
C2	C7	C6	117.59(12)	C2	C7	C8	118.14(12)
C6	C7	C8	124.27(13)	C7	C8	C9	107.49(11)
C7	C8	C15	108.28(12)	C7	C8	C16	111.61(12)
C9	C8	C15	108.97(12)	С9	C8	C16	111.37(12)
C15	C8	C16	109.05(12)	C8	C9	C10	124.40(13)
C8	C9	C14	118.44(12)	C10	С9	C14	117.16(12)
C9	C10	C11	121.41(13)	C10	C11	C12	120.21(14)
C11	C12	C13	119.66(14)	C12	C13	C14	119.75(13)
N1	C14	С9	117.85(11)	N1	C14	C13	120.42(12)
С9	C14	C13	121.64(12)	N1	C17	N18	117.45(11)
N1	C17	C22	120.72(12)	N18	C17	C22	121.81(11)
N18	C19	C20	123.29(12)	C19	C20	C21	116.65(11)
C19	C20	C23	121.80(11)	C21	C20	C23	121.50(11)
C20	C21	C22	120.62(12)	C17	C22	C21	119.33(12)
N24	C23	N28	124.68(10)	N24	C23	C20	117.79(10)
N28	C23	C20	117.49(10)	N24	C25	N26	125.04(10)
N24	C25	C29	117.71(10)	N26	C25	C29	117.26(10)
N26	C27	N28	124.82(11)	N26	C27	C35	118.04(10)
N28	C27	C35	117.12(11)	C25	C29	C30	120.57(12)
C25	C29	C34	119.85(12)	C30	C29	C34	119.58(13)
C29	C30	C31	119.71(14)	C30	C31	C32	119.85(16)
C31	C32	C33	120.46(17)	C32	C33	C34	120.29(16)
C29	C34	C33	120.08(15)	C27	C35	C36	120.55(13)
C27	C35	C40	120.20(13)	C36	C35	C40	119.24(14)
C35	C36	C37	119.45(16)	C36	C37	C38	120.97(19)
C37	C38	C39	119.7(2)	C38	C39	C40	120.34(17)
C35	C40	C39	120.30(16)				
			. ,				

atom	atom	atom	angle	atom	atom	atom	angle
C2	C3	H3	120.2	C4	C3	H3	120.2
С3	C4	H4	120.0	C5	C4	H4	120.0
C4	C5	H5	119.8	C6	C5	H5	119.8
C5	C6	H6	119.5	C7	C6	H6	119.5
С9	C10	H10	119.3	C11	C10	H10	119.3
C10	C11	H11	119.9	C12	C11	H11	119.9
C11	C12	H12	120.2	C13	C12	H12	120.2
C12	C13	H13	120.1	C14	C13	H13	120.1
C8	C15	H15A	109.5	C8	C15	H15B	109.5
C8	C15	H15C	109.5	H15A	C15	H15B	109.5
H15A	C15	H15C	109.5	H15B	C15	H15C	109.5
C8	C16	H16A	109.5	C8	C16	H16B	109.5
C8	C16	H16C	109.5	H16A	C16	H16B	109.5
H16A	C16	H16C	109.5	H16B	C16	H16C	109.5
N18	C19	H19	118.4	C20	C19	H19	118.3
C20	C21	H21	119.7	C22	C21	H21	119.7
C17	C22	H22	120.3	C21	C22	H22	120.3
C29	C30	H30	120.1	C31	C30	H30	120.1
C30	C31	H31	120.1	C32	C31	H31	120.1
C31	C32	H32	119.8	C33	C32	H32	119.8
C32	C33	H33	119.9	C34	C33	H33	119.9
C29	C34	H34	120.0	C33	C34	H34	120.0
C35	C36	H36	120.3	C37	C36	H36	120.3
C36	C37	H37	119.5	C38	C37	H37	119.5
C37	C38	H38	120.2	C39	C38	H38	120.1
C38	C39	H39	119.8	C40	C39	H39	119.8

Table S21. Bond angles involving hydrogens (⁰)

C35

C40

H40

119.9

C39

C40

H40

119.8

Table S22. Torsion Angles(°)(Those having bond angles > 160 or < 20 degrees are excluded.)</td>

atom1 C2	atom2 N1	atom3 C14	atom4 C9	angle 41.08(15)	atom1 C2	atom2 N1	atom3 C14	atom4 C13	angle -135.56(11)
C14	N1	C2	C3	136.89(11)	C14	N1	C2	C7	-39.08(14)
C2	N1	C17	N18	11.46(16)	C2	N1	C17	C22	-166.90(10)
C17	N1	C2	C3	-64.64(15)	C17	N1	C2	C7	119.39(12)
C14	N1	C17	N18	168.53(10)	C14	N1	C17	C22	-9.84(16)
C17	N1	C14	C9	-117.57(12)	C17	N1	C14	C13	65.79(15)
C17	N18	C19	C20	-0.1(2)	C19	N18	C17	N1	-176.59(11)
C19	N18	C17	C22	1.75(18)	C23	N24	C25	N26	-0.32(16)
C23	N24	C25	C29	179.24(8)	C25	N24	C23	N28	-0.30(15)
C25	N24	C23	C20	-177.99(9)	C25	N26	C27	N28	-1.68(16)
C25	N26	C27	C35	176.63(9)	C27	N26	C25	N24	1.24(16)
C27	N26	C25	C29	-178.33(9)	C23	N28	C27	N26	1.15(16)
C23	N28	C27	C35	-177.17(9)	C27	N28	C23	N24	-0.09(15)
C27	N28	C23	C20	177.61(9)	N1	C2	C3	C4	-177.25(10)
N1	C2	C7	C6	177.45(10)	N1	C2	C7	C8	-2.97(16)
C3	C2	C7	C6	1.52(18)	C3	C2	C7	C8	-178.90(11)
C7	C2	C3	C4	-1.43(19)	C2	C3	C4	C5	0.3(2)
C3	C4	C5	C6	0.7(2)	C4	C5	C6	C7	-0.6(2)
C5	C6	C7	C2	-0.5(2)	C5	C6	C7	C8	179.94(12)
C2	C7	C8	С9	39.58(15)	C2	C7	C8	C15	-78.00(13)
C2	C7	C8	C16	161.97(10)	C6	C7	C8	С9	-140.87(12)
C6	C7	C8	C15	101.55(14)	C6	C7	C8	C16	-18.48(17)
C7	C8	С9	C10	142.38(12)	C7	C8	C9	C14	-37.75(15)
C15	C8	C9	C10	-100.49(14)	C15	C8	C9	C14	79.38(14)
C16	C8	C9	C10	19.84(18)	C16	C8	С9	C14	-160.29(11)
C8	C9	C10	C11	-179.50(11)	C8	С9	C14	N1	-0.60(18)
C8	C9	C14	C13	176.00(11)	C10	С9	C14	N1	179.29(11)
C10	С9	C14	C13	-4.11(19)	C14	С9	C10	C11	0.62(19)
C9	C10	C11	C12	2.5(2)	C10	C11	C12	C13	-2.2(2)
C11	C12	C13	C14	-1.2(2)	C12	C13	C14	N1	-179.03(12)
C12	C13	C14	C9	4.5(2)	N1	C17	C22	C21	176.07(10)
N18	C17	C22	C21	-2.22(18)	N18	C19	C20	C21	-0.97(19)
N18	C19	C20	C23	176.36(11)	C19	C20	C21	C22	0.48(17)
C19	C20	C23	N24	0.03(16)	C19	C20	C23	N28	-177.83(10)
C21	C20	C23	N24	177.23(10)	C21	C20	C23	N28	-0.63(16)
C23	C20	C21	C22	-176.85(10)	C20	C21	C22	C17	1.04(18)
N24	C25	C29	C30	-5.46(16)	N24	C25	C29	C34	174.19(9)
N26	C25	C29	C30	174.14(9)	N26	C25	C29	C34	-6.21(16)
N26	C27	C35	C36	-2.57(17)	N26	C27	C35	C40	
	178.86	(10)							
N28	C27	C35	C36	175.87(10)	N28	C27	C35	C40	-2.70(17)
C25	C29	C30	C31	178.41(10)	C25	C29	C34	C33	-
177 66	(10)								
C20	(10) (20	C24	C22	1 00(10)	C24	C20	C20	C21	1 24(10)
C30	C29	C34	C33	1.99(19)	C34	629	C30	C31	-1.24(10)
C29	C30	C31	C3Z	-0.3(2)	C30	C31	C3Z	633	1.1(2)
C31	C32	C33	C34	-0.4(3)	C32	C33	C34	C29	-1.2(2)
C27	C35	C36	C37	-178.26(11)	C27	C35	C40	C39	
	178.25	(11)							
C36	C35	C40	C39	-0.3(2)	C40	C35	036	C37	0.3(2)
C32	C36	C37	C38	-0.1(3)	C36	C37	C38	C30	-0.1(3)
C35	C20	C30	C10	0.1(3)	C30	C20	C10	C25	0.1(3)
L3/	L38	L39	Ե40	0.0(3)	L38	639	Ե40	L35	0.2(3)

atom N1	atom C8	distance 2.7957(18)	atom N1	atom C15	distance
N1	3.2063(19) C19 2.7785(18)	3.5801(18)	N18	C2	
N18	2.7765(16) C3 2.7514(18)	2.9718(18)	N18	C21	
N24	C19 2.7514(10) 2.6791(16)	2.8267(18)	N24	C27	
N24	C30 2.6774(15)	2.8146(17)	N26	C23	
N26	C34	2.794(2)	N26	C36	2.822(2)
N28	C21 2.6762(16)	2.8151(18)	N28	C25	
N28	C40	2.7911(19)	C2	C5	2.756(2)
C2	С9	2.815(2)	C2	C13	3.573(2)
C2	C15	3.182(2)	C3	C6	2.770(2)
C3	C14 3 1374(19)	3.579(2)	C3	C17	
C4	C7	2.801(2)	C6	C15	3.470(2)
C6	C16 2 8034(19)	2.928(2)	C7	C14	
C7	C17	3.5120(18)	С9	C12	2.811(2)
С9	C17	3.4903(18)	C10	C13	2.766(2)
C10	C15	3.469(2)	C10	C16	2.922(2)
C11	C14 3 1316(19)	2.758(2)	C13	C17	
C13	C22	3.049(2)	C14	C15	3.204(2)
C14	C22 2 7470(15)	2.837(2)	C17	C20	
C19	C22	2.7096(19)	C29	C32	2.771(2)
C30	C33	2.773(2)	C31	C34	2.770(2)
C35	C38	2.785(3)	C36	C39	2.773(3)
C37	C40	2.760(3)			

Table S23. Intramolecular contacts less than 3.60 Å $\,$

atom N1	atom H3	distance 2.625	atom N1	atom H13	distance 2.622
N1	H15B	2.665	N1	H22	2.593
N18	Н3	2.740	N18	H15B	3.287
N18	H22	3.228	N24	H19	2.491
N24	H30	2.500	N26	H34	2.466
N26	H36	2.508	N28	H21	2.500
N28	H40	2.463	C2	H4	3.252
C2	H6	3.251	C2	H15B	2.894
C2	H15C	3.534	C3	H5	3.248
C4	H6	3.252	C5	H3	3.250
C6	H4	3.257	C6	H15C	3.309
C6	H16A	2.959	C6	H16C	2.719
C7	Н3	3.286	C7	H5	3.273
C7	H15A	3.352	C7	H15B	2.667
C7	H15C	2.698	C7	H16A	2.742
C7	H16B	3.380	C7	H16C	2.722
C8	H6	2.761	C8	H10	2.757
С9	H11	3.280	С9	H13	3.287
С9	H15A	2.699	С9	H15B	2.679
С9	H15C	3.352	С9	H16A	2.713
С9	H16B	2.731	С9	H16C	3.369
С9	H22	3.560	C10	H12	3.259
C10	H15A	3.303	C10	H16A	2.927
C10	H16B	2.737	C11	H13	3.252

Table S24. Intramolecular contacts less than 3.60 Å involving hydrogens

C12	H10	3.253	C12	H22	3.346
C13	H11	3.250	C13	H22	2.412
C14	H10	3.247	C14	H12	3.258
C14	H15A	3.553	C14	H15B	2.932
C14	H22	2.515	C15	H10	3.600
C15	H16A	3.362	C15	H16B	2.685
C15	H16C	2.699	C16	H6	2.589
C16	H10	2.588	C16	H15A	2.699
C16	H15B	3.360	C16	H15C	2.692
C17	Н3	3.022	C17	H13	3.040
C17	H15B	2.809	C17	H19	3.169
C17	H21	3.220	C19	H21	3.228
C20	H22	3.256	C21	H19	3.222
C22	H13	2.872	C22	H15B	3.329
C23	H19	2.643	C23	H21	2.665
C25	H30	2.662	C25	H34	2.648
C27	H36	2.669	C27	H40	2.648
C29	H31	3.266	C29	H33	3.261
C30	H32	3.260	C30	H34	3.265
C31	H33	3.248	C32	H30	3.261
C32	H34	3.243	C33	H31	3.248
C34	H30	3.267	C34	H32	3.243
C35	H37	3.264	C35	H39	3.265
C36	H38	3.263	C36	H40	3.265
C37	H39	3.238	C38	H36	3.262

C38	H40	3.254	C39	H37	3.236
C40	H36	3.266	C40	H38	3.257
Н3	H4	2.336	H4	Н5	2.327
Н5	H6	2.328	Н6	H15C	3.316
H6	H16A	2.611	H6	H16B	3.536
H6	H16C	2.144	H10	H11	2.326
H10	H15A	3.297	H10	H16A	2.589
H10	H16B	2.162	H10	H16C	3.538
H11	H12	2.333	H12	H13	2.339
H13	H22	2.307	H15A	H16A	3.591
H15A	H16B	2.503	H15A	H16C	2.990
H15B	H16B	3.583	H15B	H16C	3.590
H15B	H22	3.558	H15C	H16A	3.592
H15C	H16B	2.959	H15C	H16C	2.511
H19	H30	3.274	H21	H22	2.317
H21	H40	3.200	H30	H31	2.346
H31	H32	2.331	H32	H33	2.317
H33	H34	2.327	H34	H36	3.225
H36	H37	2.336	H37	H38	2.322
H38	H39	2.326	H39	H40	2.334

atom N24	atom N26 ¹ 3,5808(15)	distance 3.4859(15)	atom N24	atom N28 ¹	distance
N24	C27 ¹ 3.4859(15)	3.4090(16)	N26	N24 ¹	
N26	$C20^{1}$ 3.4516(15)	3.5635(16)	N26	C231	
N28	N24 ¹ 3.5094(16)	3.5808(15)	N28	C20 ²	
N28	C21 ² 3.4457(16)	3.5262(17)	N28	C25 ¹	
N28	C29 ¹ 3.5568(17)	3.4698(17)	N28	C30 ¹	
C3	C37 ²	3.566(3)	C5	C11 ³	3.533(2)
C11	C5 ⁴ 3 5635(16)	3.533(2)	C20	N26 ¹	
C20	$N28^2$ 3 5262(17)	3.5094(16)	C21	N28 ²	
C21	C23 ²	3.4778(18)	C21	C34 ¹	3.361(2)
C23	N26 ¹ 3 4778(18)	3.4516(15)	C23	C21 ²	
C23	$C25^{1}$ 3 4457(16)	3.3486(16)	C25	N28 ¹	
C25	$C23^{1}$	3.3486(16)	C27	N24 ¹	
C29	N28 ¹	3.4698(17)	C29	C32 ⁵	3.497(2)
C30	N28 ¹	3.5568(17)	C30	C31 ⁵	3.572(2)
C30	C32 ⁵	3.435(2)	C31	C30 ⁶	3.572(2)
C32	C29 ⁶	3.497(2)	C32	C30 ⁶	3.435(2)
C34	C21 ¹	3.361(2)	C37	C3 ²	3.566(3)
C37	C39 ⁷	3.513(3)	C38	C39 ⁷	3.570(3)
C39	C37 ⁸	3.513(3)	C39	C38 ⁸	3.570(3)

Table S25. Intermolecular contacts less than 3.60 Å $\,$

Symmetry Operators:

(1) -X+1,-Y+1,-Z+2	(2) -X+1,-Y+1,-Z+1
(3) -X+1/2,-Y+1,Z+1/2	(4) -X+1/2,-Y+1,Z+1/2-1
(5) X,-Y+1,Z	(6) X,-Y+1,Z+1

(7) X,-Y+2,Z+1

atom N18	atom H36 ¹	distance 3.445	atom N18	atom H38²	distance 3.325
N24	H21 ³	3.532	N24	H31 ⁴	3.174
N26	H13 ³	2.895	N26	H22 ³	3.594
N28	H30 ¹	3.507	C2	H16C ⁵	3.071
C3	H16B ⁵	3.483	C3	H16C ⁵	3.291
C3	H38 ²	2.889	C4	H16B ⁵	3.089
C4	H16C ⁵	3.377	C4	H37 ²	3.385
C4	H38 ²	2.875	C5	H10 ⁶	3.541
C5	H11 ⁷	3.464	C5	H16B ⁵	3.120
C5	H16C ⁵	3.250	C6	H15C ⁵	3.239
C6	H16B ⁵	3.530	C6	H16C ⁵	3.014
C7	H16C ⁵	2.924	С9	H6 ⁵	3.202
C10	H5 ⁵	3.238	C10	H5 ⁸	3.507
C10	H6 ⁵	3.086	C10	H11 ⁹	3.278
C11	H5 ⁵	2.772	C11	H6 ⁵	3.285
C11	H15A ¹⁰	3.458	C11	H33 ¹¹	3.256
C12	H5 ⁵	3.390	C12	H6 ⁵	3.525
C12	H15A ¹²	3.581	C12	H32 ¹¹	3.143
C12	H33 ¹¹	2.943	C12	H34 ³	3.505
C13	H32 ¹¹	3.107	C13	H34 ³	3.226
C14	H6 ⁵	3.488	C15	H331	3.533
C15	H34 ¹	3.396	C19	H36 ¹	3.318
C19	H39 ²	3.302	C19	H40 ³	3.574
C20	H34 ¹	3.599	C21	H31 ¹¹	3.536

Table S26. Intermolecular contacts less than 3.60 Å involving hydrogens

C21	H34 ¹	3.409	C22	H32 ¹¹	3.344
C22	H341	3.547	C23	H21 ³	3.421
C25	H13 ³	3.376	C25	H32 ⁴	3.244
C27	H30 ¹	3.553	C29	H13 ³	3.441
C29	H21 ¹	3.524	C29	H32 ⁴	2.790
C30	H31 ⁴	3.305	C30	H32 ⁴	3.063
C30	H40 ¹	3.360	C31	H21 ²	3.212
C31	H22 ²	3.548	C31	H30 ¹³	3.444
C31	H32 ⁴	3.543	C31	H40 ¹	3.527
C32	H12 ²	3.501	C32	H22 ²	3.022
C33	H12 ²	3.372	C33	H12 ³	3.124
C33	H21 ¹	3.539	C33	H32 ⁴	3.546
C34	H12 ³	3.160	C34	H13 ³	2.969
C34	$H15B^{1}$	3.468	C34	H21 ¹	3.383
C34	H32 ⁴	3.085	C35	H3 ³	3.228
C35	H30 ¹	3.349	C36	H3 ³	3.000
C36	H19 ¹	3.360	C36	H39 ⁹	3.233
C37	H3 ³	2.815	C37	H4 ¹¹	3.268
C37	H38 ⁹	3.559	C37	H39 ⁹	2.952
C38	H3 ¹¹	3.462	C38	H3 ³	2.879
C38	H4 ¹¹	3.329	C38	H37 ¹⁰	3.547
C38	H39 ⁹	3.162	C39	H3 ³	3.105
C39	H19 ¹¹	3.194	C39	H37 ¹⁰	3.588
C40	H3 ³	3.269	C40	H30 ¹	3.196
H3	C35 ³	3.228	H3	C36 ³	3.000

H3	C37 ³	2.815	Н3	C38 ²	3.462
Н3	C38 ³	2.879	Н3	C39 ³	3.105
Н3	C40 ³	3.269	Н3	H36 ³	3.506
Н3	H37 ³	3.240	Н3	H38 ²	2.767
Н3	H38 ³	3.335	H4	C37 ²	3.268
H4	C38 ²	3.329	H4	H10 ⁶	3.323
H4	H16B ⁵	3.340	H4	H37 ²	2.602
H4	H38 ²	2.738	H4	H38 ³	3.436
Н5	C10 ⁷	3.238	H5	C10 ⁶	3.507
H5	C11 ⁷	2.772	Н5	C12 ⁷	3.390
Н5	H10 ⁷	3.341	H5	H10 ⁶	2.765
H5	H11 ⁷	2.584	Н5	H11 ⁶	3.403
Н5	H12 ⁷	3.599	Н5	H15A ⁵	3.449
Н5	H16B ⁵	3.397	H6	C9 ⁷	3.202
H6	C10 ⁷	3.086	H6	C11 ⁷	3.285
H6	C12 ⁷	3.525	H6	C14 ⁷	3.488
H6	H10 ⁷	3.424	H6	H15C ⁵	2.963
H6	H16A ⁷	3.334	H6	H16C ⁵	3.466
H10	C5 ⁸	3.541	H10	H4 ⁸	3.323
H10	H5 ⁵	3.341	H10	H5 ⁸	2.765
H10	H6 ⁵	3.424	H10	H11 ⁹	2.885
H11	C5 ⁵	3.464	H11	C10 ¹⁰	3.278
H11	H5 ⁵	2.584	H11	H5 ⁸	3.403
H11	H10 ¹⁰	2.885	H11	H15A ¹⁰	2.680
H11	H16B ¹⁰	3.106	H11	H33 ¹¹	3.193
H12	C32 ¹¹	3.501	H12	C33 ¹¹	3.372
------	-------------------	-------	------	--------------------	-------
H12	C33 ³	3.124	H12	C34 ³	3.160
H12	H5 ⁵	3.599	H12	H15A ¹²	3.229
H12	H32 ¹¹	2.929	H12	H33 ¹¹	2.664
H12	H33 ³	2.974	H12	H34 ³	3.053
H13	N26 ³	2.895	H13	C25 ³	3.376
H13	C29 ³	3.441	H13	C34 ³	2.969
H13	H32 ¹¹	2.878	H13	H34 ³	2.474
H13	H36 ³	3.327	H15A	C11 ⁹	3.458
H15A	C12 ¹⁴	3.581	H15A	H5 ⁷	3.449
H15A	H11 ⁹	2.680	H15A	H12 ¹⁴	3.229
H15A	H33 ¹	2.964	H15A	H34 ¹	3.316
H15B	C34 ¹	3.468	H15B	H33 ¹	3.192
H15B	H34 ¹	2.728	H15B	H36 ¹	3.494
H15C	C6 ⁷	3.239	H15C	H6 ⁷	2.963
H15C	H16A ⁷	2.785	H16A	H6 ⁵	3.334
H16A	H15C ⁵	2.785	H16A	H16C ⁵	3.402
H16B	C3 ⁷	3.483	H16B	C4 ⁷	3.089
H16B	C57	3.120	H16B	C6 ⁷	3.530
H16B	H4 ⁷	3.340	H16B	H5 ⁷	3.397
H16B	H11 ⁹	3.106	H16C	C2 ⁷	3.071
H16C	C3 ⁷	3.291	H16C	C4 ⁷	3.377
H16C	C57	3.250	H16C	C6 ⁷	3.014
H16C	C7 ⁷	2.924	H16C	H6 ⁷	3.466
H16C	H16A ⁷	3.402	H19	C361	3.360

H19	C39 ²	3.194	H19	H31 ⁴	3.417
H19	H36 ¹	3.185	H19	H38 ²	3.508
H19	H39 ²	2.474	H19	H40 ³	3.526
H21	N24 ³	3.532	H21	C23 ³	3.421
H21	C29 ¹	3.524	H21	C31 ¹¹	3.212
H21	C33 ¹	3.539	H21	C34 ¹	3.383
H21	H31 ¹¹	2.731	H21	H32 ¹¹	3.507
H22	N26 ³	3.594	H22	C31 ¹¹	3.548
H22	C32 ¹¹	3.022	H22	H31 ¹¹	3.489
H22	H32 ¹¹	2.502	H22	H33 ¹	3.456
H30	N28 ¹	3.507	H30	C27 ¹	3.553
H30	C31 ⁴	3.444	H30	C35 ¹	3.349
H30	C40 ¹	3.196	H30	H31 ⁴	2.998
H30	H32 ⁴	3.442	H30	H39 ²	3.130
H30	H40 ²	3.255	H30	H40 ¹	3.174
H31	N24 ¹³	3.174	H31	C21 ²	3.536
H31	C30 ¹³	3.305	H31	H19 ¹³	3.417
H31	H21 ²	2.731	H31	H22 ²	3.489
H31	H30 ¹³	2.998	H31	H40 ²	3.272
H31	H40 ¹	3.463	H32	C12 ²	3.143
H32	C13 ²	3.107	H32	C22 ²	3.344
H32	C25 ¹³	3.244	H32	C29 ¹³	2.790
H32	C30 ¹³	3.063	H32	C31 ¹³	3.543
H32	C33 ¹³	3.546	H32	C34 ¹³	3.085
H32	H12 ²	2.929	H32	H13 ²	2.878

H32	H21 ²	3.507	H32	H22 ²	2.502
H32	H30 ¹³	3.442	H32	H34 ¹³	3.483
H33	C11 ²	3.256	H33	C12 ²	2.943
H33	C15 ¹	3.533	H33	H11 ²	3.193
H33	H12 ²	2.664	H33	H12 ³	2.974
H33	H15A ¹	2.964	H33	H15B ¹	3.192
H33	H22 ¹	3.456	H34	C12 ³	3.505
H34	C13 ³	3.226	H34	C15 ¹	3.396
H34	C20 ¹	3.599	H34	C21 ¹	3.409
H34	C22 ¹	3.547	H34	H12 ³	3.053
H34	H13 ³	2.474	H34	H15A ¹	3.316
H34	H15B ¹	2.728	H34	H32 ⁴	3.483
H36	N18 ¹	3.445	H36	C19 ¹	3.318
H36	H3 ³	3.506	H36	H13 ³	3.327
H36	H15B ¹	3.494	H36	H19 ¹	3.185
H37	C4 ¹¹	3.385	H37	C38 ⁹	3.547
H37	C39 ⁹	3.588	H37	H3 ³	3.240
H37	H4 ¹¹	2.602	H37	H38 ⁹	3.116
H37	H39 ⁹	3.191	H38	N18 ¹¹	3.325
H38	C3 ¹¹	2.889	H38	C4 ¹¹	2.875
H38	C37 ¹⁰	3.559	H38	H3 ¹¹	2.767
H38	H3 ³	3.335	H38	H4 ¹¹	2.738
H38	H4 ³	3.436	H38	H19 ¹¹	3.508
H38	H37 ¹⁰	3.116	H38	H39 ⁹	3.515
H39	C19 ¹¹	3.302	H39	C36 ¹⁰	3.233

H39	C37 ¹⁰	2.952	H39	C38 ¹⁰	3.162
H39	H19 ¹¹	2.474	H39	H30 ¹¹	3.130
H39	H37 ¹⁰	3.191	H39	H38 ¹⁰	3.515
H40	C19 ³	3.574	H40	C30 ¹	3.360
H40	C31 ¹	3.527	H40	H19 ³	3.526
H40	H30 ¹¹	3.255	H40	H30 ¹	3.174
H40	H31 ¹¹	3.272	H40	H31 ¹	3.463

Symmetry Operators:

(1) -X+1,-Y+1,-Z+2	(2) -X+1,Y+1/2-1,-Z+1/2+1
(3) -X+1,-Y+1,-Z+1	(4) X,-Y+1,Z
(5) -X+1/2,-Y+1,Z+1/2-1	(6) -X+1,Y,Z
(7) -X+1/2,-Y+1,Z+1/2	(8) -X+1,Y+1,Z
(9) X,-Y+2,Z+1	(10) X,-Y+2,Z
(11) -X+1,Y+1/2,-Z+1/2+1	(12) X,Y,Z-1
(13) X,-Y+1,Z+1	(14) X,Y,Z+1

DFT Calculations

All calculations are performed with Gaussian 16 B.01¹⁵ (M062X/6-31 G(d))¹⁶ in the gas phase. Excited state calculation with TD-DFT calculation (Tamm-Dancoff approximation).¹⁷ The four adjacent atoms (as marked in **Figure S9a** and **S9b**) are defined to estimate the dihedral angle between the DMAC and the bridging aryl in **DMAC-TRZ** and **DMAC-py-TRZ**. To perform relaxed scan calculations, this angle was frozen, while the molecule was otherwise allowed to relax towards the ground-state equilibrium structure.

a. Rigid dihedral angle scan of each of DMAC-TRZ and DMAC-py-TRZ

Figure **S9**. Sketch of a) **DMAC-TRZ** and b) **DMAC-py-TRZ** showing four adjacent atoms to define the dihedral angle of the dihedral rigid scan of interest. Energies of ground (black), lowest energy singlet (blue), lowest energy triplet (red) and two higher energy triplet (green) states.

b. Optimized geometry of S_0 (bent and orthogonal), S_1 and T_1 for both **DMAC-TRZ** and **DMAC-py-TRZ**.

Figure **S10.** Optimized geometries (bent and orthogonal) of the ground state (S_0), first singlet excited state (S_1), first triplet-excited state (T_1) for both **DMAC-TRZ** and **DMAC-py-TRZ**. All geometries are obtained at the M06-2X/6-31g(d) level of theory.

c. Molecular Orbitals of DMAC-TRZ vs DMAC-py-TRZ

Figure Sx. Molecular orbitals (HOMO and LUMO) of (a) DMAC-TRZ and (b) DMAC-py Figure S11. Molecular orbitals (HOMO and LUMO) of a) DMAC-TRZ and b)
 TRZ for both bent and orthogonal geometries.
 DMAC-py-TRZ for both bent and orthogonal geometries

Figure S12. Natural transition orbitals and oscillator strength (f) related to the S₀-S₁ transition of **DMAC-TRZ** for both a) bent b) orthogonal geometries and of **DMAC-py-TRZ** for both c) bent d) orthogonal geometries shown.

λ_{abs}/nm	λ_{PL}/nm	$\Delta \nu/cm^{-1}$
370	472	5840
370	550	8845
370	573	9575
368	675	12212
370	596	10192
370	404	2275
	λ _{abs} /nm 370 370 370 368 370 370 370	λ _{abs} /nm λ _{PL} /nm 370 472 370 550 370 573 368 675 370 596 370 404

Table **S27.** Absorption and emission data of **DMAC-py-TRZ** in different solvents.

Spectroscopic data: absorption wavelength (λ_{abs}), emission wavelength (λ_{PL}) and Stokes shift (Δv) in different solvents

Figure S13. a) Ground and excited state solvatochromism study of DMAC-TRZ (λ_{exc} , = 340 nm); b) Prompt fluorescence and phosphorescence spectra at 77 K in 10⁻⁵ M 2-MeTHF glass (λ_{exc} = 343 nm, prompt and delayed fluorescence spectra were obtained over the 1–100 ns and 1–8.5 ms time ranges, respectively); c) emission spectrum of DMAC-py-TRZ (toluene, 10⁻⁵

M solutions, $\lambda_{exc} = 340$ nm); d) time-resolved photoluminescence decay of degassed and aerated solutions of **DMAC-py-TRZ** (toluene, 10^{-5} M solutions, $\lambda_{exc} = 378$ nm).

Figure S14. Steady-state absorption (continuous lines) and emission (dotted lines) spectra of (a) DMAC, (b) py-TRZ in different solvents. Emission spectra for excitation at 300 nm.

Figure **S15**. Time-resolved PL decay of degassed and aerated solutions of **DMAC-py-TRZ** (Toluene, 10^{-5} M solutions, λ_{exc} = 378 nm).

Figure **S16**. Absorption (blue dashed line) and emission (red continuous line, λ_{ecc} =370 nm) spectra of **DMAC-py-TRZ** in 2-MeTHF at room temperature.

Material	Environment	$\lambda_{\rm PL}/{\rm nm}^a$	$\Phi_{\mathrm{PL}} \mathrm{N}_2$ (air) ^b / %	$ au_{ m p}$, $ au_{ m d}$ c / ns; µs	S_1^d / eV	T_1^e / eV
DMAC-TRZ	mCP 10 wt%	499	47 (45)	22.9; 15.3	2.83	2.81
	PMMA 10 wt%	523	18 (15)	41.6; 17.0	2.85	2.74
DMAC-py-TRZ	mCP 10 wt%	496	57 (54)	24.9; 5.3	2.76	2.71
	PMMA 10 wt%	516	64 (58)	26.0; 4.7	2.76	2.74

Table **28**. Additional photophysical data of DMAC-TRZ and DMAC-py-TRZ in matrices.

^{*a*} measured at room temperature. ^{*b*} λ_{exc} = 340 nm, obtained using an integrating sphere. ^{*c*} τ_p (prompt lifetime) and τ_d (delayed lifetime) were obtained from the transient PL decay of degassed doped film, λ_{exc} = 378 nm. ^{*d*} S₁ was obtained from the onset of the prompt fluorescence measured at 77 K, obtained in the 1–100 ns time range. ^{*e*}T₁ was obtained from the onset of the phosphorescence spectrum measured at 77 K, obtained in the 1–8.5 ms time range.

The S₁ and T₁ energies in Table **S28** are estimated from the onsets of fluorescence and phosphorescence spectra, respectively. Data in Fig. **7** (main text) demonstrate quite unambiguously that self-absorption heavily affects the spectra measured in matrices down to 1% concentration. This self-absorption issue is particularly problematic in **DMAC-py-TRZ** samples due to the large extinction coefficient of the bent form that is responsible for the sizable absorbance values in low-concentration thin films.

f. Spectroscopic analysis of DMAC-py-TRZ in viscous solvent (polyTHF)

Figure S17. PL spectrum (red line) of DMAC-py-TRZ dissolved in polyTHF (λ_{exc} =370nm). The blue dotted line is the emission spectrum of the pure solvent.

g. Additional DFT/TD-DFT data for DMAC-TRZ and DMAC-py-TRZ

Figure S18. Full relaxed dihedral angle scan of DMAC-TRZ and DMAC-py-TRZ at the S₀ geometry.

These scans were obtained from the redundant coordinate scan calculation available in Gaussian 16.B01 software. In this case, we optimized every angle starting from the previously optimized geometry starting from a 90° dihedral angle at gaps of 10°. The main issue using this approach is that scans lack symmetry during a full 360° rotation. In the main text's approach, we first changed the dihedral angle starting from an identical geometry (orthogonal in our case) and run optimization at each angle. In this case, scans are symmetric at every 0-90° range, so the full ranges are not shown in main text. However, the conclusion about both conformers stays the same using either approache.

h. UV-VIS absorption spectra of DMAC-TRZ and DMAC-py-TRZ

Figure **S139**. UV-VIS absorption spectra of a) **DMAC-TRZ** and b) **DMAC-py-TRZ** for orthogonal (red) and bent (black) geometry at the M062X/6-31G(d) level.

i. Excited-state energies for DMAC-TRZ and DMAC-py-TRZ

gas phase at the TDA-DFT- M062X/6-31G(d) level.							
		S1 / eV	T ₁ / eV	$\Delta E_{\rm ST}$ / eV			
DMAC-TRZ	Orthogonal	3.452	3.444	0.008			
	Bent	4.081	3.239	0.842			
DMAC-py-TRZ	Orthogonal	3.197	3.188	0.009			
	Bent	4.034	3.248	0.786			

Table **S29**. S₁ , T₁ and ΔE_{ST} energies of **DMAC-TRZ** and **DMAC-py-TRZ** calculated in the gas phase at the TDA-DFT- M062X/6-31G(d) level.

References

- (1) Takahashi, T.; Shizu, K.; Yasuda, T.; Togashi, K.; Adachi, C. Donor–Acceptor-Structured 1,4-Diazatriphenylene Derivatives Exhibiting Thermally Activated Delayed Fluorescence: Design and Synthesis, Photophysical Properties and OLED Characteristics. *Sci. Technol. Adv. Mater.* **2014**, *15* (3), 034202.
- (2) Connelly, N. G., and Geiger, W. E. Chemical Redox Agents for Organometallic Chemistry. *Chem. Rev.* **1996**, *96* (2), 877–910.
- (3) Crosby, G. A.; Demas, J. N. Measurement of Photoluminescence Quantum Yields. Review. J. Phys. Chem. 1971, 75 (8), 991–1024. https://doi.org/10.1021/j100678a001.
- (4) Melhuish, W. H. Quantum Efficiencies of Fluorescence of Organic Substan Ces: Effect of Solvent and Concentration of the Fluorescent Solute. J. Phys. Chem. 1961, 65 (2), 229–235. https://doi.org/10.1021/j100820a009.
- (5) Corporation, R. CrysaAlisPro: Data Collection and Processing Software. Tokyo, Japan 2015, pp 196–8666.
- (6) F.R. Ahmed. Larson, A.C. (1970), Crystallographic Computing. Copenhagen 1970, pp 291–294.
- (7) Sheldrick, G. M. SHELXT Version 2018/2. Acta Cryst. A70, C1437 2014.
- (8) Sheldrick, G. M. SHELXL Version 2018/3. Acta Cryst. A64 2008, pp 112–122.
- (9) *International Tables for Crystallography*, A.J.C. Wil.; Kluwer Academic Publishers, Dordrecht, Netherlands, 1992.
- (10) Ibers, J. A. & Hamilton, W. C. No Title. Acta Crystallogr., 1964, 781 (17).
- (11) Creagh, D. C. & McAuley, W. . *International Tables for Crystallography*, A.J.C. Wil.; Kluwer Academic Publishers, Boston, 1992.
- (12) Creagh, D. C. & Hubbell, J. H. *International Tables for Crystallography*, A.J.C. Wil.; Kluwer Academic Publishers, Boston, 1992.
- (13) CrystalStructure 4.3: Crystal Structure Analysis Package. Rigaku Corporation: Tokyo, Japan pp 196–8666.
- (14) Corporation, R. CrystalClear: Data Collection and Processing Software. Tokyo, Japan pp 196–8666.
- (15) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. a.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. a.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, a. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, a. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. a.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. a.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, a. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. G16_C01. 2016, p Gaussian 16, Revision C.01, Gaussian, Inc., Wallin.

- (16) Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Function. *Theor. Chem. Acc.* 2008, *120* (1–3), 215–241. https://doi.org/10.1007/s00214-007-0310-x.
- (17) Hirata, S.; Head-Gordon, M. Time-Dependent Density Functional Theory within the Tamm-Dancoff Approximation. *Chem. Phys. Lett.* **1999**, *314* (3–4), 291–299. https://doi.org/10.1016/S0009-2614(99)01149-5.