Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Modulating Room Temperature Phosphorescence through Intermolecular Halogen Bonding

Dongyan Jiang,^a Chunya Du,^a Zhenyu Yan,^a Shuyuan Ge,^a Zijun Feng,^a Liang Wan^a and Ping Lu^{*a}

^a State Key Laboratory of Supramolecular Structure and Materials, Department of

Chemistry, Jilin University, Changchun, 130012, P. R. China.

Contents

1. Experimental section	2
1.1 General information	2
1.2 Photophysical measurements	2
1.3 Single crystal X-ray diffraction (XRD) data	3
1.4 Theoretical calculations	3
1.5 Synthetic Procedures	4
2. Supplementary Figures and Tables	6
3. References	24

1. Experimental section

1.1 General information

All the reagents and solvents used for the synthesis were purchased from Aldrich and Acros companies and used without further purification. The synthesis procedure was presented in Scheme S1. ¹H and ¹³C NMR spectra were recorded on a Bruker AVANCE 500 spectrometer at 500 MHz or 125 MHz with tetramethylsilane (TMS) as the internal standard. The MALDI-TOF-MS mass spectra were obtained from an AXIMA-CFRTM plus instrument.

1.2 Photophysical measurements

UV-vis spectra of solutions were recorded on a Shimadzu UV-3100 Spectrophotometer. Steady-state photoluminescence (PL) spectra, time-resolved emission spectra (TRES) and lifetimes were recorded using FLS980 Spectrometer equipped with a xenon lamp (Xe300) and microsecond flash-lamp (µF920). Low temperature photophysical measurement was carried out with the sample loaded in a quartz tube. Liquid nitrogen was placed into the temperature control attachment for low temperature (77 K). Steady state photoluminescence spectra were measured by an RF-5301PC spectrophotometer. Quantum efficiencies were measured using an integrating sphere apparatus. The excitation wavelengths for PLQY measurements were 300 nm for MPh, MPh-F, MPh-Cl, MPh-Br and MPh-I crystals. Solutions were placed in 1 cm path length quartz cells, and crystals were fixed on the quartz plate in terms of steadystate spectra and lifetimes.

The total lifetimes of multi-sectioned PL-decay spectra are calculated using the following equation:

$$\tau = \frac{\sum_{i=1}^{n} \tau_1^2 A_i}{\sum_{i=1}^{n} \tau_i A_i}$$

where τ is the lifetime, *i* represents for the number of the lifetime components, and *Ai* is the proportion for each lifetime components.

1.3 Single crystal X-ray diffraction (XRD) data

Single crystals of MPh, MPh-F, MPh-Cl, MPh-Br and MPh-I were prepared by crystallization from the solution of dichloromethane and petroleum ether at room temperature. The diffraction experiments were carried out on a Rigaku R-AXIS RAPID diffractometer equipped with a Mo-K α and control Software using the RAPID AUTO at 100 K. The crystal structures were solved with direct methods and refined with a full-matrix least-squares technique using the SHELXS programs. Powder XRD patterns were collected on a Rigaku SmartLab (3) diffractometer.

1.4 Theoretical calculations

All the density functional theory (DFT) calculations were carried out using Gaussian 09 (version D.01) package on a PowerLeader cluster.¹ Single-molecule structures of morpholine derivatives were adopted from optimized single crystal data to calculate vertical excitation energy using time-dependent DFT (TD-DFT) at the level of B3LYP/6-31G(d, p). Spin-orbit coupling (SOC) coefficients were calculated at the level of B3LYP/6-31G(d, p) by Beijing density function (BDF) program. Natural transition orbitals (NTOs) were calculated to identify the excited-state property for both singlet and triplet states.²⁻⁴

1.5 Synthetic Procedures

Scheme S1. The synthetic routes of MPh-F, MPh-Cl, MPh-Br and MPh-I.

MPh were purchased from Aldrich and Acros companies and purified by column chromatography on silica gel using dichloromethane/petroleum ether (4:1) as the eluent. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.30 (t, *J* = 7.7 Hz, 2H), 6.95 (d, *J* = 8.0 Hz, 2H), 6.89 (t, *J* = 7.2 Hz, 1H), 3.89 – 3.84 (m, 4H), 3.19 – 3.14 (m, 4H); ¹³C NMR (126 MHz, CD₂Cl₂) δ 151.55, 129.07, 119.70, 115.54, 66.88, 49.34; MALDI-TOF MS (mass *m/z*): 163.22. Calcd for C₁₀H₁₃NO: C 73.59, H 8.03, N 8.58; Found: C 73.53, H 8.03, N 8.61.

Synthesis of **MPh-F**: 1-bromo-4-fluorobenzene (1.75 g, 10 mmol), morpholine (1.04 g, 12 mmol), potassium tert-butoxide (1.12g, 10 mmol), $[Pd_2(dba)_3]$ (0.27g, 0.3mmol) and tri-tert-butylphosphine tetrafluoroborate (0.14 g, 0.5 mmol) were dissolved in toluene (60 mL). The resultant mixture was refluxed for 24 hours under N₂, then extracted with dichloromethane. The combined organic extracts were dried over anhydrous MgSO₄ and concentrated by rotary evaporation. The crude product was purified by column chromatography on silica gel using ethyl acetate/petroleum ether (v/v = 6:1) as eluent to afford a white solid in a yield of 57%. ¹H NMR (500 MHz,

CD₂Cl₂) δ 7.02 (t, *J* = 8.6 Hz, 1H), 6.92 (s, 1H), 3.86 (d, *J* = 3.9 Hz, 2H), 3.20 – 2.99 (m, 2H). ¹³C NMR (126 MHz, CD₂Cl₂) δ 158.04, 148.23, 117.25, 117.20, 115.49, 115.31, 66.83, 50.17. MALDI-TOF MS (mass *m*/*z*): 181.17. Calcd for C₁₀H₁₂FNO: C 66.28, H 6.68, N 7.73; Found: C 66.32, H 6.67, N 7.71.

Synthesis of **MPh-Cl**: The synthetic procedure for MPh-Cl is similar to that of MPh-F described above. White solid were obtained in 76% yield. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.32 – 7.18 (m, 1H), 6.88 (d, *J* = 9.0 Hz, 1H), 3.95 – 3.75 (m, 2H), 3.20 – 3.05 (m, 2H). ¹³C NMR (126 MHz, CD₂Cl₂) δ 150.15, 128.88, 124.26, 116.70, 66.70, 49.15. MALDI-TOF MS (mass *m*/*z*): 197.56. Calcd for C₁₀H₁₂ClNO: C 60.77, H 6.12, N 7.09; Found: C 60.83, H 6.14, N 7.04.

Synthesis of **MPh-Br**: The synthetic procedure for MPh-Br is similar to that of MPh-F described above. White solid were obtained in 84% yield. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.50 – 7.26 (m, 1H), 6.84 (d, *J* = 6.4 Hz, 1H), 3.85 (s, 2H), 3.14 (d, *J* = 2.9 Hz, 2H). ¹³C NMR (126 MHz, CD₂Cl₂) δ 150.53, 131.80, 117.10, 111.55, 66.67, 48.98. MALDI-TOF MS (mass *m*/*z*): 241.12. Calcd for C₁₀H₁₂BrNO: C 49.61, H 5.00, N 5.79; Found: C 49.59, H 5.02, N 5.80.

Synthesis of **MPh-I**: The synthetic procedure for MPh-I is similar to that of MPh-F described above. White solid were obtained in 67% yield. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.57 (d, *J* = 8.9 Hz, 1H), 6.75 (d, *J* = 8.7 Hz, 1H), 3.94 – 3.73 (m, 2H), 3.23 – 3.06 (m, 2H). ¹³C NMR (126 MHz, CD₂Cl₂) δ 151.05, 150.40, 137.75, 117.54, 81.14, 66.63, 48.75. MALDI-TOF MS (mass *m/z*): 289.24. Calcd for C₁₀H₁₂INO: C 41.54, H 4.18, N 4.84; Found: C 41.57, H 4.20, N 4.82.

2. Supplementary Figures and Tables

Figure S2. The ${}^{13}C$ NMR spectrum of MPh in CD_2Cl_2 .

Figure S3. The ¹H NMR spectrum of MPh-F in CD_2Cl_2 .

Figure S4. The ${}^{13}C$ NMR spectrum of MPh-F in CD₂Cl₂.

Figure S5. The ¹H NMR spectrum of MPh-Cl in CD₂Cl₂.

Figure S6. The ¹³C NMR spectrum of MPh-Cl in CD₂Cl₂.

Figure S7. The ¹H NMR spectrum of MPh-Br in CD₂Cl₂.

Figure S8. The 13 C NMR spectrum of MPh-Br in CD₂Cl₂.

Figure S10. The ${}^{13}C$ NMR spectrum of MPh-I in CD_2Cl_2 .

Figure S11. UV/vis absorption of MPh, MPh-F, MPh-Cl, MPh-Br and MPh-I in tetrahydrofuran solution (10^{-5} M) .

Figure S12. Fluorescence spectra of (a) MPh, (b) MPh-F, (c) MPh-Cl, (d) MPh-Br and (e) MPh-I in various solvents (10⁻⁵ M).

Figure S13. The normalized phosphorescence spectra (delayed 10 ms) of MPh, MPh-F, MPh-Cl, MPh-Br and MPh-I in THF solution (10^{-5} M) at 77K.

Figure S14. The normalized photoluminescence spectra of MPh, MPh-Cl, MPh-Br and MPh-I in THF solution (10⁻⁵ M) at 77K.

Figure S15. The normalized photoluminescence spectra of MPh, MPh-Cl, MPh-Br and MPh-I in crystals at 77K.

Figure S16. XRD patterns in different states for MPh, MPh-Cl, MPh-Br and MPh-I.

Figure S17. Phosphorescence lifetime of (a) MPh, (b) MPh-Cl, (c) MPh-Br and (d) MPh-I before and after being ground at room temperature.

Figure S18. Intermolecular interactions in crystal and related dimers of MPh.

Figure S19. Intermolecular interactions in crystal and related dimers of MPh-F.

Figure S20. Intermolecular interactions in crystal and related dimers of MPh-Cl.

Figure S21. Intermolecular interactions in crystal and related dimers of MPh-Br.

Figure S22. Intermolecular interactions in crystal and related dimers of MPh-I.

Figure S23. Calculated excitation energies, spin-orbit couplings (ξ) for MPh and MPh-Cl as coupled units.

Figure S24. Calculated excitation energies, spin-orbit couplings (ξ) for MPh-F as isolated states and coupled units.

Figure S25. Different electrostatic potential analysis of MPh, MPh-F, MPh-Cl, MPh-Br and MPh-I. The potential energy range is -0.03 to 0.03 H. q^{-1} for all surfaces shown.

Figure S26. High-performance liquid chromatogram spectra. HPLC of MPh, MPh-F, MPh-Cl, MPh-Br and MPh-I in acetonitrile solution (50 μ M).

Table S1. Emission lifetimes of MPh,	MPh-F, MPh-Cl, MPh-Br	and MPh-I in crystals
under ambient conditions.		

Com		Fluorescence					Phosphorescence				
d d	λ _{em} / nm	$\tau_1/$ ns	$A_1 / \%$	$\tau_2/$ ns	$A_2 / \%$	τ_l/ms	$A_1 / \%$	τ_2/ms	$A_2 / \%$	τ_3/ms	A ₃ / %
MPh	345	1.96	98.94	3.54	1.06	-	-	-	-	-	-
1411 11	504	-	-	-	-	49.52	3.18	302.70	56.31	575.80	40.52
MPh -F	355	2.02	80.52	4.65	19.48	-	-	-	-	-	-
MPh	367	0.63	51.61	2.92	48.39	-	-	-	-	-	-
-Cl	495	-	-	-	-	24.52	1.65	144.30	31.78	228.40	66.57
MPh	360	2.54	79.62	5.37	20.38	-	-	-	-	-	-
-Br	505	-	-	-	-	4.29	13.00	11.11	87.00	-	-
MPh	362	0.96	19.05	3.82	80.95	-	-	-	-	-	-
-I	529	-	-	-	-	0.54	25.61	2.75	74.39	-	-

MPh	Number	d / Å
С-Нπ	2	2.790
	2	2.807
	2	2.883
С-НО	2	2.456

Table S2. The intermolecular interactions in MPh crystal.

 Table S3. The intermolecular interactions in MPh-F crystal.

MPh-F	Number	d / Å
С-Нл	2	2.879
С-НО	2	2.437
	2	2.659
C-HF	2	2.554

MPh-Cl	Number	d / Å
С-Нπ	2	2.866
	2	2.871
	2	2.897
C-C1O	2	3.124

 Table S4. The intermolecular interactions in MPh-Cl crystal.

 Table S5. The intermolecular interactions in MPh-Br crystal.

MPh-Br	Number	d / Å
С-Нπ	1	2.831
	2	2.834
C-BrO	2	3.052

 Table S6. The intermolecular interactions in MPh-I crystal.

MPh-I	Number	d / Å			
С-Нπ	1	2.805			
	1	2.834			
C-I0	2	2.990			

Name	MPh	MPh-F	MPh-Cl	MPh-Br	MPh-I
Formula	C ₁₀ H ₁₃ NO	C ₁₀ H ₁₂ FNO	C ₁₀ H ₁₂ ClNO	C ₁₀ H ₁₂ BrNO	C ₁₀ H ₁₂ INO
Wavelength(Å)	0.71073	0.71073	0.71073	0.71073	0.71073
Space Group	C 1 c 1	P 1 21/c 1	P 1 c 1	P 1 c 1	P -1
Cell Lengths(Å)	10.4456(6)	8.8800(7)	9.885(3)	9.9421(7)	5.0417(7)
	11.3777(6)	10.1316(7)	10.023(4)	10.1035(8)	8.8995(11)
	8.1400(4)	10.6588(9)	10.661(4)	10.6866(8)	11.5534(14)
Cell Angles(°)	90	90.00	90.00	90	77.659(5)
	114.871(2)	112.843(2)	110.207(10)	109.715(3)	83.631(5)
	90	90	90	90	89.288(5)
Cell	877.69(8)	883.75(12)	991.3(6)	1010.54(13)	503.25(11)
Volume(Å ³)					
Z	4	4	4	4	2
Density(g/cm ³)	1.235	1.362	1.324	1.591	1.908
F(000)	352	384	416	488	280
h _{max} ,k _{max} ,I _{max}	13,14,10	11,12,13	12,12,13	12,13,13	7,13,18
T_{min}, T_{max}	0.990,	0.988,	0.960,	0.509,	0.584,
	0.992	0.990	0.966	0.746	0.747
CCDC number	2214385	2224489	2224503	2224534	2224504

Table S7. Crystallographic data for MPh, MPh-F, MPh-Cl, MPh-Br and MPh-I.

ci ystais ui	crystals under amotent conditions.								
Compou	$<\tau>_F$	$\Phi_{\rm F}$	$k_r^{\ F}$	$k_{nr}^{\ \ F}$	$<\tau>_P$	Φ_{P}	k_r^{P}	k_{nr}^{P}	k _{ISC}
compou	[ns]	[%]	[×10 ⁷	[×10 ⁸	[ms]	[%]	[×10 ⁻¹	[s ⁻¹]	[×10 ⁸
na			s ⁻¹]	s ⁻¹]			s ⁻¹]		s ⁻¹]
MPh	1.99	11.57	5.79	4.40	458.91	0.6	0.14	2.45	4.43
MPh-F	2.54	11.21	4.41	3.49	-	-	-	-	-
MPh-Cl	2.49	11.95	4.79	3.26	208.53	6.8	3.67	5.03	3.53
MPh-Br	3.12	6.88	2.20	2.84	10.73	4.2	42.03	95.87	2.98
MPh-I	3.28	5.28	1.61	2.81	2.60	2.3	93.39	396.71	2.88

Table S8. Photophysical parameters of MPh, MPh-F, MPh-Cl, MPh-Br and MPh-I in crystals under ambient conditions.⁵⁻⁶

 $\begin{aligned} k_r^{P} &= \Phi_P \ / \ < \!\!\tau \!\!>_P \!\!\Phi_{ISC}, \ k_{nr}^{P} = (1 - \Phi_P) \ / \ < \!\!\tau \!\!>_P \!\!\Phi_{ISC}, \ k_r^{F} = \Phi_F \ / \ < \!\!\tau \!\!>_F, \ k_{nr}^{F} = (1 - \Phi_F - \Phi_P) \ / \ < \!\!\tau \!\!>_F, \\ k_{ISC} &= \Phi_{ISC} \ / \ < \!\!\tau \!\!>_F, \ \Phi_{ISC} \!= \!\!1 - \Phi_F \end{aligned}$

MPh	Monomer	Dimer
S ₀ /T ₁	1.159	1.150
S_1/T_1	1.739	1.770
S_{1}/T_{2}	0.868	0.131
S ₁ /T ₃	0.987	0.836
S_1/T_4	0.387	0.290
S_{1}/T_{5}	1.354	0.966
S_1/T_6	0.672	0.007
S_{1}/T_{7}	0.752	0.334
S_{1}/T_{8}	0.480	0.032
S_{1}/T_{9}	1.208	0.049
S ₁ /T ₁₀	0.024	0.060

Table S9. Spin-orbit coupling (SOC) values of MPh for the monomer and dimer.

MPh-Cl	Monomer	Dimer
S ₀ /T ₁	2.637	2.679
S_1/T_1	2.580	2.584
S_{1}/T_{2}	1.129	0.753
S ₁ /T ₃	2.986	1.149
S_1/T_4	0.381	0.164
S_{1}/T_{5}	0.855	2.979
S_1/T_6	1.064	0.031
S_{1}/T_{7}	0.500	0.388
S_{1}/T_{8}	0.459	0.252
S_{1}/T_{9}	0.024	0.001
S ₁ /T ₁₀	0.006	0.045

 Table S10. Spin-orbit coupling (SOC) values of MPh-Cl for the monomer and dimer.

MPh-F	Monomer	Dimer
S ₀ /T ₁	1.512	0.000
S_1/T_1	0.537	0.000
S_{1}/T_{2}	2.015	1.640
S ₁ /T ₃	0.847	0.001
S_1/T_4	1.044	0.997
S ₁ /T ₅	0.449	0.254
S_1/T_6	0.916	0.000
S_{1}/T_{7}	0.768	0.000
S ₁ /T ₈	0.278	0.001
S_{1}/T_{9}	0.881	0.016
S ₁ /T ₁₀	0.042	0.000

Table S11. Spin-orbit coupling (SOC) values of MPh-F for the monomer and dimer.

3. References

- R. Gaussian, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennuci, G. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. Hratchian, A. Izmaylov, J. Bloino, G. Zheng, J. Sonnenberg, M. Hada and D. Fox, *Gaussian, Inc., Wallingford CT*, 2004.
- 2. W. Liu, F. Wang and L. Li, J. Theor. Comput. Chem., 2003, 2, 257-272.
- 3. Z. Li, Y. Xiao and W. Liu, J. Chem. Phys., 2012, 137, 154114.
- 4. Li, B. Suo, Y. Zhang, Y. Xiao and W. Liu, Mol. Phys., 2013, 111, 3741-3755.
- 5. S. Hirata, Applied Physics Reviews, 2022, 9, 011304.

 W. Zhao, T. S. Cheung, N. Jiang, W. Huang, J. W. Y. Lam, X. Zhang, Z. He and B. Z. Tang, *Nat. Commun.*, 2019, **10**, 1595.