Identifying different electronic transport mechanisms in nanoporous inorganic electrides – A combined study using Hall measurements and electron paramagnetic resonance spectroscopy

Julius K. Dinter^{1‡}, Jurek Lange^{1,2‡}, Detlev M. Hofmann^{1,2}, J. Fabián Plaza Fernández³, Angel Post³, Sangam Chatterjee^{1,2}, Matthias T. Elm^{1,2,4*}, and Peter J. Klar^{1,2#}

¹Center for Materials Research, Justus-Liebig University, Heinrich-Buff-Ring 16, D-35392 Gießen

²Institute of Experimental Physics I, Justus-Liebig University, Heinrich-Buff-Ring 16, D-35392 Gießen

³Advanced Thermal Devices, Calle Villaconejos, 4, E-28925 – Alcorcón,

⁴Institute of Physical Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, D-35392 Gießen

Figure S1. Arrhenius representation of the temperature-dependence of the conductivity, the effective carrier concentration and the Hall-mobility of the samples investigated. The contribution of the different transport mechanisms to the electrical parameters is exemplary shown in c).

Figure S2. a) Determined activation energy plotted versus $n_{eff}^{1/3}$. b) Mobility pre-factor $\mu_{hop,0}$ of the hopping contribution and the mobilities of the delocalized electrons in the bulk μ_{del} and at the surface μ_{surf} . c) Fraction γ of the thermally excited electrons in the CCB, which contribute to the hopping transport. d) Density of F⁺-centers in the bulk $n_{F,0}$ and at the surface $n_{surf,0}$ plotted versus the effective carrier concentration. $n_{max} = 2.2 \cdot 10^{21} \text{ cm}^{-3}$ corresponds to the theoretical maximum number of anionic electrons.