Chemical Vapor Deposition Growth and Photodetector Performance of Lead-Free All-Inorganic Crystalline Cs₃Sb₂X₉ (X=I, Br) Perovskite Thin Films

Sujit Kumer Shil^{1,2}*, Fei Wang^{3,4,5}, Kingsley O. Egbo¹, Ying Wang¹, Cheuk Kai Gary Kwok¹, Sai-W. Tsang³, Johnny C. Ho^{3,5,6}, and Kin Man Yu^{1,3}*

¹Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR ²Department of Physics, Khulna University of Engineering & Technology (KUET), Khulna-9203, Bangladesh

³Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR

⁴State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130021, China

⁵ State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong SAR

⁶ Key Laboratory of Advanced Materials Processing & Mold (Zhengzhou University), Ministry of Education, Zhengzhou 450002, China

*Email: <u>sujit@phy.kuet.ac.bd</u>, <u>kinmanyu@cityu.edu.hk</u>

Figure S1. Schematic diagrams showing the two-step CVD process synthesis of $Cs_3Sb_2X_9$ perovskite thin films.

Figure S2. (a) Unit cells and (b) 2D layered structures of $Cs_3Sb_2I_9$ and $Cs_3Sb_2Br_9$ perovskite thin films.

Figure S3. XRD spectra of as grown and annealed Cs₃Sb₂I₉ thin films.

Figure S4. XRD spectra of as grown and annealed Cs₃Sb₂I₉ thin films.

Figure S5. 3D view AFM images of (a) $Cs_3Sb_2I_9$ and (b) $Cs_3Sb_2Br_9$ perovskite thin films along with their corresponding height scale.

Figure S6. XRF spectra from (a) $Cs_3Sb_2I_9$ and (b) $Cs_3Sb_2Br_9$ perovskite thin films showing the atomic ratio of different elements.

The $\varepsilon_2(E)$ of an individual oscillator is expressed by¹

$$\varepsilon_{2=} \begin{cases} \frac{AE_0C(E-E_f)^2}{\left(E^2 - E_0^2\right)^2 + C^2E^2\right)^E} & ; \quad (E > E_g) \\ 0 & ; \quad (E \le E_g) \end{cases}$$
(1)

Where A is the oscillator strength, C is a broadening parameter, E_0 is the resonance energy, and E_g is the Tauc gap (the onset of absorption). ε_1 is obtained from ε_2 by the Kramers-Krönig relations. The Tauc-Lorentz model is determined by five parameters [$\varepsilon_1(\infty)$, A, C, E_g and E_0], where $\varepsilon_1(\infty)$ is a constant which adds a high-energy contribution to ε_1 .

Figure S7. Ellipsometric experimental and simulated spectra (a) Psi, and (b) Delta of $Cs_3Sb_2I_9$ perovskite thin film at 65° angle of incidence.

Figure S8. Ellipsometric experimental and simulated spectra (a) Psi, and (b) Delta of $Cs_3Sb_2Br_9$ perovskite thin film at 65° angle of incidence.

Figure S9. Schematic representation of the surface photovoltage (SPV) in a p-type semiconductor. Trapping of holes at the surface gives rise to a downward band bending. Upon illumination, the photogenerated electrons neutralize the trapped holes on the surface, thus reducing the band bending which appears as the increase in the work function. CBM- Conduction band minimum, VBM- Valence band maximum, WF- Work function.

Figure S10. (a) A schematic diagram and (b) optical image of the Cs₃Sb₂X₉ perovskite film photodetector.

Figure S11. Photoresponse curves with different illumination power density for (a) $Cs_3Sb_2I_9$ and (b) $Cs_3Sb_2Br_9$ film photodetectors.

Figure S12. Photoresponse curves with different bias voltage for (a) $Cs_3Sb_2I_9$ and (b) $Cs_3Sb_2Br_9$ film photodetectors.

Figure S13. Wavelength dependent photoresponse of (a) $Cs_3Sb_2I_9$ and (b) $Cs_3Sb_2Br_9$ thin film photodetectors.

Figure S14: XRD spectra of (a) $Cs_3Sb_2I_9$ and (b) $Cs_3Sb_2Br_9$ films in fresh and after 45 days stored in ambient condition.

Figure S15: Reproducible on/off response of $Cs_3Sb_2I_9$ film photodetector at 1 V bias with illumination power density 54 mW/cm² after 45 days stored in ambient condition.

Figure S16: Reproducible on/off response of $Cs_3Sb_2Br_9$ film photodetector at 1 V bias with illumination power density 70 mW/cm² after 45 days stored in ambient condition.

Table S1: Comparison of the stoichiometry of Cs₃Sb₂I₉ films with different molar ratios

Molar ratio	Observed atomic	Observed atomic ratio	Expected atomic
(CsI:SbI ₃)	percentage	(Cs:Sb:I)	ratio (Cs:Sb:I)
1:1	Cs= 26.9		

	Sb= 17.7 I= 55.4	4.47:2.87:9	
1:1.5	Cs=24.6		
	Sb=16.6	3.77:2.54:9	
	I= 58.8		3:2:9
1:2	Cs=23.6		
		2 52.2 12.0	
	Sb=16.2	5.52.2.42.9	
	I= 60.3		
1:3	Cs=21.3		
	Sb=14.6	3:2.05:9	
	I= 64.1		

REFERENCE

1 G. E. Jellison and F. A. Modine, *Appl. Phys. Lett.*, 1996, **69**, 371–373.