Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

BaTiO₃/MXene/PVDF-TrFE composite film via electrospinning method for flexible piezoelectric pressure sensor

Xingmin Liu^{a,1,*}, Jinling Tong^{a,1}, Jijie Wang^{a,*}, Shaowei Lu^{a,*}, Dongxu Yang^a, Hongmei Li^a, Chunzhong Liu^a, Yutong Song^a

^aCollege of Material Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China

¹These authors contributed equally to this work and should be considered co-first authors.

*Corresponding authors. E-mail: xmliusy@163.com (Xingmin Liu)

E-mail: 2495188358@qq.com (Jijie Wang)

E-mail: Lushaowei_2005@163.com (Shaowei Lu)

Fig. S1 (a) The schematic structural diagram and (b) the optical diagram of the pressure sensor.

Fig. S2 The piezoelectric testing system was self-made in the laboratory.

Fig. S3 Digital photos of (a) the MXene solution, (b) the BaTiO₃/MXene flocculent precipitate, (c) the BaTiO₃/MXene /PVDF-TrFE suspension and d the BaTiO₃/MXene /PVDF-TrFE suspension and after standing for 24h.

Table S1 The DSC data and crystallinity X_c and relative content of β phases $F(\beta)$ of the composite films.

				•		
	Sample	$\Delta_{H_{f}(J/g)}$	X _c (%)	F (β) (%)		
_	MX-0	16.40	39.49	75.12		
	MX-0.05	17.65	42.10	75.19		
	MX-0.1	18.68	44.82	79.57		
	MX-0.15	21.03	50.31	81.04		
	MX-0.2	13.94	33.15	66.13		
	MX-0.25	13.22	31.34	61.44		

Fig. S4 Optical images of the composite film subjected to (a) stretching, (b) twisting and (c) bending.

Materials	Processing	Output	Range (KPa)	Response	Reference
	technology	voltage(V)		time (ms)	
	electrospinning	12.6	-	41	1
BaTiO₃@C/PVDF	SLS	5.7	-	-	2
BaTiO₃@rGO/PVDF	NFEDW	-	0.489-1.926	130	3
PVDF	spin coating	0.6	1-25 N	507	4
BaTiO₃/PDMS	spin coating	2.5	1-25 N	193	4
BaTiO₃@PDA/PVDF	spin coating	9.3	12-250 N	61	5
SWCNTS/PVDF	NFEDW	-	1.3-3.1	66	6
BaTiO₃/ZnO/PVDF	electrospinning	12	0.25-1.6	-	7
MXene/PVDF-TrFE	spin coating	-	0.072-3.083	16	8
BaTiO ₃ /PVDF-TrFE	electrospinning	50	0.01-0.2 N	-	9
BaTiO ₃ /PVDF-TrFE	Solvent casting	50.1	10-100 N	-	10
BaTiO ₃ /MXene/PVDF-TrFE	electrospinning	7.6	0.2-400	56	This work

Fig. S5 Changes in voltage value of BaTiO₃/MXene-0.15/PVDF-TrFE pressure sensor before and after immersion in 0.25wt% NaCl solution.

References

- [1] K. Shi, B. Chai, H. Zou, P. Shen, B. Sun, P. Jiang, Z. Shi, and X. Huang, *Nano Energy*, 2021, **80**, 105515.
- [2] F. Qi, Z. Zeng, J. Yao, W. Cai, Z. Zhao, S. Peng, and C. Shuai, Materials Science and Engineering: C, 2021, 126, 112129.
- [3] J. Luo, L. Zhang, T. Wu, H. Song, C. Tang, F. Huang, and C. Zuo, Organic Electronics, 2021, 98, 106296.
- [4] D. Park, K. Kim, Korean Journal of Metals and Materials, 2021, 59, 412-421.
- [5] Y. Yang, H. Pan, G. Xie, Y. Jiang, C. Chen, Y. Su, Y. Wang, and H. Tai, Sensors and Actuators A: Physical, 2019, 111789.
- [6] J. Luo, L. Zhang, T. Wu, H. Song, and C. Tang, Extreme Mechanics Letters, 2021, 48, 101279.
- [7] A. Hussein, R. Sabry, Polymer Testing, 2019, 79, 0142-9418.
- [8] L. Li, X. Fu, S. Chen, S. Uzun, A. Levitt, C. Shuck, and Y. Gogotsi, ACS Applied Materials & Interfaces, 2020, 13, 15362-15369.
- [9] J. Jiang, S. Tu, R. Fu, J. Li, F. Hu, B. Yan, Y. Gu, and S. Chen, ACS Applied Materials & Interfaces, 2020, 12, 33989-33998.
- [10] Y. Cho, J. Jeong, M. Choi, G. Baek, S. Park, H. Choi, and J. J. Park, Chemical Engineering Journal, 2022, 427, 1385-8947.