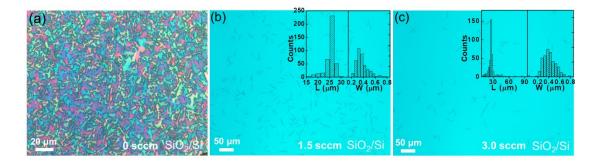
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

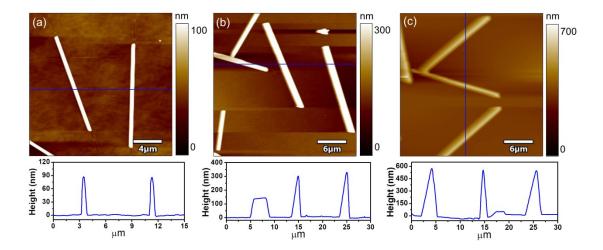
Supplementary Information

Synthesis, metal-insulator transition and photoresponse characteristics of VO₂ nanobeams via an oxygen inhibitor-assisted vapor transport method

Xitao Guo^{1,†}, Yupei Hu¹, Xin Liu¹, Zainab Zafar², Weiping Zhou³, Xingyu Liu⁴, Lin Feng¹, Jijun Zou¹, Haiyan Nan^{4,†}


¹Jiangxi Engineering Province Engineering Research Center of New Energy Technology and Equipment, East China University of Technology, Nanchang 330013, China.

²Experimental Physics Division, National Centre for Physics, Islamabad 44000, Pakistan.


³School of Physics and Materials Science, Nanchang University, Nanchang 330031, China.

⁴Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China.

*e-mail: xtguo@ecut.edu.cn (X. Guo) and jnanhaiyan@jiangnan.edu.cn (H. Nan)

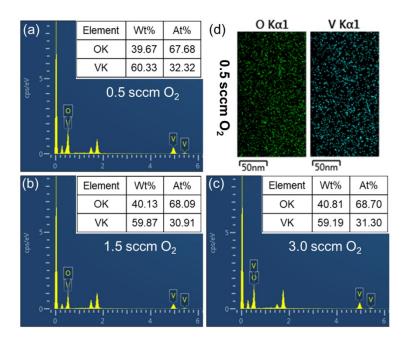
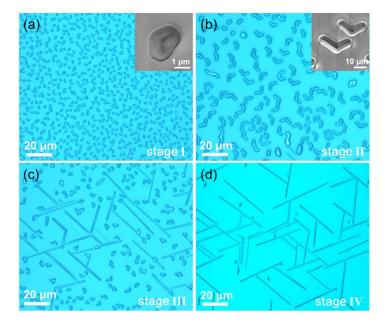


Figure S1. (a-c) The representative OM images of the as-grown VO₂ film and NBs structures observed over the entire substrate for the indicated growth conditions. Insets: the corresponding histograms of the length and width of the VO₂ NBs.


Figure S2. AFM images and the corresponding height profiles of VO_2 NBs on (a, b) SiO_2/Si substrates, and (c) c-cut sapphire substrates. It can see that the thickness of VO_2 NBs on SiO_2/Si substrate is from tens to hundreds of nanometers (roughly 80-350 nm), whereas the VO_2 NBs on sapphire substrate have relatively uniform shapes with thickness up to ~550 nm.

EDS has been used to analyze the elemental composition and distribution of the resulting VO₂ NBs in order to examine the impact of various oxygen levels on VO₂ stoichiometry. Figure S3(a-c) displays all the EDS spectral lines of NBs samples. The insets of Figure S3(a-c) show the relative weight ratio and atomic ratio of O/V in various NBs samples, respectively. As-grown VO₂ NBs have approximately the same stoichiometry due to a slight variation in the O/V atomic ratio, which was calculated to be 2.10, 2.13, and 2.19 under the proposed growth conditions. The most plausible explanation is that all NBs samples experienced prolonged high temperature annealing in step II (900 °C for 300 min, followed by a natural cooling to room temperature only in an argon gas environment). The uniform distribution of O and V elements in VO₂ NBs is demonstrated in Figure S3(d), which depicts a typical elemental mapping of VO₂ NBs at 0.5 sccm O₂.

Figure S3. (a-c) EDS spectral lines of the VO₂ NBs grown at different oxygen levels. The insets showing the corresponding elemental composition of different NBs. (d) A typical elemental mapping of VO₂ NBs at 0.5 sccm O₂.

We have also performed the growths of VO₂ NB on c-cut sapphire substrate at different stages, and the corresponding morphologies have been achieved using OM and SEM, as shown in Figure S4(a-d). The crystal morphology evolves from small particle/nuclei to 'V' shaped nanobeam with specific orientation as the increase of the growth temperature.

Figure S4. (a-d) Representative OM images of the growth products on c-cut sapphire substrate from the initial stage I to the final stage IV. The insets show the SEM magnified views corresponding to the OM images (a, b), respectively.

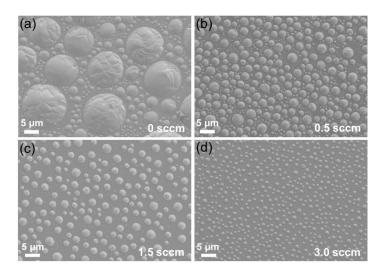
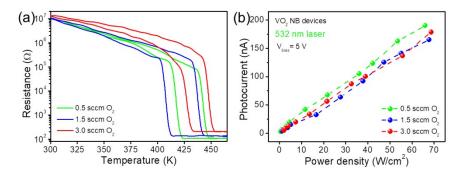
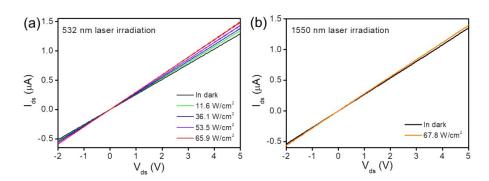




Figure S5. (a-d) SEM images of the V_2O_5 droplets formed on SiO_2 surface for the different O_2 flows at stage I: 0, 0.5, 1.5 and 3.0 sccm, respectively. With the increase of oxygen content, the droplet size decreases significantly from ~10 to ~0.8 μ m.

The MIT and photoresponse measurements of VO₂ NBs grown at 1.5 and 3.0 sccm O₂ have also been conducted. Figure S6(a) shows the plots of temperature-dependent resistances of VO₂ NBs grown at different oxygen levels. Although there are some discrepancies in the precise MIT temperature and its hysteresis, all NBs samples display substantial resistance variations with amplitudes up to 5 orders. Based on the aforementioned study, it is possible that the former in our case is primarily driven by the size variances between individual NBs or the sensitivity of MIT to non-uniform substrate adhesion and strain in such end-clamped NBs. Figure S6(b) depicts the relationship between photocurrent and power density for these VO₂ NBs samples when exposed to a 532 nm laser, suggesting that there is no significance difference in the photoresponse characteristics of the devices based on various VO₂ NBs.

Figure S6. (a, b) Temperature dependent resistance curves and photocurrent versus light density plot of the VO₂ NBs grown at different oxygen levels.

Figure S7. The current-voltage characteristic curves of the device under different wavelengths (532 and 1550 nm) and light intensities.

stage I		stage II/III		stage III/II		stage IV	
145.0	B_{1g}	144.9	B_{1g}	144.0	B_{1g}		
194.1	A_g	195.6	A_g	191.5	A_g	191.2	A_{g}
		224.9	A_g	221.3	A_g	221.3	A_{g}
285.1	B_{3g}	284.9	B_{3g}	282.7	B_{3g}		
306.0	A_g	305.8	A_g	306.0	A_g	306.0	A_{g}
				337.9	\mathbf{B}_{g}	337.9	\mathbf{B}_{g}
				387.1	A_g	389.0	A_{g}
405.3	A_{g}	401.9	A_g				
		615.8	A_{g}	615.6	A_g	612.1	A_g
702.5	\mathbf{B}_{1g}	702.3	\mathbf{B}_{1g}				
993.9	B_{2g}	993.7	B_{2g}				

Table S1. Summary of the experimentally observed positions of the Raman-active modes of the growth products at different growth stages.

Photodetector	Laser (nm)	V _{bias} (V)	R_{λ} (mA/W)	Rise time (ms)	Fall time (ms)
VO ₂ /Si heterostructure ¹³	950	0	2×10 ⁻²	70	150
VO ₂ /GaAs heterostructure ¹⁴	980 1310	0	2.5 4.8	1.46 1.31	1.90 1.58
VO ₂ /Sb ₂ Se ₃ heterostructure ¹⁵	520	0	244	0.2	0.36
VO ₂ /ZnO bilayer ¹⁶	365	1	320	2.49×10^{3}	2.06×10^{3}
VO ₂ thin films/Au ¹⁷	808	1	502.1	138	156
	1550	10	3.03	1.8×10^{2}	4.7×10^{3}
	850	5	16	60	85
	1064	5	40.09	110	160
VO ₂ (M1) thin films ¹⁸⁻²³	1550	10	7.13×10^{-2}	2.23×10^{3}	3.67×10^{3}
	1064	10	1.54	1.17×10^{3}	1.08×10^{3}
	650 980	10	~353 ~78	1.57 1.67	1.64 4.12
VO ₂ (B) nanosheet film ²⁴	405	0.2	9.21×10^{3}	683	338
VO ₂ nanowire ²⁵	365	5	- (on/off ratio 719)	1.3	4.5
W-doped VO ₂ nanowire ²⁶	532	4	2.15×10^7	4.8	3.9
W-doped VO ₂ nanowire array ²⁷	980	3	21.4	228	206
VO ₂ (B) nanorods ²⁸	980	2	-	4.6×10^{3}	2.8×10^{3}
VO ₂ (M1) microwire ²⁹	360-400	4	7069×10^{3}	~126	1-
VO ₂ (M1) nanorods ³⁰	980	2	-	1.6×10^{3}	1.0×10^{3}
VO ₂ /V ₂ O ₅ core/shell NB heterostructure ³¹	990	3	2873.7×10 ³	50	230
$VO_2 NB^{32}$	800	0.05	$\sim 6 \times 10^{-3}$	_	-
VO ₂ (M1) NB (This work)	532 1550	5	18 3	2 41	7 53

Table S2. Comparison of the photoresponse characteristics of our VO_2 NBs photodetector with that of other VO_2 based photodetectors.