# **Supplementary Information**

## Molecularly engineered host materials for high performance inkjet-

### printed thermally activated delayed fluorescent organic light-emitting

### diodes

Honghui Wei<sup>1,2</sup>, Yuan-Qiu-Qiang Yi<sup>2,\*</sup>, Yanping Song<sup>1</sup>, Liming Xie<sup>2</sup>, Yang Liu<sup>2</sup>, Zhipeng Wei<sup>3</sup>, Qian Dai<sup>4</sup>, Xiuqing Meng<sup>1,\*</sup>, Wenming Su<sup>2</sup>, Zheng Cui<sup>2</sup>

<sup>1</sup> College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, Zhejiang, China

<sup>2</sup> Printable Electronics Research Center, Nano Devices and Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu, China

<sup>3</sup> State Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun, 130022, PR China

<sup>4</sup> Southwest Institute of Technical Physics, Chengdu, 610041, PR China.

Corresponding author: yqqyi2020@sinano.ac.cn, xqmeng@zjnu.cn

#### General synthetic procedures for AC1/AC3 compounds

Compound 1, 3, 4 were purchased from Puyang Huicheng Electronic Material Co., Ltd



AC1:

To a 100 mL round bottle was added with compound 1 (11.1 mmol, 2.47 g) and compound 2 (4.8 mmol, 1.50 g), followed by the addition of  $Pd_2(dba)_3(0.10 \text{ mmol}, 0.44 \text{ g})$ ,  $P(tBu)_3HBF_4$  (0.2 mmol, 0.28 g) and NaOtBu (14.4 mmol, 1.39 g). Then, anhydrous toluene was added into the mixture. The reaaction was conducted under N<sub>2</sub> atmosphere overnight at a temperature of 110 °C. After completion and cooling to the room temperature, the reaction mixture was added into ice water and extracted with DCM three times, and then washed with saturated aqueous NaCl. The organic residue was dried by anhydrous MgSO<sub>4</sub> and then was filtered. Then, the crude product was purified by chromatography (the eluent solvent (hexane:dichloromethane)) on silica gel as a light-yellow solid (3.96 g, 59.6% yield).

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.96 (s, 4H), 7.91 – 7.86 (m, 4H), 7.71 – 7.65 (m, 4H), 7.42 (d, *J* = 8.6 Hz, 4H), 7.27 (dd, *J* = 8.4, 1.6 Hz, 3H), 2.86 (q, *J* = 7.6 Hz, 8H), 1.37 (t, *J* = 7.6, 1.4 Hz, 12H).

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 139.44, 138.88, 137.62, 135.98, 128.36, 127.13, 126.11, 123.61, 119.00, 109.56, 28.96, 16.54.

Elemental Analysis: calc.: C, 88.55; H, 6.76; N, 4.69; experiment: C, 87.75; H, 6.88;

N, 5.37.

#### **AC2:**

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 8.17 (td, *J* = 3.5, 1.1 Hz, 4H), 7.89 (t, *J* = 8.6 Hz, 4H), 7.69 (dd, *J* = 8.3, 1.6 Hz, 4H), 7.58 – 7.40 (m, 8H), 7.31 (ddd, *J* = 8.1, 7.0, 1.1 Hz, 2H), 1.48 (s, 18 H).

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 143.01, 140.82, 139.37, 139.15, 138.70, 137.75, 137.12, 128.46, 128.38, 127.45, 127.04, 126.01, 123.67, 123.48, 120.36, 120.05, 116.30, 109.83, 109.26, 34.76, 32.03.

#### AC3:

To a 100 mL round bottle was added with compound 3 (6.0 mmol, 2.60g) and compound 4 (7.2 mmol, 2.1 g), followed by the addition of  $Pd_2(dba)_3$  (0.06 mmol, 0.06g),  $P(o-Tol)_3$  (0.12 mmol, 0.04 g),  $K_2CO_3$  (12.0 mmol, 1.65 g) and a small portion of TBAB. Then, anhydrous toluene and EtOH was added into the mixture. The reaaction was conducted under N<sub>2</sub> atmosphere overnight at a temperature of 110 °C. After completion and cooling to the room temperature, the reaction mixture was added into ice water and extracted with DCM three times, and then washed with saturated aqueous NaCl. The organic residue was dried by anhydrous MgSO<sub>4</sub> and then was filtered. Then, the crude product was purified by chromatography (the eluent solvent (hexane:dichloromethane)) on silica gel as a light-yellow solid (2.20 g, 62.0% yield).

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 8.22 (td, *J* = 3.5, 1.1 Hz, 4H), 7.94 (t, *J* = 8.6 Hz, 4H), 7.74 (dd, *J* = 8.3, 1.6 Hz, 4H), 7.63 – 7.45 (m, 8H), 7.36 (ddd, *J* = 8.1, 7.0, 1.1 Hz, 2H), 1.53 (s, 18H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 143.01, 140.82, 139.37, 139.15, 138.70, 137.75, 137.12, 128.46, 128.38, 127.45, 127.04, 126.01, 123.67, 123.48, 120.36, 120.05, 116.30, 109.83, 109.26, 34.76, 32.03.

Elemental Analysis: calc.: C, 88.55; H, 6.76; N, 4.69; experiment: C, 89.03; H, 6.53; N, 4.44.

Table S1. Summary of EML inkjet-printed OLEDs.

| Inkjet-printed<br>EML                             | Solvent                                       | EQE <sub>max</sub><br>(%) | CE <sub>max</sub><br>(cd A <sup>-1</sup> ) | References                                            |  |
|---------------------------------------------------|-----------------------------------------------|---------------------------|--------------------------------------------|-------------------------------------------------------|--|
| CBP + phosphorescent emitter                      | chlorobenzene                                 | 11.7                      | 40.0                                       | Thin Solid Films 520 (2012)<br>6954–6958              |  |
| TCTA/3CzPFP + phosphorescent emitter              | Chlorobenzene/<br>cyclohexanone               | 9.0                       | 29.0                                       | ACS Appl. Mater. Interfaces 2019, 11, 24, 21784–21794 |  |
| CDBP + phosphorescent emitter                     | butyl benzoate                                | 7.2                       | 23.8                                       | J. Mater. Chem. C, 2019,7,<br>4178-4184               |  |
| t-BuCz-m-NPBI+ phosphorescent emitter             | o-dichlorobenzene                             | -                         | 17.89                                      | J. Mater. Chem. C, 2020,8, 6906-<br>6913              |  |
| mCP/TPBi + phosphorescent emitter                 | butyl benzoate                                | 6.7                       | 23.0                                       | Sci Rep 2019, 9, 6845                                 |  |
| TAPC/TPBi + phosphorescent emitter                | butyl benzoate<br>/chlorobenzene              | 3.0                       | 9.8                                        | J. Phys. D: Appl. Phys. 2020, 53 (35).                |  |
| Self-hosted Phosphorescent dendrimer<br>emitter   | Cyclohexanone/<br>1-N-methyl<br>pyrrolidinone | -                         | 14.99                                      | ACS Appl. Mater. Interfaces 2019, 11, 29, 26174–26184 |  |
| Cu <sup>I</sup> -complex TADF self-hosted emitter | indane/mesitylene                             | 4.7±0.6                   | 15.2±1.4                                   | Chem.Eur.J.2016,22,16400–<br>16405                    |  |
| Cu <sup>I</sup> -complex TADF self-hosted emitter | decalin                                       | 13.9±1.9                  | 45                                         | Appl. Phys. A 2016, 122, 191                          |  |
| Self-hosted TADF dendrimer                        | toluene/tertralin                             | -                         | 18.0                                       | Organic Electronics 74 (2019)<br>218–227              |  |
| Self-hosted TADF Polymer                          | Anisole/<br>Propylene carbonate               | 1.58                      | 1.58                                       | Adv. Mater. Technol. 2022,<br>2200648                 |  |
| Small molecule (AC2) + organic TADF<br>emitter    | butyl benzoate                                | 11.0                      | 33.7                                       | This work                                             |  |



Figure S1. The structure and LUMO distribution of AC1, AC2, AC3.



**Figure S2**. The comparation between HOMO and HOMO-1 distribution of AC1, AC2, AC3.



**Figure S3.** The transient PL spectra of AC1/AC2/AC3: 8 wt% 4CzIPN films: prompt fluorescence component.

The fitting for decay curves is carried out based on a double-exponential function:

$$I = A_1 \cdot \exp[-(\tau_1 - t_0)/t] + A_2 \cdot \exp[-(\tau_2 - t_0)/t] + I_0$$

where  $\tau_1$  and  $\tau_2$  represent the decay time constants, and  $A_1$  and  $A_2$  represent the normalized amplitudes of each component. Therefore, the average lifetime of the decay is calculated by equation 1:

$$\tau_{ave} = \frac{A_1 * \tau_1^2 + A_2 * \tau_2^2}{A_1 * \tau_1 + A_2 * \tau_2}$$

| Host | $A_{I}$ | $\tau_1$ (ns) | $A_2$ | $\tau_2$ (ns) | $	au_{ave}$ (ns) | $R^{2\mathrm{a}}$ |
|------|---------|---------------|-------|---------------|------------------|-------------------|
| AC1  | 1.01    | 2.60          | 0.26  | 16.33         | 11.78            | 0.987             |
| AC2  | 0.63    | 5.11          | 0.39  | 23.16         | 18.73            | 0.995             |
| AC3  | 0.51    | 5.04          | 0.34  | 30.11         | 25.08            | 0.983             |

Table S2. Fitting parameters for the TRPL spectra.

(a) R: Residuals of the bi-exponential fittings.



**Figure S4.** The EL properties of AC1-based OLEDS with different (a)(b)(c)doping concentration and (d)(e)(f)thickness of EML.



**Figure S5.** The EL properties of AC2-based OLEDS with different (a)(b)(c)doping concentration, (d)(e)(f)thickness and (g)(h)(i)annealing temperature of EML.



Figure S6. The EL properties of AC3-based OLEDS with different (a)(b)(c)doping

concentration, (d)(e)(f)thickness and (g)(h)(i)annealing temperature of EML.

| Device                                                                      | EÇ    | ĮЕ              | Р       | Έ      | C        | Έ      | $L_{\rm max}$                      | $V_{_{\mathrm{T}}}$ | $V_{\rm D}({ m V})$                          |         | CIE                |                              |
|-----------------------------------------------------------------------------|-------|-----------------|---------|--------|----------|--------|------------------------------------|---------------------|----------------------------------------------|---------|--------------------|------------------------------|
| (X )                                                                        | (%    | o) <sup>a</sup> | (lm V   | W-1) a | (cd .    | A-1) a | (cd m <sup>-2</sup> ) <sup>b</sup> | (V) <sup>c</sup>    | $@10^2$ , $10^3$ , $10^4$ cd m <sup>-2</sup> |         | cd m <sup>-2</sup> | $(\mathbf{x}, \mathbf{y})^d$ |
| X wt% 4CzIPN:AC1 (chlorobenzene,10 mg mL <sup>-1</sup> );annealing in 60°C。 |       |                 |         |        |          |        |                                    |                     |                                              |         |                    |                              |
| 4%                                                                          | 12.59 | 9.6             | 24.6    | 16     | 37.7     | 29     | 3859                               | 3.6                 | 4.9                                          | 5.6     | -                  | (0.29,0.54)                  |
| 6%                                                                          | 12.23 | 10.0            | 26.9    | 20     | 37.5     | 31     | 5882                               | 3.3                 | 4.2                                          | 5.0     | -                  | (0.30,0.55)                  |
| 8%                                                                          | 13.10 | 11.4            | 31.6    | 22     | 40.5     | 34     | 7624                               | 3.0                 | 4.1                                          | 5.0     | -                  | (0.31,0.55)                  |
| 10%                                                                         | 11.86 | 10.8            | 26.9    | 21     | 36.9     | 33     | 9532                               | 3.1                 | 4.1                                          | 5.0     | -                  | (0.32,0.55)                  |
| 12%                                                                         | 11.34 | 10.1            | 24.0    | 19     | 35.6     | 32     | 9770                               | 3.4                 | 4.6                                          | 5.3     | -                  | (0.32,0.55)                  |
|                                                                             |       | 8 wt            | % 4CzIF | PN:AC1 | (chlorob | enzene | • X mg mL                          | <sup>-1</sup> );an  | nealing                                      | in 60°C | 0                  |                              |
| 8                                                                           | 14.1  | 12.8            | 40.1    | 29.1   | 45.3     | 41.2   | 8472                               | 2.9                 | 3.8                                          | 4.4     | -                  | (0.31,0.57)                  |
| 10                                                                          | 14.56 | 13.0            | 40.0    | 29     | 46.9     | 41     | 8329                               | 3.0                 | 3.8                                          | 4.6     | -                  | (0.31,0.57)                  |
| 12                                                                          | 14.88 | 13.0            | 39.4    | 27     | 47.6     | 41     | 9868                               | 3.1                 | 4.1                                          | 4.9     | -                  | (0.32,0.56)                  |
| 14                                                                          | 14.09 | 12.0            | 31.0    | 20     | 44.1     | 28     | 12340                              | 3.4                 | 4.9                                          | 5.9     | 8.4                | (0.32,0.55)                  |

**Table S3.** EL characteristic parameters of spin-coated AC1-based OLEDs with different doping concentration and thickness of EML.

(a) Data at maximum and 1000 cd m<sup>-2</sup> from left to right. (b) Maximum luminance. (c) voltage in 1 cd m<sup>-2</sup>. (d) CIE:
 Commission Internationale de I'Eclairage at 1,000 cd m<sup>-2</sup>.

| Device                                                                           | EC   | <b>Q</b> E      | P       | E      | C          | E                   | $L_{\rm max}$                      | $V_{_{\mathrm{T}}}$ | $V_{\rm D}({ m V})$ |                                   |                    | CIE         |
|----------------------------------------------------------------------------------|------|-----------------|---------|--------|------------|---------------------|------------------------------------|---------------------|---------------------|-----------------------------------|--------------------|-------------|
| (X )                                                                             | (%   | o) <sup>a</sup> | (lm V   | V-1) a | (cd A      | A <sup>-1</sup> ) a | (cd m <sup>-2</sup> ) <sup>b</sup> | (V) <sup>c</sup>    | @10²,               | 10 <sup>3</sup> , 10 <sup>4</sup> | cd m <sup>-2</sup> | $(x, y)^d$  |
| X wt% 4CzIPN:AC2 (chlorobenzene , 10 mg mL <sup>-1</sup> ) ; annealing in 60°C • |      |                 |         |        |            |                     |                                    |                     |                     |                                   |                    |             |
| 4%                                                                               | 12.1 | 9.0             | 20.7    | 13     | 35.6       | 27                  | 5410                               | 4.1                 | 5.4                 | 6.1                               | -                  | (0.26,0.53) |
| 6%                                                                               | 13.0 | 11.5            | 24.0    | 19     | 39.7       | 35                  | 9409                               | 3.9                 | 5.2                 | 5.9                               | -                  | (0.26,0.55) |
| 8%                                                                               | 13.4 | 12.0            | 26.7    | 20     | 41.5       | 37                  | 8550                               | 3.6                 | 5.0                 | 5.8                               | -                  | (0.28,0.55) |
| 10%                                                                              | 12.1 | 11.0            | 26.6    | 20     | 37.7       | 34                  | 8847                               | 3.3                 | 4.7                 | 5.6                               | -                  | (0.29,0.56) |
| 12%                                                                              | 11.5 | 10.5            | 30.3    | 20     | 36.6       | 33                  | 9673                               | 3.3                 | 4.3                 | 5.3                               | -                  | (0.29,0.56) |
| 8 wt% 4CzIPN:AC2 (chlorobenzene • X mg mL <sup>-1</sup> ) ; annealing in 60°C •  |      |                 |         |        |            |                     |                                    |                     |                     |                                   |                    |             |
| 6                                                                                | 12.1 | 10.5            | 27.7    | 20     | 37.2       | 32                  | 7792                               | 3.4                 | 4.4                 | 5.0                               | -                  | (0.28,0.55) |
| 8                                                                                | 12.9 | 12.0            | 25.2    | 21     | 39.5       | 36                  | 9780                               | 3.4                 | 4.7                 | 5.3                               | -                  | (0.28,0.55) |
| 10                                                                               | 14.2 | 12.5            | 29.1    | 21     | 43.8       | 38                  | 9936                               | 3.7                 | 5.0                 | 5.7                               | -                  | (0.28,0.55) |
| 12                                                                               | 13.4 | 12.0            | 24.0    | 19     | 40.9       | 36                  | 10460                              | 3.8                 | 5.2                 | 6.1                               | 8.9                | (0.28,0.55) |
| 14                                                                               | 13.0 | 11.5            | 20.5    | 16     | 39.2       | 35                  | 10510                              | 4.1                 | 5.6                 | 6.8                               | 9.2                | (0.27,0.54) |
|                                                                                  |      | 8 w             | t% 4CzI | PN:AC  | 2 (chlorol | benzene             | e,10 mg m                          | L-1);               | annealin            | g in X °                          | С                  |             |
| 60 °C                                                                            | 13.4 | 12.0            | 30.4    | 22     | 41.4       | 37                  | 12250                              | 3.3                 | 4.5                 | 5.3                               | 7.3                | (0.29,0.55) |
| 70 °C                                                                            | 16.2 | 14.0            | 35.0    | 26     | 50.8       | 45                  | 13150                              | 3.4                 | 4.7                 | 5.5                               | 7.3                | (0.29,0.56) |
| 80 °C                                                                            | 14.7 | 13.5            | 34.6    | 24     | 46.1       | 42                  | 14260                              | 3.3                 | 4.6                 | 5.5                               | 7.2                | (0.29,0.56) |
| 100 °C                                                                           | 15.3 | 13.0            | 33.8    | 24     | 47.0       | 40                  | 14960                              | 3.3                 | 4.6                 | 5.4                               | 7.1                | (0.29,0.55) |
| 120 °C                                                                           | 14.6 | 13.5            | 32.5    | 24     | 44.8       | 41                  | 15020                              | 3.3                 | 4.4                 | 5.3                               | 6.9                | (0.29,0.55) |

**Table S4.** EL characteristic parameters of spin-coated AC2-based OLEDs with different doping concentration, thickness and annealing temperature of EML.

(a) Data at maximum and 1000 cd m<sup>-2</sup> from left to right. (b) Maximum luminance. (c) voltage in 1 cd m<sup>-2</sup>. (d) CIE:
 Commission Internationale de l'Eclairage at 1,000 cd m<sup>-2</sup>.

| Device                                                                           | EQ    | Е              | PI       | Ξ                              | С          | ΈE      | $L_{\rm max}$                      | V <sub>T</sub>   | $V_{\rm D}({ m V})$                           |          |                    | CIE         |
|----------------------------------------------------------------------------------|-------|----------------|----------|--------------------------------|------------|---------|------------------------------------|------------------|-----------------------------------------------|----------|--------------------|-------------|
| (X )                                                                             | (%    | ) <sup>a</sup> | (lm V    | V <sup>-1</sup> ) <sup>a</sup> | (cd /      | A-1) a  | (cd m <sup>-2</sup> ) <sup>b</sup> | (V) <sup>c</sup> | $@10^2, 10^3, 10^4 \text{ cd } \text{m}^{-2}$ |          | cd m <sup>-2</sup> | $(x, y)^d$  |
| X wt% 4CzIPN:AC3 (chlorobenzene , 10 mg mL <sup>-1</sup> ) ; annealing in 60°C • |       |                |          |                                |            |         |                                    |                  |                                               |          |                    |             |
| 4%                                                                               | 9.79  | 6.5            | 27.8     | 12                             | 29.4       | 19      | 3721                               | 3.0              | 3.7                                           | 5.0      | -                  | (0.29,0.54) |
| 6%                                                                               | 10.7  | 7.5            | 31.0     | 14                             | 33.4       | 23.3    | 5265                               | 3.0              | 3.9                                           | 5.0      | -                  | (0.30,0.55) |
| 8%                                                                               | 10.36 | 7.5            | 25.8     | 13                             | 32.2       | 23      | 6313                               | 3.3              | 4.4                                           | 5.4      | -                  | (0.31,0.55) |
| 10%                                                                              | 10.07 | 8.0            | 25.4     | 15                             | 31.5       | 24      | 7274                               | 3.3              | 4.1                                           | 5.1      | -                  | (0.32,0.55) |
| 12%                                                                              | 9.17  | 7.0            | 24.9     | 14                             | 28.9       | 21      | 7092                               | 3.2              | 3.9                                           | 4.9      | -                  | (0.33,0.56) |
| 8 wt% 4CzIPN:AC3 (chlorobenzene , X mg mL-1) ; annealing in 60°C $\circ$         |       |                |          |                                |            |         |                                    |                  |                                               |          |                    |             |
| 6                                                                                | 8.70  | 5.5            | 26.1     | 12                             | 27.4       | 17      | 4847                               | 2.9              | 3.6                                           | 4.4      | -                  | (0.30,0.56) |
| 8                                                                                | 9.84  | 6.5            | 28.7     | 14                             | 31.0       | 21      | 5877                               | 3.0              | 3.8                                           | 4.6      | -                  | (0.31,0.56) |
| 10                                                                               | 10.36 | 7.0            | 27.7     | 13                             | 32.2       | 21      | 6653                               | 3.0              | 4.2                                           | 5.3      | -                  | (0.32,0.55) |
| 12                                                                               | 10.82 | 7.5            | 31.2     | 13                             | 33.9       | 23      | 7014                               | 3.0              | 4.1                                           | 5.3      | -                  | (0.31.0.55) |
| 14                                                                               | 10.44 | 7.0            | 26.0     | 11                             | 32.3       | 21      | 6526                               | 3.3              | 4.8                                           | 6.0      | -                  | (0.31,0.55) |
|                                                                                  |       | 8 w            | t% 4CzII | PN:AC3                         | 3 (chlorol | benzene | • 10 mg m                          | L-1);a           | nnealin                                       | g in X ° | С                  |             |
| 60 °C                                                                            | 10.49 | 8.0            | 30.6     | 17                             | 32.0       | 24      | 7238                               | 2.9              | 3.4                                           | 4.5      | -                  | (0.31,0.54) |
| 80 °C                                                                            | 9.30  | 6.5            | 29.5     | 15                             | 29.1       | 19      | 8092                               | 2.9              | 3.3                                           | 4.1      | -                  | (0.31,0.54) |
| 100 °C                                                                           | 9.72  | 7.0            | 30.8     | 16                             | 29.3       | 21      | 8812                               | 2.9              | 3.3                                           | 4.4      | -                  | (0.31,0.54) |
| 120 °C                                                                           | 9.46  | 6.5            | 30.2     | 15                             | 28.7       | 20      | 8415                               | 2.9              | 3.3                                           | 4.2      | -                  | (0.31,0.54) |
| 140 °C                                                                           | 9.11  | 7.0            | 28.7     | 16                             | 27.3       | 22      | 8703                               | 2.9              | 3.3                                           | 4.3      | -                  | (0.31,0.54) |

**Table S5.** EL characteristic parameters of spin-coated AC3-based OLEDs with

 different doping concentration, thickness and annealing temperature of EML.

(a) Data at maximum and 1000 cd m<sup>-2</sup> from left to right. (b) Maximum luminance. (c) voltage in 1 cd m<sup>-2</sup>. (d) CIE:
 Commission Internationale de l'Eclairage at 1,000 cd m<sup>-2</sup>.





Figure S7. (a) drop formation, (b)optical inkjet-printed EML ink.



Figure S8. Contact angle of AC2 based ink on PEDOT:PSS layer.



**Figure S9.** (a) AFM topographic images and three-dimensional images  $(4 \times 4 \ \mu m)$  of spin-coated EML and inkjet-printed EML films. (c) Surface depth histograms of spin-coated EML and inkjet-printed EML films.



**Figure S10.** The histogram of maximum EQEs measured from 20 spin-coating devices based on AC1, AC2, AC3. The standard deviations of these values are calculated to be 0.79, 0.80,0.88% for AC1, AC2, AC3, respectively.



**Figure S11.** The histogram of maximum EQEs measured from 40 spin-coating and inkjet-printing devices based on AC2. The standard deviations of these values are calculated to be 0.84, 1.04% for spin-coating and inkjet printing devices, respectively.





#### <sup>1</sup>H NMR of AC2

### <sup>13</sup>CNMR of AC2





#### <sup>1</sup>H NMR of AC3