Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supporting Information

An Effective Pathway to Design and Synthesize UV Birefringent Crystals via Rational Assemble of π -conjugated [CO₃]²⁻ and [NO₃]⁻ Triangles

Zhaowei Hu,^a Lili Liu, *^a Ruixin Zhang,^b Qun Jing,^b Huan Wang,^a Jindan Tian,^a Jiayue

Xu,*a and P. Shiv Halasyamani*c

- a. Institute of Crystal Growth, School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
- b. School of Physical Science and Technology, Xinjiang University, Urumqi 830046, China.
- c. Department of Chemistry, University of Houston, 112 Fleming Building, Houston, Texas 77204, USA.

*E-mail: liulili@sit.edu.cn; xujiayue@sit.edu; psh@uh.edu

Table of Contents

Table S1. Crystal data and structure refinement for Na ₃ Rb ₆ (CO ₃) ₃ (NO ₃) ₂ Br·6H ₂ O and Na ₃ Rb ₆ (CO ₃) ₃ (NO ₃) ₂ Cl·6H ₂ O.	S3
Table S2. Atomic coordinates (×10 ⁴), equivalent isotropic displacement parameters (Å ² × 10 ³) and bond valence sums (BVS) for	S 4
$Na_3Rb_6(CO_3)_3(NO_3)_2Br\cdot 6H_2O.$	
Table S3. Atomic coordinates (×10 ⁴), equivalent isotropic displacement parameters (Å ² × 10 ³) and bond valence sums (BVS) for	S4
$Na_3Rb_6(CO_3)_3(NO_3)_2CI \cdot 6H_2O.$	
Table S4. Bond lengths [Å] and angles [°] for Na ₃ Rb ₆ (CO ₃) ₃ (NO ₃) ₂ Br⋅6H ₂ O.	S5
Table S5 . Bond lengths [Å] and angles [°] for Na ₃ Rb ₆ (CO ₃) ₃ (NO ₃) ₂ Cl·6H ₂ O.	S6
Table S6. Hydrogen coordinates (× 10 ⁴) and isotropic displacement parameters (Å ² × 10 ³) for Na ₃ Rb ₆ (CO ₃) ₃ (NO ₃) ₂ Br⋅6H ₂ O.	S7
Table S7 . Hydrogen coordinates (× 10 ⁴) and isotropic displacement parameters ($Å^2 \times 10^3$) for Na ₃ Rb ₆ (CO ₃) ₃ (NO ₃) ₂ Cl·6H ₂ O.	S7
Table S8. The refractive indices and birefringence values of $Na_3Rb_6(CO_3)_3(NO_3)_2X \cdot 6H_2O$ (X=Br and Cl).	S7
Table S9. Birefringences and band gaps of selected carbonates and nitrates.	S8
Figure S1. The photos of (a) $Na_3Rb_6(CO_3)_3(NO_3)_2Br\cdot 6H_2O$ and (b) $Na_3Rb_6(CO_3)_3(NO_3)_2CI\cdot 6H_2O$ crystals.	S9
Figure S2. Experimental and theoretical PXRD patterns of (a) Na ₃ Rb ₆ (CO ₃) ₃ (NO ₃) ₂ Br·6H ₂ O and (b) Na ₃ Rb ₆ (CO ₃) ₃ (NO ₃) ₂ Cl·6H ₂ O.	S9
Figure S3. The unit cell of $Na_3Rb_6(CO_3)_3(NO_3)_2Br\cdot 6H_2O$.	S9
Figure S4. The asymmetric unit of $Na_3Rb_6(CO_3)_3(NO_3)_2Br\cdot 6H_2O$.	S10
Figure S5. Coordination environments of cations in $Na_3Rb_6(CO_3)_3(NO_3)_2Br\cdot 6H_2O$.	S10
Figure S6. A $[BrRb_6]^{5+}$ polyhedron in Na ₃ Rb ₆ (CO ₃) ₃ (NO ₃) ₂ Br·6H ₂ O.	S10
Figure S7. TG-DSC curves of (a) $Na_3Rb_6(CO_3)_3(NO_3)_2Br\cdot 6H_2O$ and (b) $Na_3Rb_6(CO_3)_3(NO_3)_2CI\cdot 6H_2O$.	S11
Figure S8. PXRD patterns of residues after decomposition for (a) Na ₃ Rb ₆ (CO ₃) ₃ (NO ₃) ₂ Br·6H ₂ O and (b) Na ₃ Rb ₆ (CO ₃) ₃ (NO ₃) ₂ Cl·6H ₂ O.	S11
Figure S9. IR spectra of (a) $Na_3Rb_6(CO_3)_3(NO_3)_2Br\cdot 6H_2O$ and (b) $Na_3Rb_6(CO_3)_3(NO_3)_2CI\cdot 6H_2O$.	S11
Figure S10. The calculated band gaps and PDOS plots for (a, b) Na ₃ Rb ₆ (CO ₃) ₃ (NO ₃) ₂ Br·6H ₂ O and (c, d) Na ₃ Rb ₆ (CO ₃) ₃ (NO ₃) ₂ Cl·6H ₂ O.	S12
Figure S11. The selected crystal before and after compensatory rotation for birefringence test.	S12
References	S13

Formula	Na ₃ Rb ₆ (CO ₃) ₃ (NO ₃) ₂ Br·6H ₂ O	Na ₃ Rb ₆ (CO ₃) ₃ (NO ₃) ₂ Cl·6H ₂ O
Formula weight	1073.85	1029.39
Crystal system	Нех	agonal
Space group	P6;	/mcm
Temperature/K	29	3(2) K
a(Å)	9.6086(4)	9.5886(2)
b(Å)	9.6086(4)	9.5886(2)
c(Å)	15.8641(15)	15.8392(4)
V/ų	1268.43(14)	1261.17(6)
Z	2	2
ρ(calcd)Mg/m³	2.812	2.711
µ/mm ⁻¹	13.199	11.797
F(000)	1004	968
λ (Å)	0.71073	0.71073
Completeness to theta = 25.242°	99.7 %	100.0 %
No. of reflections	603	560
No. of parameters	40	40
Δρ _{max}	0.553	0.299
Δρ _{min}	-0.562	-0.258
R₁/wR₂ (I > 2σ(I)) ^[a]	0.0327/ 0.0691	0.0199/0.0357
R ₁ /wR ₁ (all data) ^[a]	0.0344/ 0.0696	0.0313/ 0.0386

 $\label{eq:relation} {}^{[a]}R_1 = \Sigma \mid \mid F_o \mid - \mid F_c \mid \mid / \Sigma \mid F_o \mid \mbox{ and } wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w F_o^4]^{1/2} \mbox{ for } F_o^2 > 2 \sigma (F_o^2)$

Table S2. Ator	mic coordinates (×104), equ	uivalent isotropic displacement par	ameters (Å ² × 10 ³) and bond val	ence sums (BVS) for Na ₃ Rb ₆ (CO ₃)) ₃ (NO ₃) ₂ Br·6H ₂ O. U _{eq} is defined as on
third of the tra	ace of the orthogonalized I	U _{ij} tensor.			

atom	x	у	Z	U(eq) Ų	BVS
Rb(1)	2858(1)	2858(1)	1202(1)	31(1)	+1.130
Na(1)	3776(4)	0	2500	34(1)	+1.178
N(1)	6667	3333	2500	21(2)	+4.817
C(1)	0	0	2500	18(2)	+4.282
C(2)	6667	3333	0	21(2)	+3.992
O(1)	6036(4)	6036(4)	1052(2)	30(1)	-0.463
O(2)	1333(4)	0(4)	2500(2)	33(1)	-2.007
O(3)	5122(5)	2561(2)	0	31(1)	-1.592
O(4)	5252(5)	3076(5)	2500	32(1)	-2.105
Br(1)	0	0	0	31(1)	-1.307

Table S3. Atomic coordinates (×10⁴), equivalent isotropic displacement parameters ($Å^2 \times 10^3$) and bond valence sums (BVS) for Na₃Rb₆(CO₃)₃(NO₃)₂Cl·6H₂O. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

atom	x	у	Z	$U_{eq} { m \AA}^2$	BVS
Rb(1)	2741(1)	2741(1)	1193(1)	25(1)	+1.089
Na(1)	3703(2)	0	2500	22(1)	+1.214
N(1)	6667	3333	2500	21(1)	+4.960
C(1)	0	0	2500	19(2)	+3.984
C(2)	6667	3333	0	22(1)	+3.974
O(1)	5999(3)	5999(3)	1052(1)	32(1)	-0.439
O(2)	1340(3)	0	2500	25(1)	-2.055
O(3)	5118(3)	2559(1)	0	30(1)	-1.575
O(4)	5264(3)	3093(3)	2500	32(1)	-2.089
Cl(1)	0	0	0	27(1)	-1.233

Table S4. Bond lengths [Å] and angles [°] for $Na_3Rb_6(CO_3)_3(NO_3)_2Br\cdot 6H_2O$.

Rb(1)-O(3)#1	3.012(2)	N(1)-Na(1)#6	3.0127(14)
Rb(1)-O(3)	3.012(2)	C(1)-O(2)#13	1.281(2)
Rb(1)-O(4)	3.015(3)	C(1)-O(2)#3	1.281(2)
Rb(1)-O(4)#2	3.015(3)	C(1)-O(2)	1.281(2)
Rb(1)-O(1)	3.062(4)	C(1)-Rb(1)#12	3.4324(6)
Rb(1)-O(2)#3	3.147(4)	C(1)-Rb(1)#11	3.4324(6)
Rb(1)-O(2)	3.147(4)	C(1)-Rb(1)#3	3.4324(6)
Rb(1)-Br(1)	3.3435(6)	C(1)-Rb(1)#13	3.4324(6)
Rb(1)-O(1)#4	3.413(3)	C(1)-Rb(1)#14	3.4324(6)
Rb(1)-O(1)#5	3.413(3)	C(2)-O(3)#4	1.285(4)
Rb(1)-Na(1)#6	3.834(3)	C(2)-O(3)#15	1.285(4)
Rb(1)-Na(1)#3	3.871(2)	C(2)-O(3)	1.285(4)
Rb(1)-H(1)	3.2294	O(1)-Na(1)#6	2.303(4)
Na(1)-O(1)#7	2.303(4)	O(1)-Rb(1)#16	3.413(3)
Na(1)-O(1)#4	2.303(4)	O(1)-Rb(1)#15	3.413(3)
Na(1)-O(2)	2.347(4)	O(1)-H(1)	0.8918
Na(1)-O(4)#8	2.560(4)	O(2)-Rb(1)#12	3.147(4)
Na(1)-O(4)	2.560(4)	O(2)-Rb(1)#11	3.147(4)
Na(1)-O(4)#4	2.683(5)	O(2)-Rb(1)#13	3.147(4)
Na(1)-O(4)#9	2.683(5)	O(3)-Rb(1)#17	3.012(2)
Na(1)-N(1)#10	3.0127(14)	O(4)-Na(1)#6	2.683(5)
Na(1)-Rb(1)#7	3.834(3)	O(4)-Rb(1)#12	3.015(3)
Na(1)-Rb(1)#4	3.834(3)	Br(1)-Rb(1)#18	3.3435(6)
Na(1)Rb(1)#11	3.871(2)	Br(1)-Rb(1)#1	3.3435(6)
Na(1)Rb(1)#12	3.871(2)	Br(1)-Rb(1)#3	3.3435(6)
N(1)-O(4)#4	1.254(4)	Br(1)-Rb(1)#17	3.3435(6)
N(1)-O(4)#6	1.254(4)	Br(1)-Rb(1)#11	3.3435(6)
N(1)-O(4)	1.254(4)		

Symmetry transformations used to generate equivalent atoms:

Symmetry transformations used to generate equivalent ato #1 x-y,x,-z #2 y,x,z #3 -y,x-y,z #4 -y+1,x-y,z #5 -x+y,-x+1,z #6 -x+y+1,-x+1,-z+1/2 #7 -y+1,x-y,-z+1/2 #8 x-y,-y,-z+1/2 #9 -x+1,-x+y,z #10 y,x-1,z #11 -x+y,-x,z #12 x,y,-z+1/2 #13 -x+y,-x,-z+1/2 #14 -y,x-y,-z+1/2 #15 -x+y+1,-x+1,z #16 -y+1,x-y+1,z #17 y,-x+y,-z #18 -x,-y,-z

Table S5. Bond lengths [Å] and angles [°] for $Na_3Rb_6(CO_3)_3(NO_3)_2CI \cdot 6H_2O$.

Rb(1)-O(3)	3.0322(16)	N(1)-Na(1)#6	3.0344(7)
Rb(1)-O(3)#1	3.0322(15)	C(1)-O(2)#13	1.285(3)
Rb(1)-O(4)#2	3.0717(18)	C(1)-O(2)#3	1.285(3)
Rb(1)-O(4)	3.0718(18)	C(1)-O(2)	1.285(3)
Rb(1)-O(2)	3.0770(3)	C(1)-Rb(1)#12	3.3458(3)
Rb(1)-O(2)#3	3.0770(3)	C(1)-Rb(1)#11	3.3458(3)
Rb(1)-O(1)	3.132(2)	C(1)-Rb(1)#3	3.3458(3)
Rb(1)-Cl(1)	3.2373(3)	C(1)-Rb(1)#13	3.3458(3)
Rb(1)-O(1)#4	3.4050(18)	C(1)-Rb(1)#14	3.3458(3)
Rb(1)-O(1)#5	3.4050(18)	C(2)-O(3)#5	1.286(2)
Rb(1)-Na(1)#3	3.8039(11)	C(2)-O(3)#15	1.286(2)
Rb(1)-Na(1)#6	3.9884(16)	C(2)-O(3)	1.286(2)
Na(1)-O(2)	2.266(4)	O(1)-Na(1)#6	2.312(2)
Na(1)-O(1)#7	2.312(2)	O(1)-Rb(1)#16	3.4050(18)
Na(1)-O(1)#5	2.312(2)	O(1)-Rb(1)#15	3.4050(18)
Na(1)-O(4)	2.569(2)	O(1)-H(1)	0.8664
Na(1)-O(4)#8	2.569(2)	O(2)-Rb(1)#11	3.0770(3)
Na(1)-O(4)#5	2.715(3)	O(2)-Rb(1)#12	3.0770(3)
Na(1)-O(4)#9	2.715(3)	O(2)-Rb(1)#13	3.0770(3)
Na(1)-N(1)#10	3.0345(7)	O(3)-Rb(1)#17	3.0322(15)
Na(1)-Rb(1)#11	3.8039(11)	O(4)-Na(1)#6	2.715(3)
Na(1)-Rb(1)#12	3.8039(11)	O(4)-Rb(1)#12	3.0717(18)
Na(1)-Rb(1)#13	3.8039(11)	Cl(1)-Rb(1)#18	3.2373(3)
Na(1)-Rb(1)#7	3.9884(16)	Cl(1)-Rb(1)#1	3.2373(3)
N(1)-O(4)#5	1.246(2)	Cl(1)-Rb(1)#3	3.2373(3)
N(1)-O(4)	1.246(2)	Cl(1)-Rb(1)#17	3.2373(3)
N(1)-O(4)#6	1.246(2)	Cl(1)-Rb(1)#11	3.2373(3)
N(1)-Na(1)#5	3.0344(7)		

 Symmetry transformations used to generate equivalent atoms:

 #1 x-y,x,-z
 #2 y,x,z
 #3 -y,x-y,z
 #4 -x+y,-x+1,z

 #5 -y+1,x-y,z
 #6 -x+y+1,-x+1,-z+1/2
 #7 -y+1,x-y,-z+1/2

 #8 x-y,-y,-z+1/2
 #9 -x+1,-x+y,z
 #10 y,x-1,z

 #11 -x+y,-x,z
 #12 x,y,-z+1/2
 #13 -x+y,-x,-z+1/2

 #14 -y,x-y,-z+1/2
 #15 -x+y+1,-x+1,z
 #16 -y+1,x-y+1,z

 #17 y,-x+y,-z
 #18 -x,-y,-z

	х	У	Z	U _{eq}
H(1)	6456	5613	705	45

$\textbf{Table S7}. Hydrogen coordinates (\times 10^4) and isotropic displacement parameters (\AA^2 \times 10^3) for Na_3Rb_6 (CO_3)_2 (NO_3)_2 Cl \cdot 6H_2 O.$

	х	У	Z	U _{eq}
H(1)	6419	5613	704	48

Table S8. The refractive indices and birefringence values of Na₃Rb₆(CO₃)₃(NO₃)₂X·6H₂O (X=Br and Cl).

Compound		N _o	N _e	Δn
	Origin	1.650	1.485	0.165
$Na_3Rb_6(CO_3)_3(NO_3)_2Br\cdot 6H_2O$	CO ₃	1.267	1.178	0.089
	NO ₃	1.223	1.103	0.121
$Na_3Rb_6(CO_3)_3(NO_3)_2CI \cdot 6H_2O$	Origin	1.642	1.476	0.166
	CO ₃	1.266	1.176	0.090
	NO ₃	1.223	1.102	0.121

 Table S9. Birefringences and band gaps of selected carbonates and nitrates.

	Compound	Birefringence	Band gap (eV)	Reference
1	Pb ₆ O ₄ (BO ₃)(NO ₃)	0.276	3.3	1
2	KPb ₂ (CO ₃) ₂ F	0.274	3.9	2
3	$ln(IO_3)_2(NO_3)$	0.269	4.08	3
4	La(OH) ₂ NO ₃	0.203	4.76	4
5	CsPbCO₃F	0.183	4.15	5
6	Pb ₂ (BO ₃)(NO ₃)	0.174	3.65	6
7	NaZnCO ₃ F	0.171	4.61	7
8	$Na_3Rb_6(CO_3)_3(NO_3)_2CI \cdot 6H_2O$	0.166	4.90	This work
9	Na ₃ Rb ₆ (CO ₃) ₃ (NO ₃) ₂ Br·6H ₂ O	0.165	4.80	This work
10	Cs ₂ Pb(NO ₃) ₂ Br ₂	0.147	3.01	8
11	LiZn(OH)CO3	0.147	6.53	9
12	Na ₄ Zn(CO ₃) ₃	0.138	4.06	7
13	RbMgCO₃F	0.129	6.75	10
14	RbCdCO ₃ F	0.121	5.35	11
15	Sr ₃ [SnOSe ₃][CO ₃]	0.12	3.46	12
16	RbCaCO ₃ F	0.115	6.22	13
17	NaZnCO₃(OH)	0.114	6.02	14
18	LiKCO ₃	0.11	6.32	15
19	KCdCO ₃ F	0.11	5.46	16
20	$Cs_3VO(O_2)_2CO_3$	0.105	2.81	17
21	KY(CO ₃) ₂	0.105	6.22	18
22	Lu ₈ O(CO ₃) ₃ (OH) ₁₅ Br	0.088	4.38	19
23	Zn(NH ₃)CO ₃	0.087	6.08	20
24	$Na_2Gd(CO_3)F_3$	0.084	6.22	21
25	Ca ₂ Na ₃ (CO ₃) ₃ F	0.082	6.52	22
26	Ba ₂ NO ₃ (OH) ₃	0.08	6.52	23
27	Ba ₃ (BO ₃)(CO ₃)F	0.048	5.88	24
28	(NH ₄) ₂ Ca ₂ Y ₄ (CO ₃) ₉ ·H ₂ O	0.04	6.22	18
29	Cs ₃ B ₈ O ₁₃ (NO ₃)	0.036	6.13	25
30	$Ba_2B_5O_8(OH)_2(NO_3)\cdot 3H_2O$	0.033	5.06	26
31	$Na_{10}Cd(NO_3)_4(SO_3S)_4$	0.01	3.74	27

 $\label{eq:Figure S1.} The photos of (a) Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6 H_2 O \mbox{ and } (b) Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Cl \cdot 6 H_2 O \mbox{ crystals (the minimum scale is 1 mm)}.$

 $\label{eq:Figure S2} \textbf{Figure S2}. Experimental and theoretical PXRD patterns of (a) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6H_2 O \ and \ (b) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Cl \cdot 6H_2 O \ and \ (b) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6H_2 O \ and \ (b) \\ Na_3 Rb_6 (CO$

Figure S3. The unit cell of $Na_3Rb_6(CO_3)_3(NO_3)_2Br\cdot 6H_2O$.

Figure S4. The asymmetric unit $Na_3Rb_6(CO_3)_3(NO_3)_2Br\cdot 6H_2O$.

Figure S5. Coordination environments of cations in Na_3Rb_6(CO_3)_3(NO_3)_2Br\cdot 6H_2O.

Figure S6. A $[BrRb_6]^{5+}$ polyhedron in $Na_3Rb_6(CO_3)_3(NO_3)_2Br\cdot 6H_2O$.

Figure S7. TG-DSC curves of (a) $Na_3Rb_6(CO_3)_3(NO_3)_2Br\cdot 6H_2O$ and (b) $Na_3Rb_6(CO_3)_3(NO_3)_2CI\cdot 6H_2O$.

 $\label{eq:Figure S8. PXRD patterns of residues after decomposition for (a) Na_3Rb_6(CO_3)_3(NO_3)_2Br-6H_2O and (b) Na_3Rb_6(CO_3)_2(I)-6H_2O.$

Figure S9. IR spectra of (a) $Na_3Rb_6(CO_3)_3(NO_3)_2Br\cdot 6H_2O$ and (b) $Na_3Rb_6(CO_3)_3(NO_3)_2CI\cdot 6H_2O$.

 $\label{eq:Figure S10.} \label{eq:Figure S10.} The calculated band gaps and PDOS plots for (a, b) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6H_2 O \mbox{ and } (c, d) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Cl \cdot 6H_2 O \mbox{ and } (c, d) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6H_2 O \mbox{ and } (c, d) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6H_2 O \mbox{ and } (c, d) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6H_2 O \mbox{ and } (c, d) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6H_2 O \mbox{ and } (c, d) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6H_2 O \mbox{ and } (c, d) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6H_2 O \mbox{ and } (c, d) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6H_2 O \mbox{ and } (c, d) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6H_2 O \mbox{ and } (c, d) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6H_2 O \mbox{ and } (c, d) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6H_2 O \mbox{ and } (c, d) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6H_2 O \mbox{ and } (c, d) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6H_2 O \mbox{ and } (c, d) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6H_2 O \mbox{ and } (c, d) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6H_2 O \mbox{ and } (c, d) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6H_2 O \mbox{ and } (c, d) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6H_2 O \mbox{ and } (c, d) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6H_2 O \mbox{ and } (c, d) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6H_2 O \mbox{ and } (c, d) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6H_2 O \mbox{ and } (c, d) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6H_2 O \mbox{ and } (c, d) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6H_2 O \mbox{ and } (c, d) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6H_2 O \mbox{ and } (c, d) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6H_2 O \mbox{ and } (c, d) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6H_2 O \mbox{ and } (c, d) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6H_2 O \mbox{ and } (c, d) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6H_2 O \mbox{ and } (c, d) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6H_2 O \mbox{ and } (c, d) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6H_2 O \mbox{ and } (c, d) \\ Na_3 Rb_6 (CO_3)_3 (NO_3)_2 Br \cdot 6H_2 O \mbox{ and } (c, d) \\ Na_3 Rb_6 (CO_3)_3 (NO_$

Figure S11. The selected crystal before and after compensatory rotation for birefringence test.

References

- 1. S. Bai, D. Yang, B. Zhang, L. Li and Y. Wang, *Dalton Trans.*, 2022, **51**, 3421-3425.
- 2. T. T. Tran and P. S. Halasyamani, *Inorg. Chem.*, 2013, **52**, 2466-2473.
- 3. Y. Huang, T. Jiang, B. Yang, C. Hu, Z. Fang and J. Mao, *Inorg. Chem.*, 2022, **61**, 3374-3378.
- 4. Y. Song, M. Luo, C. Lin and N. Ye, *Chem. Mater.*, 2017, **29**, 896-903.
- 5. T. T. Tran, P. S. Halasyamani and J. M. Rondinelli, *Inorg. Chem.*, 2014, **53**, 6241-6251.
- 6. J. Song, C. Hu, X. Xu, F. Kong and J. Mao, *Angew. Chem. Int. Ed.*, 2015, **127**, 3750-3753.
- 7. G. Peng, Y. Tang, C. Lin, D. Zhao, M. Luo, T. Yan, Y. Chen and N. Ye, J. Mater. Chem. C, 2018, 6, 6526-6533.
- 8. Y. Long, X. Dong, H. Zeng, Z. Lin and G. Zou, *Inorg. Chem.*, 2022, **61**, 4184-4192.
- 9. X. Liu, L. Kang, P. Gong and Z. Lin, *Angew. Chem. Int. Ed.*, 2021, **60**, 13574-13578.
- 10. T. T. Tran, J. He, J. M. Rondinelli and P. S. Halasyamani, J. Am. Chem. Soc., 2015, 137, 10504-10507.
- 11. G. Zou, G. Nam, H. G. Kim, H. Jo, T. S. You and K. M. Ok, *RSC Adv.*, 2015, **5**, 84754-84761.
- 12. J. Wang, Y. Cheng, H. Wu, Z. Hu, J. Wang, Y. Wu and H. Yu, Angew. Chem. Int. Ed., 2022, 134, e202201616.
- 13. G. Zou, N. Ye, L. Huang and X. Lin, J. Am. Chem. Soc., 2011, 133, 20001-20007.
- 14. G. Peng, C. Lin and N. Ye, J. Am. Chem. Soc., 2020, **142**, 20542-20546.
- 15. Q. Liu, Z. Li, Y. Wang, X. Su, Z. Yang and S. Pan, *Dalton Trans.*, 2017, **46**, 6894-6899.
- 16. Y. Lin, C. Hu and J. Mao, *Inorg. Chem.*, 2015, **54**, 10407-10414.
- 17. G. Zou, Z. Lin, H. Zeng, H. Jo, S. J. Lim, T. S. You and K. M. Ok, *Chem. Sci.*, 2018, **9**, 8957-8961.
- 18. G. Peng, C. Lin, Y. Yang, D. Zhao, Z. Lin, N. Ye and J. Huang, *Chem. Mater.*, 2018, **31**, 52-56.
- 19. L. Cao, Y. Song, G. Peng, M. Luo, Y. Yang, C. Lin, D. Zhao, F. Xu, Z. Lin and N. Ye, *Chem. Mater.*, 2019, **31**, 2130-2137.
- 20. H. Tang, Q. Shui, R. Fu, Z. Zhou, W. Bao, Z. Ma and X. Wu, J. Mater. Chem. C, 2021, 9, 16477-16484.
- 21. L. Cao, G. Peng, T. Yan, M. Luo, C. Lin and N. Ye, J. Alloys Compd., 2018, 742, 587-593.
- 22. M. Luo, Y. Song, C. Lin, N. Ye, W. Cheng and X. Long, *Chem. Mater.*, 2016, 28, 2301-2307.
- 23. X. Dong, L. Huang, Q. Liu, H. Zeng, Z. Lin, D. Xu and G. Zou, *Chem. Commun.*, 2018, **54**, 5792-5795.
- 24. C. Huang, F. Zhang, S. Cheng, Z. Yang, H. Li and S. Pan, *Chem. Eur. J.*, 2020, **26**, 16628-16632.
- 25. Z. Chen, C. Wu, H. Zeng and F. Yu, *Dalton Trans.*, 2021, **50**, 8676-8679.
- 26. H. Hu, J. Huang, Z. Guo, M. Zhang, Z. Yang and S. Pan, *Dalton Trans.*, 2022, **51**, 1979-1984.
- 27. Y. Liu, Y. Liu, Z. Lin, Y. Li, Q. Ding, X. Chen, L. Li, S. Zhao, M. Hong and J. Luo, CCS Chem., 2021, 3, 694-699.