Magnetic MOF-808 as a novel adsorbent for toxic metal removal from aqueous solutions Roxana Paz^a, Herlys Viltres^{b*}, Nishesh Kumar Gupta^{c,d}, Adolfo Romero-Galarza^e, Carolina Levva^{a*}

^aInstituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, CDMX, México; ^bSchool of Engineering Practice and Technology, McMaster University, Ontario, Canada; ^cUniversity of Science and Technology (UST), Daejeon, Republic of Korea; ^dDepartment of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang, Republic of Korea; ^eDepartment of Chemical Engineering, School of Chemistry, Universidad Autónoma de Coahuila, México

Section S1: Analytical instruments

For PXRD analysis, a PANalytical Empyream (United States) diffractometer was used. The patterns were recorded with CuK α radiation (1.54183 Å) at 40 kV and 30 mA with a step size of 0.026 and a counting time of 0.4 s per point. FTIR spectra collection in a range of 400–4000 cm⁻¹ with 20 scans at a resolution of 4 cm⁻¹ was carried out using a Perkin-Elmer (USA) instrument. Raman spectra were collected by an XRD Thermo Fisher Scientific (United States) Raman Microscope. A 780 nm excitation line in backscattering geometry through a 10× objective lens was used to excite the samples with a power of ~6 mW (5 s of exposure time and 20 scans for each recorded spectrum). The magnetization curves were recorded at 300 K using an MPMS-3 superconducting quantum interference device magnetometer. To evaluate the thermal stability of the materials was used a T A Instruments, Q5000 IR model (United States), at a heating rate of 10 °C min⁻¹ under N₂ flow. The evaluation of the superficial charge was measured by zeta potential in a pH 2-6 range using NanoPlus HD sizer equipment (Micrometrics, United States) with a

minimum of 3 measurements per sample at room temperature. The X-ray photoelectron spectroscopy (XPS) analyses were carried out by a K-alpha Thermo Scientific spectrometer (United Kingdom). A spectrometer equipped with a hemispherical analyzer and a monochromatic AlK α X-ray source (1486.6 eV) in the Constant Analyzer Energy (CAE) was used for the study. Spectral backgrounds were subtracted using the Shirley method using CasaXPS software (version 2.3.14), and. The base pressure in the analyzer chamber was 1×10^{-9} mBar. Survey scans were recorded using 400 µm spot size and fixed pass energy of 200 eV, whereas high-resolution scans were collected at 20 eV of pass energy. Spectra have been charged corrected to the C 1s spectrum (adventitious carbon) set to 284.8 eV. The Hg(II) concentrations values were determined by triplicate of each sample using an Inductively Coupled Plasma Mass Spectrometer Optima 8000 (ICP-OES, Perkin Elmer, United States).

Section S2: Adsorption Experiments

Table S1. Summary of experimental conditions for Hg(II) adsorption experiments using themagnetic MOF (Zr-MOF@Fe₃O₄) as adsorbent.

[Dye]/mg·L ⁻¹	100			
m(adsorbent)/mg	30		90	30
Volume/mL	30	90	30	
	Sorbent dosage (mg)	pН	Time	Adsorption
				Isotherm/mg·L ⁻¹
	10	2	30	30
	30	3	60	50

50	4	90	100
70	5	120	150
	6	180	250
		240	350
		720	
		1440	
		1140	

Section S3: Materials characterization

Figure S1. SEM micrographs and 2D elemental mapping of a) Zr-MOF and b) Zr-MOF@Fe₃O₄.

Figure S2. HRXPS (a) C 1s; (a.1) O 1s; (a.2) Zr 3d spectra of Zr-MOF; (b) C 1s; (b.1) O 1s; (b.2) Fe 2p spectra of Fe₃O₄.

Parameters	Fe ₃ O ₄	Zr-MOF@Fe ₃ O ₄
μ_{s} (emu g ⁻¹)	69.29	25.02
H _c (Oe)	8.70	5.18
$\mu_{\rm r}$ (emu g ⁻¹)	0.74	0.15

Table S2. VSM analysis of Fe_3O_4 and Zr-MOF@ Fe_3O_4 at T = 300 K.

Section S4: Hg(II) adsorption

Figure S3. Control experiment of Hg(II) adsorption, Zr-MOF@Fe₃O₄, Fe₃O₄, and Zr-MOF. **Table S3.** XPS survey data (atomic percentage) for the most concentrated elements for the

materials.

	Elements (At. %)
Samples	

	C 1s	O 1s	Zr 3d	Cl 2p	N 1s	S 2p	Fe 2p	Hg 4p
H₃BTC	67.8	32.2	-	-	-	-	-	-
Zr-Salt	36.7	30.6	13.3	19.5	-	-	-	-
Zr-MOF	56.8	34.7	7.3	1.2	-	-	-	-
Fe ₃ O ₄	17.3	48.2	-	0.4	0.7	0.3	33.0	-
Zr-MOF@Fe ₃ O ₄	34.0	41.7	4.6	-	-	-	19.8	-
Zr-MOF@Fe ₃ O ₄ + Hg(II)	33.7	45.0	2.8	-	-	-	17.8	0.7

Table S4. The peak-fitting results of C 1s high-resolution signal of materials.

Samples	Assignment	E _B (eV)	FWHM (eV)	At. %
	C1s _{C=C} aromatic	284.7	1.4	53.5
Zr-MOF	C1s _{C-O}	286.0	1.5	18.0
	C1s _{O-C=O}	288.6	1.6	25.5
	C1s Satellite	290.8	1.8	3.0
	C1s _{C-C}	284.8	1.4	66.1
Fe ₃ O ₄	C1s _{C-O}	286.1	1.5	21.6
	C1s _{C??}	287.8	1.4	4.6
	C1s _{O-C=O}	288.9	1.4	7.7
Zr-MOF@Fe3O4	C1s _{C=C} aromatic	284.7	1.4	55.8
	C1s _{C-O}	285.9	1.7	23.4

	C1s _{O-C=O}	288.6	1.8	16.4
	C1s Satellite	290.7	1.9	4.4
	C1s _{C=C} aromatic	284.7	1.5	47.3
Zr-MOF@Fe ₃ O ₄ + Hg(II)	C1s _{C-O}	285.9	1.7	30.0
	C1s _{O-C=O}	288.4	1.8	12.9
	C1s Satellite	289.5	1.9	9.7

Table S5. The peak-fitting results of O 1s high-resolution signal of materials.

Samples	Assignment	E _B (eV)	FWHM (eV)	At. %
H.BTC	O1s _{O-C=O}	531.7	1.6	42.7
11,010	O1s _{-C-OH}	533.1	1.9	57.3
	O1s _{O-Zr}	530.6	1.5	22.0
Zr-Salt	O1s _{Zr-OH}	532.0	1.8	57.6
	O1s water	533.7	1.9	20.5
Zr-MOF	O1s _{O-Zr}	530.1	1.5	18.3
	O1s _{O-C}	531.6	1.6	63.5
	O1s _{Zr-OH}	532.7	1.9	18.2
	O1s _{Fe-O}	530.1	1.2	63.4
Fe ₃ O ₄	O1s _{O-C}	531.2	1.6	33.1
	O1s Fe-OH	532.7	1.8	3.5
	O1s _{O-Zr, O-Fe}	530.2	1.5	50.4
Zr-MOF@Fe ₃ O ₄	O1s _{O-C}	531.7	1.6	37.7
	O1s _{Zr-OH}	533.1	1.9	11.9

	O1s _{O-Zr, O-Fe}	530.3	1.5	36.8
Zr-MOF@Fe ₃ O ₄ +Hg(II)	O1s _{O-C}	531.7	1.6	37.7
	O1s _{Zr-OH, Hg-OH}	533.1	1.9	25.5

Table S6. The peak-fitting results of Zr $3d_{5/2}$ high-resolution signal of materials.

Samples	Assignment	E _B (eV)	FWHM (eV)	At. %
Zr-Salt	Zr3d _{Zr-O}	183.2	1.7	100
Zr-MOF	Zr3d _{Zr-O}	182.7	1.6	100
Zr-MOF@Fe ₃ O ₄	Zr3d _{Zr-O}	182.9	1.8	100
Zr-MOF@Fe ₃ O ₄ + Hg(II)	Zr3d _{Zr-O}	183.2	1.9	100

Table S7. The peak-fitting results of Fe $2p_{3/2}$ high-resolution signal of materials.

Samples	Assignment	E _B (eV)	FWHM (eV)	At. %	Fe ³⁺ /Fe ²⁺ (Magnetite) (2:1)
	Fe 2p _{3/2 Fe(II)-Fe3O4}	708.2-709.1	1.2	10.0	2.1:1.0
Fe ₃ O ₄	Fe 2p _{3/2 Fe(III)} -Fe3O4	710-714.4	1.4-3.3	21.1	
	Fe 2p _{3/2} Fe(III)-Fe2O3	709.7-714.1	1.2-1.7	37.1	
	Fe 2p _{3/2} Fe(III)-FeOOH	710.1-714.3	1.4-1.8	31.8	
	Fe 2p _{3/2} Fe(II)-Fe3O4	708.3-709.2	1.2	7.2	2.2:1.0
Zr-MOF@Fe ₃ O ₄	Fe 2p _{3/2 Fe(III)} -Fe3O4	710-713.4	1.4-3.3	15.7	
	Fe 2p _{3/2 Fe(III)-Fe2O3}	709.6-714.1	1.2-1.7	11	
	Fe 2p _{3/2 Fe(III)} -FeOOH	710.1-714.3	1.4-1.8	66.1	

	Fe 2p _{3/2 Fe(II)-Fe3O4}	708.2-709.2	1.2	4.3	2.2:1.0
Zr-MOF@Fe ₃ O ₄	Fe 2p _{3/2 Fe(III)-Fe3O4}	710-713.4	1.4-3.3	9.3	
+ Hg(II)	Fe 2p _{3/2 Fe(III)-Fe2O3}	709.6-714.1	1.2-1.7	9.5	
	Fe 2p _{3/2 Fe(III)} -FeOOH	710.1-714.3	1.4-1.8	76.9	

Table S8. The adsorption capacity of reported Zr-based MOFs for Hg(II) removal.

Adsorbent	Experimental conditions		$q_{ m e}$	
	рН	Hg(II) (mg	Time (h)	$(mg g^{-1})$
		L ⁻¹)		
PCN-221 ¹	7.1	50.00	0.5	233.60
UiO-66-NH ₂ ²	6.5	13.60	4.0	87.30
DUT-67 (Zr) ³	6.0	0.02	2.0	0.04
Zr-MSA ⁴	7.0	10.00	0.1	734.00
UiO-66-DMTD ⁵	3.0	500.00	10.0	670.50
UiO-66-SH ⁶	4.0	20.00	1.0	785.00
Thiol-modified Zr-DMBD ⁷	6.0	500.00	6.0	171.50
Magnetic MOF-808	6.0	350.00	24.0	302.95
[This study]				

Table S9. Kinetic model equations and parameters

Kinetic model	Linear equation	Parameter
---------------	-----------------	-----------

PFO model	$\log(q_{e} - q_{t}) = \log(q_{e}) - (\frac{k_{p1}}{2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2$	qe: adsorption capacities at
	2.303	equilibrium (mg g ⁻¹); qt :
		adsorption capacities at time t
		(mg g ⁻¹); k_{p1} :pseudo-first-order
		rate constant for the kinetic
		model (mg g^{-1} min).
PSO model	$\frac{t}{a} = \frac{1}{r^2 + b} + \frac{1}{a} + t$	qe: adsorption capacities at
	$q_t q_e * \kappa_2 q_e$	equilibrium (mg g ⁻¹); qt :
	$h = k_{p2} * q_e^2$	adsorption capacities at time t
		(mg g ⁻¹); k_{p2} :pseudo-second-
		order rate constant of
		adsorption (mg g ⁻¹ min); h :
		initial adsorption rate (mg g^{-1}
		\min^{-1}).
Elovich model	$q_t = \frac{1}{\beta} \ln \left(\alpha * \beta \right) + \frac{1}{\beta} ln^{[m]}(t)$	<i>qt</i> : adsorption capacities at
		time t (mg g ⁻¹); α : adsorption
		equilibrium constant (mg g ⁻¹
		min ⁻¹); β :equilibrium constant
		desorption (g mg $^{-1}$).
IPD model	$q_t = k_{kip} * \sqrt{t} + C_i$	<i>qt</i> : adsorption capacities at
		time t (mg g ⁻¹); Kip : rate
		parameter of stage $i \text{ (mg g}^{-1}$
		min ^{$-1/2$}); <i>Ci</i> : intercept of stage <i>i</i>

	that gives an idea about of the
	thickness of boundary layer
	$(mg g^{-1}).$

Table S10. Kinetic parameters obtained for linear fitting of experimental adsorption data

Model	Parameter	Value
PFO model	$q_e (mg g^{-1})$	80.93
	$K_1 (mg g^{-1} min)$	$4.8 imes 10^{-4}$
	R^2	0.72
PSO model	$q_e (mg g^{-1})$	61.31
	$K_2 (mg g^{-1} min^{-1})$	$6.3 imes 10^{-5}$
	R^2	0.95
	h	0.24
Elovich model	$\beta (mg g^{-1})$	0.083
	α (mg g ⁻¹ min)	0.75
	R^2	0.96
IPD model	$K_{ip1} (mg g^{-1} min)$	3.23
	$C_i (mg g^{-1})$	-11.66
	R^2	0.99
	$K_{ip2} (mg g^{-1} min)$	0.51
	$C_i (mg g^{-1})$	32.05
	R^2	0.81

Isotherm	Non-linear equation	Parameter
Langmuir	$Q_e = \frac{Q_m K_L C_e}{1 + K_e C_e}$	Q_m is maximum adsorption capacity (mg
	$1 + K_L c_e$	g^{-1}); <i>qe</i> : amount of adsorbate in the
	$R_L = \frac{1}{1 + K_L C_o}$	adsorbent at equilibrium (mg g ⁻¹); K_L is
	$\Delta G(kJ/mol) = - RTlnKo$	adsorption intensity or Langmuir
	$Ko = K_L * MM * 10^3$	coefficient (L mg ⁻¹); R_L is separation
		factor; ΔG free Gibbs energy (kJ mol ⁻¹).
		MM: Molar mass (g mol ⁻¹)
Freundlich	$Q_e = K_F C_e^{1/n}$	K_F is the constant indicative of
		the relative adsorption capacity (L g^{-1}) and
		<i>n</i> is indicative of the intensity
Dubinin-	$Q_e = q_s * e^{(-K_{ad} * \varepsilon^2)}$	K_{ad} . Dubinin–Radushkevich isotherm
Radushkevich	$\varepsilon = RT * ln^{\frac{1}{10}} (1 + \frac{1}{C_e})$	constant (mol ² kJ ⁻²); q_e : amount of
	$E = 1/\sqrt{2K_{ad}}$	adsorbate in the adsorbent at equilibrium
	v	(mg g ⁻¹); q_s : theoretical isotherm
		saturation capacity (mg g^{-1}); <i>E</i> is free
		energy per molecule of adsorbate (kJ
		$mol^{-1})$
Temkin	$Q_e = \frac{RT}{ht} * ln^{(e)}(At * Ce)$	<i>At</i> : Temkin isotherm equilibrium binding
	<i>RT</i>	constant (L g ⁻¹); <i>bt</i> : Temkin isotherm
B = -	$B = \frac{1}{bt}$	constant; <i>R</i> : universal gas constant (8.314J
		mol ^{-1} K ^{-1}); <i>T</i> : Temperature at 298 K; <i>B</i> :

Table S11. Adsorption isotherm equation and parameters

Constant related to heat of sorption (J
$mol^{-1})$

Table S12. Adsorption isotherm parameters obtained for the non-linear fitting of experimental

adsorption data.

Model	Parameter	Value
	$Q_m (mg g^{-1})$	512.60
Langmuir	$K_L (L mg^{-l})$	0.03
	R _L	0.09-0.64
	$\Delta G(kJ mol^{-1})$	-21.33
	χ ²	109.92
	R ²	0.97
Freundlich	$K_F (L g^{-1})$	34.07
	n	1.79
	χ^2	31.49
	<i>R</i> ²	0.99
Dubinin-	$K_{DR} (mol^2 kJ^{-2})$	7.7×10^{-5}
Radushkevich	$q_s (mg g^{-1})$	45.58
	χ^2	3.56
	<i>R</i> ²	0.95
	$E(kJ mol^{-1})$	9.18
Temkin	$A_t(L g^{-1})$	3.29
	b _t	51.13

В	48.43
χ^2	419.19
R^2	0.88

References

- 1 Z. Seyfi Hasankola, R. Rahimi, H. Shayegan, E. Moradi and V. Safarifard, Removal of Hg²⁺ heavy metal ion using a highly stable mesoporous porphyrinic zirconium metalorganic framework, *Inorganica Chim. Acta*, 2020, **501**, 119264.
- Y. Zhao, D. Wang, W. Wei, L. Cui, C.-W. Cho and G. Wu, Effective adsorption of mercury by Zr(IV)-based metal-organic frameworks of UiO-66-NH₂ from aqueous solution, *Environ. Sci. Pollut. Res.*, 2021, 28, 7068–7075.
- S. Chen, F. Feng, S. Li, X.-X. Li and L. Shu, Metal-organic framework DUT-67 (Zr) for adsorptive removal of trace Hg²⁺ and CH₃Hg⁺ in water, *Chem. Speciation Bioavailability*, 2018, 30, 99–106.
- P. Yang, Y. Shu, Q. Zhuang, Y. Li and J. Gu, A robust MOF-based trap with high-density active alkyl thiol for the super-efficient capture of mercury, *Chem. Commun.*, 2019, 55, 12972–12975.
- 5 L. Fu, S. Wang, G. Lin, L. Zhang, Q. Liu, J. Fang, C. Wei and G. Liu, Post-functionalization of UiO-66-NH₂ by 2,5-Dimercapto-1,3,4-thiadiazole for the high efficient removal of Hg(II) in water, *J. Hazard. Mater.*, 2019, **368**, 42–51.
- J. Li, Y. Liu, Y. Ai, A. Alsaedi, T. Hayat and X. Wang, Combined experimental and theoretical investigation on selective removal of mercury ions by metal organic frameworks modified with thiol groups, *Chem. Eng. J.*, 2018, **354**, 790–801.

L. Ding, X. Luo, P. Shao, J. Yang and D. Sun, Thiol-functionalized Zr-based metal–organic framework for capture of Hg(II) through a proton exchange reaction, *ACS Sustain. Chem. Eng.*, 2018, 6, 8494–8502.