Electronic Supplementary Material (ESI) for Environmental Science: Advances. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Room-temperature Coupling of Methane with Singlet Oxygen

An Hua Huang,^{a, +} Jingsheng Wang,^{a, +} Xing Yang Wu,^{a, b} Hang Chen Liu,^a Jun Cai,^a Guo Qin Xu,^c Song Ling Wang^{*, a, b}

⁺These authors contributed equally to this work.

а	A. Huang, J. Wang, X. Wu, H. Liu, Prof. J.Cai, Prof. S. L. Wang
	School of Environmental Science and Engineering
	Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, China
	E-mail: wangsl@sjtu.edu.cn
L	V. W. Drugf C. I. Warren

- b X. Wu, Prof. S. L. Wang. China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China
- c Prof. G. Q. Xu. Department of Chemistry, National University of Singapore, 117543, Singapore

Contents

Materials and methods	
Chemicals	1
Characterization	2
Photocatalytic couping of methane	2
Experimental Section	3
Experimental set-up for methane coupling.	4
ESR measurement	4
Trapping experiments	5
References	

Materials and methods

Chemicals

Degussa P25 nanopowder (21nm, Macklin) was used as catalyst. Oxone $(2KHSO_5 \cdot KHSO_4 \cdot K_2SO_4)$ was dissolved in deionized water to form a solution of peroxymonosulfate (HSO₅⁻) (1 mol/L). Potassium bichromate (K₂Cr₂O₇), sodium oxalate (Na₂C₂O₄), benzoquinone (C₆H₄O₂), ethanol, tert-butanol (TBA), furfuryl alcohol (11.33 mol/L) were used in trapping experiments. All above chemicals were analytical grade purity. H₂O₂ (30%) was purchased from Shanghai Lingfeng Chemical Reagent Co., Ltd. Ultrahigh purity CH₄ (>99.999%), N₂ (99.999%) were supplied by Air Liquide. CO₂ (99.999%), O₂ (99.999%) were supplied by Shanghai Weichuang Standard Gas Analytical Technology Co., Ltd.

Characterization

The crystalline phase was identified via X-ray diffraction (XRD, SHIMAZDU XRD-6100) with Cu K α radiation (λ =1.54 Å). The images of transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) were obtained on a FEI Tecnai G2 F20 at an accelerating voltage of 200 kV. electron spin resonance (ESR) spectra of the samples were investigated on a Brucker A300 spectrometer.

Photocatalytic couping of methane

The photocatalytic conversion of methane was performed in a stainless-steel batch reactor (~130 ml) with a quartz window on the top of the reactor and a Teflon vessel inside. The reactor could be put in a matched heating jacket which is used to keep temperature and to control magnetic stirring. The 300 W Xe lamp as light source was to simulate the solar light (100 mW/cm²). In a typical experiment, 20 mg catalyst (TiO₂) and 20 ml DI water were added to a beaker, followed by addition of 0.1 ml HSO₅⁻ aqeous solution (1 mol/L). Thereafter, the above suspension was placed into the visual autoclave reactor. Then, the reactor was purged with methane for several times to replace oxygen and air. The photocatalytic reaction was then carried out after injecting methane (2.0 MPa) under solar light irradiation at room temperature (around 25 °C). After photocatalytic reaction of methane for 1 h, the reactive system was cooled down

in ice-water bath for around 1 hour. The obtained products were analyzed by gas chromatography (GC, KECHUANG, GC2002) and high-performance liquid chromatography (HPLC, SHIMADZU, Essentia CTO-16). The GC was equipped with two flame ionization detectors (FID1 and FID2) and a thermal conductivity detector (TCD). We used GC to detect the gas-phase products, including alkane (such as CH₄, CH₃CH₃, CH₃CH₂CH₃, etc.), over-oxidative products (CO, CO₂), and by-products (H₂ and O_2) by FID2 fixed a GDX-502 column (4m \times 3mm), FID1 equipped with high temperature nickel converter for methanizer, and TCD connected to TDX-01 column $(2m \times 3mm)$, respectively. We used GC to detect the liquid products, including alcohol (such as CH₃OH, CH₃CH₂OH, CH₃CH₂CH₂OH, etc.) and aldehydes (such as CH₃CHO, CH₃CH₂CHO, etc.), and ketones (such as CH₃CH₃CO) by FID2. The liquid organic hydrocarbon acids (e.g., CH₃COOH, HCOOH, etc.) were analyzed on a HPLC. Notably, to quantify products accurately, their calibration curves were made in advance. Besides, acetylacetone color-developing method^[1] was used to precisely detect HCHO produced after photocatalytic methane conversion. Actually, under acetic acidammonium acetate buffer solution (pH = 6), HCHO can react with acetylacetone and ammonia to form yellow-colored 3,5-diacetyl-1,4-dihydrolutidine, which demonstrates a characteristic UV-visible absorption at 413 nm. And the concentration of HCHO is proportional to the UV-visible absorption with peak intensity at 413 nm. Similarly, the comparative experiment with different oxidants including H_2O_2 (10.2 µL), O_2 (0.5 MPa), CO_2 (0.5 MPa) were performed via the same photocatalytic procedure.

Experimental Section

Experimental set-up for methane coupling

ESR measurement

In the typical test, 20 mg Au₁/WO₃ catalyst was dispersed in 20 ml deionized water, followed by stirring for 5 min. After that, 69 μ l peroxymonosulfate (HSO₅⁻, 2KHSO₅·KHSO₄·K₂SO₄) aqueous solution was added in the above suspension. Then, both 100 μ l 5-dimethyl-1-pyrroline N-oxide (DMPO) (100 mM) aqueous solution and above reactive suspension (100 μ l) were added into a capillary tube for •OH and SO₄⁻⁻ measurement. For the measurement of •CH₃, the reactive suspension (100 μ l) was obtained with the reaction with methane of 2 MPa for one hour in advance. After visible light irradiation for 5 min (a Xenon lamp fixed with UVCUT 420nm filter as light source), the typical •OH signal was collected. With the same procedure, 100 μ l DMPO (100 mM) methanol solution was used for •O₂⁻ detection and 100 μ l 2,2,6,6tetramethylpiperidine (TEMP) (100 mM) aqueous solution for ¹O₂ detection.

Trapping experiments

The trapping experiments of active species were implemented to study the mechanism process of photocatalytic conversion of methane. Here, 2 mmol of $K_2Cr_2O_7$, para-Quinone, salicylic acid, and $Na_2C_2O_4$ were adopted as the scavengers of e^- , $\bullet O_2^-$, $\bullet OH$, and h^+ , respectively.^[2] Furfuryl alcohol (FFA) of 34.5 mmol was used as a scavenger

of ${}^{1}O_{2}$.^[3] The below are the corresponding reactions between the scavengers and active species in details. We also cited the corresponding literature.

1) salicylic acid for \cdot OH trapping^[4]:

2) $K_2Cr_2O_7$ for electron (e⁻) trapping^[5]:

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O^{-}$$

3) para-Quinone for superoxide radical ($\cdot O_2^-$) trapping:^[6]

4) $Na_2C_2O_4$ for holes (h⁺) trapping:^[7]

The $C_2O_4^{2-}$ could be oxidized by photo-generated holes (h⁺) to CO_3^{2-} or CO_2 based on literature as below reaction:

$$C_2O_4^{2-} + h^+ \rightarrow CO_3^{2-} \text{ or } CO_2$$

5) furfuryl alcohol for ${}^{1}O_{2}$ trapping:^[8]

Figure S1. Morphology and structure of TiO_2 (Degussa P25) catalyst: (a) XRD patterns, (b) TEM, and (c) HR-TEM images

Figure S2. (a) Photocatalytic activity of methane oxidation and (b) corresponding selectivity of CH_3CH_3 depending on different amounts of P.

References

- [1] P. Bisgaard, L. MØlhave, B. Rietz, P. Wilhardt, Anal. Lett. 2006, 16, 1457-1468.
- Y. Li, J. Li, G. Zhang, K. Wang, X. Wu, ACS Sustain. Chem. Eng. 2019, 7, 4382-4389.
- [3] P. Hu, H. Su, Z. Chen, C. Yu, Q. Li, B. Zhou, P. J. J. Alvarez, M. Long, *Environ. Sci. Technol.* 2017, 51, 11288-11296.
- [4] a) S. Ai, Q. Wang, H. Li, L. Jin, *J. Electroanal. Chem.* 2005, 578, 223-229; b) C.
 Y. Chang, Y. H. Hsieh, K. Y. Cheng, L. L. Hsieh, T. C. Cheng, K. S. Yao, *Water Sci. Technol.* 2008, 58, 873-879.
- [5] S. Ai, J. Li, Y. Yang, M. Gao, Z. Pan, L. Jin, *Anal. Chim. Acta.* 2004, 509, 237-241.
- [6] I. B. Afanas' ev, S. V. Prigoda, T. Y. Mal'tseva, G. I. Samokhvalov, *Int. J. Chem. Kinet.* 1974, 6, 643-661.
- [7] aJ. Kim, D. W. Hwang, H. G. Kim, S. W. Bae, J. S. Lee, W. Li, S. H. Oh, *Top. in Catal.* 2005, *35*, 295-303; bK. Wang, Y. Li, G. Zhang, J. Li, X. Wu, *Appl. Catal. B: Environ.* 2019, *240*, 39-49.
- [8] W. R. Haag, J. r. Hoigne', E. Gassman, A. M. Braun, *Chemosphere* 1984, *13*, 631-640.