Electronic Supplementary Material (ESI) for Environmental Science: Advances. This journal is © The Royal Society of Chemistry 2022

Supplementary Materials

Significance of anaerobic oxidation of methane (AOM) in mitigating methane emission from major natural and anthropogenic sources: a review of AOM rates in recent publications

Yaohuan Gao^a, Yong Wang^a, Hyung-Sool Lee^{b,c}, Pengkang Jin^{a*}

^a Institute of Global Environmental Change, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, China

^b Institute for Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH) 200 Hyeoksin-ro, Naju-si, Jeollanam-do, Republic of Korea

^c Department of Civil & Environmental Engineering, University of Waterloo, 200 University Avenue West, ON, Canada N2L 3G1

*Corresponding Author: Email: pkjin@xjtu.edu.cn Institute of Global Environmental Change Xi'an Jiaotong University No.19 Building, iHarbour campus, Xi'xian District, Xi'an, 712000, Shaanxi, China

Description of the material:

- 52 pages
- Text on CiteSpace analysis, statistical data analysis, and AOM information for cold seep systems
- Table S1 showing data used for Table 1
- Tables S2-S9 showing the rate information for Figures 3-7

Methods

CiteSpace and the procedure of co-citation analysis

Publications from 2010 until 2021 were screened by using the keywords "Anaerobic methanotroph*" or "anaerobic methane oxidation" or "reverse methanogenesis" or "Nitrite-driven anaerobic methane oxidation" or "Nitrate-driven anaerobic methane oxidation" or "Nitrate-dependent anaerobic methane oxidation" or "Nitrite-dependent anaerobic methane oxidation" from the Web of Science Core Collection. Totally 1384 articles and reviews were returned and the full data of the search results were directly processed and exported for analysis using CiteSpace (5.3.R11) software.

CiteSpace is a Java-based bibliometric software for the visualization and analysis of co-citation networks, with the primary purpose being to facilitate the analysis of the emerging trend in a knowledge domain ¹. It also allows us to investigate the knowledge structure in relevant knowledge fields, and detect correlations in scientific literature.

The selected articles were imported into CiteSpace. The time slice was set to one year. Some of the main settings are g-index 20, Top N = 30, and Top N% 5. For the co-citation network analysis, the "term source" was extracted from the title, abstract, and author keywords. The "term type" was set as "noun phrases". The "node type" was set as "reference" and "keyword". The first set of the "threshold" values was set to "5, 5, 20" (i.e., citation, co-citation, and cosine coefficient value) to reduce the number of nodes and "Pathfinder" was also checked to further simplify the network.

The co-citation network is presented in the form of nodes and lines (Figure 1). The size of nodes reflects the frequency of relevant data references or occurrences, the lines indicate the relationship between the nodes, and the thickness of the lines between nodes reflects the strength of links between data. The quality of the clustering effect was measured using modularity (Q) and average silhouette score (S). Specifically, the Q value represents the degree of modularity; $Q \ge 0.3$ means that the modularization of the network is significant, and a higher Q corresponds to improved clustering. The S value measures the homogeneity of networks; $S \ge 0.5$ means that the result of clustering is reasonable, and a higher S corresponds to the increased homogeneity of the network. The maximum of both values is one. Here, the obtained Q is 0.7417, S is 0.8942, and the harmonic mean is 0.8108. The clusters were named by terms from the titles.

Collection of the AOM rates, data analysis, and more

Most of the AOM rates were directly imported from a reference after the conversion of the unit. Some others were computed by dividing the reported rate of methane oxidation (e.g. μ mol CH₄/hour) by the reactive slurry volume or the volume of studied soil/sediment during AOM rate measurement. Due to the various liquid volumes applied during rate measurement, the unit mass (g) is not converted to unit volume (1 cm³) unless the density is also reported. For DAMO systems, the AOM rates were obtained following the stoichiometric relationships as shown in the main text².

Normality was checked with the *DistributionFitTest* function and the Cramér-von Mises test in Wolfram Mathematica 11.3. The null hypotheses that the nitrate-/nitrite-AOM rates and the K values of either freshwater or marine environment are distributed according to the normal distribution were rejected (p<0.01, alpha = 0.05). Then, the homogeneity of variance of the two groups of rates was checked with *VarianceEquivalenceTest* function, and returned a p-value of 0.06. Hence, the null hypothesis that the populations have equal variances is not rejected at the 5 percent level based on the Conover test. So, Mann-Whitney U-test was applied in the comparison of these independent rates of nitrate-DAMO and nitrite-DAMO. Following these same analyses, Mann-Whitney U-test was also applied for comparing these independent K values of different methanotrophs in the freshwater or marine environment.

Normality of AOM rates grouped by various environments was checked with the *DistributionFitTest* function as well. The AOM rates in freshwaters and wetlands did not pass the normality check, with p-

values less than 10⁻⁸, while the AOM rate in paddy fields showed a p-value of 0.056. Besides, the homogeneity of variance of AOM rates in freshwaters, wetlands, and paddy fields was checked with *VarianceEquivalenceTest* function, which returned a p-value of 0.00302 (Conover), indicating the three variances are not equal. Therefore, the Mood's median test was selected to compare the medians of AOM rates in these three environments. Besides, the rates of AOM and aerobic methane oxidation in lakes/ponds/reservoirs did not pass the normality check (p-values<0.001) and the homogeneity of variance test (p-values<10⁻⁸, Conover) either, and thus the comparison of the rates in anoxic and aerobic conditions was conducted with Mood's median test as well. The Sankey plot (Figure 8) was prepared online (https://sankeymatic.com/).

AOM rates information and capacity estimation in cold seep systems

AOM at simulated ocean bottom pressures with samples collected from various cold seep systems and coastal marine basins showed rates of $0.5-2.8 \times 10^4$ nmol CH₄/cm³/d (n=38, median=141 nmol CH₄/cm³/d, Q1-Q3: 16-100 nmol CH₄/cm³/d)³⁻¹¹. If the estimate of global cold seeps coverage (1.98×10^{10} m²) by Boetius and Wenzhöfer¹² is used and AOM is assumed to occur at a median depth of 20 cm (range 15-30 cm) in seep sediments¹³, AOM is capable of oxidizing 3 [Q1-Q3: 0.4-39.6] Tg CH₄/year (Table 1) in cold seep systems.

Inner shelf, 0-		
Depth	SMT	
_[m]	[mbsf]	Reference
0.1	4.2	2018 Global diffusive fluxes of methane in marine sediments ¹⁵
0.1	2.8	2018 Global diffusive fluxes of methane in marine sediments
0.3	0.3	2018 Global diffusive fluxes of methane in marine sediments
0.3	0.4	2018 Global diffusive fluxes of methane in marine sediments
0.3	0.4	2018 Global diffusive fluxes of methane in marine sediments
0.4	0.3	2018 Global diffusive fluxes of methane in marine sediments
0.4	0.4	2018 Global diffusive fluxes of methane in marine sediments
0.4	0.5	2018 Global diffusive fluxes of methane in marine sediments
0.5	0.4	2018 Global diffusive fluxes of methane in marine sediments
0.6	0.6	2018 Global diffusive fluxes of methane in marine sediments
1.5	0.2	2018 Global diffusive fluxes of methane in marine sediments
2	0.5	2018 Global diffusive fluxes of methane in marine sediments
2	0.1	2018 Global diffusive fluxes of methane in marine sediments
4	0.2	2018 Global diffusive fluxes of methane in marine sediments
7	0.9	2018 Global diffusive fluxes of methane in marine sediments
7	1.3	2018 Global diffusive fluxes of methane in marine sediments
7	1.3	2018 Global diffusive fluxes of methane in marine sediments
7.8	0.7	2018 Global diffusive fluxes of methane in marine sediments
9	1.1	2018 Global diffusive fluxes of methane in marine sediments
9.4	4.2	2018 Global diffusive fluxes of methane in marine sediments
10	0.04	2018 Global diffusive fluxes of methane in marine sediments
10	0.1	2018 Global diffusive fluxes of methane in marine sediments
10	1.2	2018 Global diffusive fluxes of methane in marine sediments

Table S1. Depth information for methane oxidation capacity potential computation in Table 1 (refer to the main text for some of the references listed in this table). Outliers were removed following a method reported elsewhere¹⁴.

Inner shelf, 10-		
<u>50 m</u>	OMT	
Depth [m]	SNLI [mbsf]	Reference
25	0.05	2018 Global diffusive fluxes of methane in marine sediments
26	0.05	2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A modeling perspective
25	0.00	2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A
33.2	0.09	2018 Global diffusive fluxes of methane in marine sediments
40	0.1	2018 Global diffusive fluxes of methane in marine sediments
40	0.1	2017 Anaerobic Methane-Oxidizing Microbial Community in a Coastal Marine Sediment: Anaerobic Methanotrophy Dominated by ANME-3 ¹⁶
18.8	0.2	2018 Global diffusive fluxes of methane in marine sediments
18.8	0.2	2018 Global diffusive fluxes of methane in marine sediments
33.2	0.2	2018 Global diffusive fluxes of methane in marine sediments
37	0.2	2018 Global diffusive fluxes of methane in marine sediments
25	0.29	2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A modeling perspective
20.8	0.3	2018 Global diffusive fluxes of methane in marine sediments
26	0.3	2018 Global diffusive fluxes of methane in marine sediments
26	0.3	2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A modeling perspective
26	0.3	2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A modeling perspective
48	0.3	2018 Global diffusive fluxes of methane in marine sediments
25	0.35	2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A modeling perspective
17.3	0.4	2018 Global diffusive fluxes of methane in marine sediments
25	0.4	2018 Global diffusive fluxes of methane in marine sediments
26	0.4	2018 Global diffusive fluxes of methane in marine sediments
45	0.4	2018 Global diffusive fluxes of methane in marine sediments
25.1	0.5	2018 Global diffusive fluxes of methane in marine sediments
27.5	0.5	2018 Global diffusive fluxes of methane in marine sediments
30	0.5	2018 Global diffusive fluxes of methane in marine sediments
44	0.5	2018 Global diffusive fluxes of methane in marine sediments
45	0.5	2008 Thermodynamic and kinetic control on anaerobic oxidation of methane in marine sediments
17.3	0.6	2018 Global diffusive fluxes of methane in marine sediments
23	0.7	2018 Global diffusive fluxes of methane in marine sediments
36	0.7	2018 Global diffusive fluxes of methane in marine sediments
46	0.7	2018 Global diffusive fluxes of methane in marine sediments
15	0.7	2019 Global diffusive fluxes of methane in marine sediments
23	0.8	2018 Global diffusive fluxes of methane in marine sediments
19	0.9	2018 Global diffusive fluxes of methane in marine sediments
29	1	2018 Global diffusive fluxes of methane in marine sediments
44	1	2018 Global diffusive fluxes of methane in marine sediments
50	1	2018 Global diffusive fluxes of methane in marine sediments 2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A
27	1.1	modeling perspective
40	1.1	2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A modeling perspective
21	1.2	2018 Global diffusive fluxes of methane in marine sediments
47	1.3	2018 Global diffusive fluxes of methane in marine sediments

22	1.4	2018 Global diffusive fluxes of methane in marine sediments
15	1.5	2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A modeling perspective
19.5	1.5	2018 Global diffusive fluxes of methane in marine sediments
28	1.6	2018 Global diffusive fluxes of methane in marine sediments
16	1.85	2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A modeling perspective
15	1.9	2018 Global diffusive fluxes of methane in marine sediments
20	2	2018 Global diffusive fluxes of methane in marine sediments
40	2.1	2018 Global diffusive fluxes of methane in marine sediments
16.1	2.3	2018 Global diffusive fluxes of methane in marine sediments
19.1	2.3	2018 Global diffusive fluxes of methane in marine sediments
19.3	2.4	2018 Global diffusive fluxes of methane in marine sediments
22	2.4	2018 Global diffusive fluxes of methane in marine sediments
19.1	2.5	2018 Global diffusive fluxes of methane in marine sediments
34	2.8	2018 Global diffusive fluxes of methane in marine sediments
19	2.9	2018 Global diffusive fluxes of methane in marine sediments
19.1	3.5	2018 Global diffusive fluxes of methane in marine sediments
19	3.6	2018 Global diffusive fluxes of methane in marine sediments
49	3.7	2018 Global diffusive fluxes of methane in marine sediments
20	3.8	2018 Global diffusive fluxes of methane in marine sediments
18.8	3.9	2018 Global diffusive fluxes of methane in marine sediments
18.8	4	2018 Global diffusive fluxes of methane in marine sediments
18	4.7	2018 Global diffusive fluxes of methane in marine sediments
18.6	4.7	2018 Global diffusive fluxes of methane in marine sediments
28	4.8	2018 Global diffusive fluxes of methane in marine sediments
16.8	5.2	2018 Global diffusive fluxes of methane in marine sediments
Outer s	shelf,	
Depth	m SMT	
[m]	[mbsf]	Reference
90	0.2	2018 Global diffusive fluxes of methane in marine sediments
65	0.3	2018 Global diffusive fluxes of methane in marine sediments
87	0.3	2018 Global diffusive fluxes of methane in marine sediments
74	0.4	2018 Global diffusive fluxes of methane in marine sediments
93	0.4	2018 Global diffusive fluxes of methane in marine sediments
74	0.5	2018 Global diffusive fluxes of methane in marine sediments
96	0.5	2018 Global diffusive fluxes of methane in marine sediments
146.8	0.5	2018 Global diffusive fluxes of methane in marine sediments
120	0.5	2020 Rates and Microbial Players of Iron-Driven Anaerobic Oxidation of Methane in Methanic Marine Sediments
147	0.5	2008 Thermodynamic and kinetic control on anaerobic oxidation of methane in marine sediments
72	0.6	2018 Global diffusive fluxes of methane in marine sediments
77	0.7	2018 Global diffusive fluxes of methane in marine sediments
93	0.7	2018 Global diffusive fluxes of methane in marine sediments

0.8 2018 Global diffusive fluxes of methane in marine sediments

0.8 2018 Global diffusive fluxes of methane in marine sediments

2018 Global diffusive fluxes of methane in marine sediments

74 74

77

0.8

128	0.8	2018 Global diffusive fluxes of methane in marine sediments
52	0.9	2018 Global diffusive fluxes of methane in marine sediments
200	0.9	2018 Global diffusive fluxes of methane in marine sediments
150	0.0	2001 Sulfate reduction and anaerobic methane oxidation
150	0.9	in Black Sea sediments
92	1	2018 Global diffusive fluxes of methane in marine sediments
70	1.1	2018 Global diffusive fluxes of methane in marine sediments
75	1.1	2018 Global diffusive fluxes of methane in marine sediments
110	1.1	modeling perspective
109	1.2	2018 Global diffusive fluxes of methane in marine sediments
86.3	1.4	2018 Global diffusive fluxes of methane in marine sediments
65	1.5	2018 Global diffusive fluxes of methane in marine sediments
100	1.7	2018 Global diffusive fluxes of methane in marine sediments
145	1.7	2018 Global diffusive fluxes of methane in marine sediments
70	1.8	2018 Global diffusive fluxes of methane in marine sediments
130	1.8	2018 Global diffusive fluxes of methane in marine sediments
		2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A
130	1.8	modeling perspective
98	2	2018 Global diffusive fluxes of methane in marine sediments
181	2.1	2018 Global diffusive fluxes of methane in marine sediments
181	2.1	modeling perspective
178	2.2	2018 Global diffusive fluxes of methane in marine sediments
87	2.3	2018 Global diffusive fluxes of methane in marine sediments
81	2.6	2018 Global diffusive fluxes of methane in marine sediments
		2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A
86	3.1	modeling perspective
53	3.2	2018 Global diffusive fluxes of methane in marine sediments
73	4	2018 Global diffusive fluxes of methane in marine sediments
126	16.3	2018 Global diffusive fluxes of methane in marine sediments
98	19.9	2018 Global diffusive fluxes of methane in marine sediments
119	28	2018 Global diffusive fluxes of methane in marine sediments
151	29.6	2018 Global diffusive fluxes of methane in marine sediments
152	29.6	2018 Global diffusive fluxes of methane in marine sediments
88	355.8	2018 Global diffusive fluxes of methane in marine sediments

_

Slope, 200-		
2000 m		
Depth	SMT	
[m]	[mbsf]	Reference
790	0.019	2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A modeling perspective
		2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A
790	0.025	modeling perspective
		2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A
777	0.03	modeling perspective
775	0.035	2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A modeling perspective
		2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A
1000	0.035	modeling perspective
210	0.05	2014 Iron-Mediated Anaerobic Oxidation of Methane in Brackish Coastal Sediments ¹⁷
		2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A
775	0.05	modeling perspective

790	0.05	2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A modeling perspective
1005	0.05	2018 Global diffusive fluxes of methane in marine sediments
214	0.03	2018 Global diffusive fluxes of methane in marine sediments
332	0.07	2018 Global diffusive fluxes of methane in marine sediments
225	0.08	2018 Global diffusive fluxes of methane in marine sediments
900	0.1	2005 Microbial methane turnover in different marine habitats ⁷
900	0.1	2003 Wherebolar methane turnover in different marine habitats 2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A
225	0.12	modeling perspective
777	0.125	2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A modeling perspective
		2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A
1720	0.14	modeling perspective
900	0.15	2005 Microbial methane turnover in different marine habitats
225	0.18	modeling perspective
204	0.2	2018 Global diffusive fluxes of methane in marine sediments
214	0.2	2018 Global diffusive fluxes of methane in marine sediments
900	0.3	2005 Microbial methane turnover in different marine habitats
1305	0.3	2018 Global diffusive fluxes of methane in marine sediments
900	0.4	2005 Microbial methane turnover in different marine habitats
241	0.5	2018 Global diffusive fluxes of methane in marine sediments
1008	0.5	2018 Global diffusive fluxes of methane in marine sediments
1296	0.5	2018 Global diffusive fluxes of methane in marine sediments
333	0.6	2018 Global diffusive fluxes of methane in marine sediments
1400	0.6	2018 Global diffusive fluxes of methane in marine sediments
1400	0.6	2018 Global diffusive fluxes of methane in marine sediments
308.7	0.7	2018 Global diffusive fluxes of methane in marine sediments
407	0.7	2018 Global diffusive fluxes of methane in marine sediments
397	0.8	2018 Global diffusive fluxes of methane in marine sediments
1210	0.8	2018 Global diffusive fluxes of methane in marine sediments
222	0.9	2018 Global diffusive fluxes of methane in marine sediments
269	0.9	2018 Global diffusive fluxes of methane in marine sediments
386	0.9	2018 Global diffusive fluxes of methane in marine sediments
782	0.9	2018 Global diffusive fluxes of methane in marine sediments
923	0.9	2018 Global diffusive fluxes of methane in marine sediments
265.8	1	2018 Global diffusive fluxes of methane in marine sediments
280	1	2018 Global diffusive fluxes of methane in marine sediments
280	1	2018 Global diffusive fluxes of methane in marine sediments
261	1	2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A
201.1	1 1	2018 Global diffusive fluxes of methane in marine sediments
542	1.1	2018 Global diffusive fluxes of methane in marine sediments
1018	1.1	2018 Global diffusive fluxes of methane in marine sediments
1018	1.1	2016 Global diffusive fluxes of methane in marine sediments
1203	1.1	2016 Global diffusive fluxes of methane in marine sediments
1/50	1.1	2018 Global diffusive fluxes of methane in marine sediments
1430	1.1	2016 Global diffusive fluxes of methane in marine sediments
254.2	1.2	2016 Global diffusive fluxes of methane in marine sediments
500	1.2	2016 Clobal diffusive fluxes of methans in marine sediments
590	1.2	2016 Global diffusive fluxes of methane in marine sediments

590	1.2	2018 Global diffusive fluxes of methane in marine sediments
659	1.2	2018 Global diffusive fluxes of methane in marine sediments
342	1.3	2018 Global diffusive fluxes of methane in marine sediments
590	1.3	2018 Global diffusive fluxes of methane in marine sediments
590	1.3	2018 Global diffusive fluxes of methane in marine sediments
590	1.3	2018 Global diffusive fluxes of methane in marine sediments
879	1.3	2018 Global diffusive fluxes of methane in marine sediments
902	1.3	2018 Global diffusive fluxes of methane in marine sediments
1198	1.3	2018 Global diffusive fluxes of methane in marine sediments
1992	1.3	2018 Global diffusive fluxes of methane in marine sediments
342	1.4	2018 Global diffusive fluxes of methane in marine sediments 2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A
1020	1.4	modeling perspective
1168	1.4	2018 Global diffusive fluxes of methane in marine sediments
276	1.6	2018 Global diffusive fluxes of methane in marine sediments
374	1.6	2018 Global diffusive fluxes of methane in marine sediments
633	1.6	2018 Global diffusive fluxes of methane in marine sediments
633	1.6	2018 Global diffusive fluxes of methane in marine sediments
1970	1.6	2018 Global diffusive fluxes of methane in marine sediments
2000	1.6	2018 Global diffusive fluxes of methane in marine sediments
209	1.7	2018 Global diffusive fluxes of methane in marine sediments
897	1.7	2018 Global diffusive fluxes of methane in marine sediments
1014	1.7	2018 Global diffusive fluxes of methane in marine sediments
205	1.8	2018 Global diffusive fluxes of methane in marine sediments
408	1.8	2018 Global diffusive fluxes of methane in marine sediments
460	1.8	2018 Global diffusive fluxes of methane in marine sediments
587	1.8	2018 Global diffusive fluxes of methane in marine sediments
758	1.8	2018 Global diffusive fluxes of methane in marine sediments
1686	1.8	2018 Global diffusive fluxes of methane in marine sediments
501	1.9	2018 Global diffusive fluxes of methane in marine sediments
647	1.9	2018 Global diffusive fluxes of methane in marine sediments
1304	1.9	2018 Global diffusive fluxes of methane in marine sediments
1534	1.9	2018 Global diffusive fluxes of methane in marine sediments
667	2	2018 Global diffusive fluxes of methane in marine sediments
700	2	2018 Global diffusive fluxes of methane in marine sediments
2000	2	2018 Global diffusive fluxes of methane in marine sediments
1022	2.1	2018 Global diffusive fluxes of methane in marine sediments
1196	2.1	2018 Global diffusive fluxes of methane in marine sediments
377	2.2	2018 Global diffusive fluxes of methane in marine sediments
616	2.2	2018 Global diffusive fluxes of methane in marine sediments
1267	2.2	2018 Global diffusive fluxes of methane in marine sediments
396	2.4	2018 Global diffusive fluxes of methane in marine sediments
1284	2.4	2018 Global diffusive fluxes of methane in marine sediments
1302	2.4	2018 Global diffusive fluxes of methane in marine sediments
	a =	2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A
396	2.5	modeling perspective
647	2.5	2018 Global diffusive fluxes of methane in marine sediments 2013 Quantitative analysis of anaerobic oxidation of methane (AQM) in marine sediments
1700	2.5	modeling perspective

1828	2.5	2018 Global diffusive fluxes of methane in marine sediments
685	2.6	2018 Global diffusive fluxes of methane in marine sediments
275	2.7	2018 Global diffusive fluxes of methane in marine sediments
690	2.7	2018 Global diffusive fluxes of methane in marine sediments
713	2.7	2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A modeling perspective
1282	2.7	2018 Global diffusive fluxes of methane in marine sediments
1292	2.7	2018 Global diffusive fluxes of methane in marine sediments
374	2.8	2018 Global diffusive fluxes of methane in marine sediments
907	2.8	2018 Global diffusive fluxes of methane in marine sediments
685	2.85	2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A modeling perspective
647	3	2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A modeling perspective
785	3.2	2018 Global diffusive fluxes of methane in marine sediments
998	3.2	2018 Global diffusive fluxes of methane in marine sediments
1157	3.2	2018 Global diffusive fluxes of methane in marine sediments
686	3.3	2018 Global diffusive fluxes of methane in marine sediments
890	3.3	2018 Global diffusive fluxes of methane in marine sediments
1045	3.3	2018 Global diffusive fluxes of methane in marine sediments
919	3.4	2018 Global diffusive fluxes of methane in marine sediments
951	3.4	2018 Global diffusive fluxes of methane in marine sediments
1274	3.4	2018 Global diffusive fluxes of methane in marine sediments
1300	3.4	2018 Global diffusive fluxes of methane in marine sediments
1306	3.4	2018 Global diffusive fluxes of methane in marine sediments
1373	3.4	2018 Global diffusive fluxes of methane in marine sediments
1090	3.5	2018 Global diffusive fluxes of methane in marine sediments
1176	3.5	2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A modeling perspective
1373	3.5	2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A modeling perspective
790	3.6	2018 Global diffusive fluxes of methane in marine sediments
791	3.6	2018 Global diffusive fluxes of methane in marine sediments
1000	3.6	2018 Global diffusive fluxes of methane in marine sediments
1015	3.6	2018 Global diffusive fluxes of methane in marine sediments
1100	3.6	2018 Global diffusive fluxes of methane in marine sediments
799	3.7	2018 Global diffusive fluxes of methane in marine sediments
1328	3.7	2018 Global diffusive fluxes of methane in marine sediments
1400	3.7	2018 Global diffusive fluxes of methane in marine sediments
2000	3.7	2018 Global diffusive fluxes of methane in marine sediments
771	3.8	2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A modeling perspective
1503	3.8	2018 Global diffusive fluxes of methane in marine sediments
500	3.9	2018 Global diffusive fluxes of methane in marine sediments
306	4.1	2018 Global diffusive fluxes of methane in marine sediments
1005	4.1	2018 Global diffusive fluxes of methane in marine sediments
1023	4.1	2018 Global diffusive fluxes of methane in marine sediments
1472	4.2	2018 Global diffusive fluxes of methane in marine sediments
1980	4.2	2018 Global diffusive fluxes of methane in marine sediments
2000	4.2	2018 Global diffusive fluxes of methane in marine sediments

728 4.4 2018 Global diffusive fluxes of methane in marine sediments 124 4.4 2018 Global diffusive fluxes of methane in marine sediments 316 4.6 2018 Global diffusive fluxes of methane in marine sediments 1176 4.7 2018 Global diffusive fluxes of methane in marine sediments 1219 4.8 2018 Global diffusive fluxes of methane in marine sediments 1208 5 2018 Global diffusive fluxes of methane in marine sediments 2000 5.1 2018 Global diffusive fluxes of methane in marine sediments 2020 5.1 2018 Global diffusive fluxes of methane in marine sediments 1327 5.2 2018 Global diffusive fluxes of methane in marine sediments 1327 5.2 2018 Global diffusive fluxes of methane in marine sediments 1076 5.3 2018 Global diffusive fluxes of methane in marine sediments 1076 5.3 2018 Global diffusive fluxes of methane in marine sediments 1000 5.5 2018 Global diffusive fluxes of methane in marine sediments 1000 5.5 2018 Global diffusive fluxes of methane in marine sediments 1013 6 2018 Global diffusive fluxes of methane in marine sediments 1013 6	1186	4.3	2018 Global diffusive fluxes of methane in marine sediments
1224 4.4 2018 Global diffusive fluxes of methane in marine sediments 1176 4.5 2018 Global diffusive fluxes of methane in marine sediments 1105 4.7 2018 Global diffusive fluxes of methane in marine sediments 1219 4.8 2018 Global diffusive fluxes of methane in marine sediments 1219 4.8 2018 Global diffusive fluxes of methane in marine sediments 238 5.1 2018 Global diffusive fluxes of methane in marine sediments 238 5.1 2018 Global diffusive fluxes of methane in marine sediments 1076 5.3 2018 Global diffusive fluxes of methane in marine sediments 1076 5.3 2018 Global diffusive fluxes of methane in marine sediments 1076 5.3 2018 Global diffusive fluxes of methane in marine sediments 1076 5.3 2018 Global diffusive fluxes of methane in marine sediments 1076 5.3 2018 Global diffusive fluxes of methane in marine sediments 1080 5.6 2018 Global diffusive fluxes of methane in marine sediments 1090 5.7 2018 Global diffusive fluxes of methane in marine sediments 1090 5.7 2018 Global diffusive fluxes of methane in marine sediments 1013 6<	728	4.4	2018 Global diffusive fluxes of methane in marine sediments
1176 4.5 2018 Global diffusive fluxes of methane in marine sediments 316 4.6 2018 Global diffusive fluxes of methane in marine sediments 1195 4.7 2018 Global diffusive fluxes of methane in marine sediments 1219 4.8 2018 Global diffusive fluxes of methane in marine sediments 1208 Global diffusive fluxes of methane in marine sediments 238 5.1 2018 Global diffusive fluxes of methane in marine sediments 2400 5.1 2018 Global diffusive fluxes of methane in marine sediments 1327 5.2 2018 Global diffusive fluxes of methane in marine sediments 1076 5.3 2018 Global diffusive fluxes of methane in marine sediments 1076 5.3 2018 Global diffusive fluxes of methane in marine sediments 1000 5.7 2018 Global diffusive fluxes of methane in marine sediments 1000 5.7 2018 Global diffusive fluxes of methane in marine sediments 1013 6 2018 Global diffusive fluxes of methane in marine sediments 1226 6.1 2018 Global diffusive fluxes of methane in marine sediments 1313 6 2018 Global diffusive fluxes of methane in marine sediments 1326 6.1 2018 Global	1224	4.4	2018 Global diffusive fluxes of methane in marine sediments
316 4.6 2018 Global diffusive fluxes of methane in marine sediments 1105 4.7 2018 Global diffusive fluxes of methane in marine sediments 1219 4.8 2018 Global diffusive fluxes of methane in marine sediments 1008 5 2018 Global diffusive fluxes of methane in marine sediments 2000 5.1 2018 Global diffusive fluxes of methane in marine sediments 2000 5.1 2018 Global diffusive fluxes of methane in marine sediments 1076 5.3 2018 Global diffusive fluxes of methane in marine sediments 1076 5.3 2018 Global diffusive fluxes of methane in marine sediments 1076 5.4 2018 Global diffusive fluxes of methane in marine sediments 1000 5.5 2018 Global diffusive fluxes of methane in marine sediments 1000 5.7 2018 Global diffusive fluxes of methane in marine sediments 1000 5.7 2018 Global diffusive fluxes of methane in marine sediments 1000 5.7 2018 Global diffusive fluxes of methane in marine sediments 1000 5.7 2018 Global diffusive fluxes of methane in marine sediments 1000 5.7 2018 Global diffusive fluxes of methane in marine sediments 1013 6 </td <td>1176</td> <td>4.5</td> <td>2018 Global diffusive fluxes of methane in marine sediments</td>	1176	4.5	2018 Global diffusive fluxes of methane in marine sediments
1105 4.7 2018 Global diffusive fluxes of methane in marine sediments 1219 4.8 2018 Global diffusive fluxes of methane in marine sediments 1366 4.8 2018 Global diffusive fluxes of methane in marine sediments 238 5.1 2018 Global diffusive fluxes of methane in marine sediments 2300 5.1 2018 Global diffusive fluxes of methane in marine sediments 1327 5.2 2018 Global diffusive fluxes of methane in marine sediments 1076 5.3 2018 Global diffusive fluxes of methane in marine sediments 1076 5.3 2018 Global diffusive fluxes of methane in marine sediments 1076 5.4 2018 Global diffusive fluxes of methane in marine sediments 1076 5.2 2018 Global diffusive fluxes of methane in marine sediments 1076 5.2 2018 Global diffusive fluxes of methane in marine sediments 1000 5.7 2018 Global diffusive fluxes of methane in marine sediments 1010 6 2018 Global diffusive fluxes of methane in marine sediments 1226 6.1 2018 Global diffusive fluxes of methane in marine sediments 1312 6.2 2018 Global diffusive fluxes of methane in marine sediments 14774 6.	316	4.6	2018 Global diffusive fluxes of methane in marine sediments
1219 4.8 2018 Global diffusive fluxes of methane in marine sediments 1366 4.8 2018 Global diffusive fluxes of methane in marine sediments 238 5.1 2018 Global diffusive fluxes of methane in marine sediments 237 5.2 2018 Global diffusive fluxes of methane in marine sediments 1327 5.2 2018 Global diffusive fluxes of methane in marine sediments 1076 5.3 2018 Global diffusive fluxes of methane in marine sediments 1076 5.3 2018 Global diffusive fluxes of methane in marine sediments 1076 5.3 2018 Global diffusive fluxes of methane in marine sediments 1076 5.3 2018 Global diffusive fluxes of methane in marine sediments 1076 5.3 2018 Global diffusive fluxes of methane in marine sediments 1076 5.4 2018 Global diffusive fluxes of methane in marine sediments 1076 5.2 2018 Global diffusive fluxes of methane in marine sediments 1076 5.2 2018 Global diffusive fluxes of methane in marine sediments 1076 5.2 2018 Global diffusive fluxes of methane in marine sediments 1076 5.2 2018 Global diffusive fluxes of methane in marine sediments 1326 6.	1105	4.7	2018 Global diffusive fluxes of methane in marine sediments
1566 4.8 2018 Global diffusive fluxes of methane in marine sediments 1008 5 2018 Global diffusive fluxes of methane in marine sediments 2300 5.1 2018 Global diffusive fluxes of methane in marine sediments 1076 5.2 2018 Global diffusive fluxes of methane in marine sediments 1076 5.3 2018 Global diffusive fluxes of methane in marine sediments 1076 5.3 2018 Global diffusive fluxes of methane in marine sediments 1076 5.3 2018 Global diffusive fluxes of methane in marine sediments 1000 5.5 2018 Global diffusive fluxes of methane in marine sediments 1000 5.7 2018 Global diffusive fluxes of methane in marine sediments 1000 5.7 2018 Global diffusive fluxes of methane in marine sediments 1000 5.7 2018 Global diffusive fluxes of methane in marine sediments 113 6 2018 Global diffusive fluxes of methane in marine sediments 126 6.1 2018 Global diffusive fluxes of methane in marine sediments 1312 6 2018 Global diffusive fluxes of methane in marine sediments 1326 6.1 2018 Global diffusive fluxes of methane in marine sediments 147 6.7	1219	4.8	2018 Global diffusive fluxes of methane in marine sediments
1008 5 2018 Global diffusive fluxes of methane in marine sediments 238 5.1 2018 Global diffusive fluxes of methane in marine sediments 1327 5.2 2018 Global diffusive fluxes of methane in marine sediments 1076 5.3 2018 Global diffusive fluxes of methane in marine sediments 1076 5.3 2018 Global diffusive fluxes of methane in marine sediments 1076 5.3 2018 Global diffusive fluxes of methane in marine sediments 1076 5.3 2018 Global diffusive fluxes of methane in marine sediments 1000 5.5 2018 Global diffusive fluxes of methane in marine sediments 1000 5.7 2018 Global diffusive fluxes of methane in marine sediments 1013 6 2018 Global diffusive fluxes of methane in marine sediments 1312 6.1 2018 Global diffusive fluxes of methane in marine sediments 1312 6.2 2018 Global diffusive fluxes of methane in marine sediments 1312 6.2 2018 Global diffusive fluxes of methane in marine sediments 1314 6.2 2018 Global diffusive fluxes of methane in marine sediments 1312 6.2 2018 Global diffusive fluxes of methane in marine sediments 1314 7.6 </td <td>1566</td> <td>4.8</td> <td>2018 Global diffusive fluxes of methane in marine sediments</td>	1566	4.8	2018 Global diffusive fluxes of methane in marine sediments
238 5.1 2018 Global diffusive fluxes of methane in marine sediments 1327 5.2 2018 Global diffusive fluxes of methane in marine sediments 1376 5.3 2018 Global diffusive fluxes of methane in marine sediments 1076 5.3 2018 Global diffusive fluxes of methane in marine sediments 575 5.4 2018 Global diffusive fluxes of methane in marine sediments 1000 5.5 2018 Global diffusive fluxes of methane in marine sediments 1000 5.5 2018 Global diffusive fluxes of methane in marine sediments 1000 5.7 2018 Global diffusive fluxes of methane in marine sediments 1000 5.7 2018 Global diffusive fluxes of methane in marine sediments 1013 6 2018 Global diffusive fluxes of methane in marine sediments 1126 6.1 2018 Global diffusive fluxes of methane in marine sediments 1326 6.1 2018 Global diffusive fluxes of methane in marine sediments 1312 6.2 2018 Global diffusive fluxes of methane in marine sediments 1312 6.2 2018 Global diffusive fluxes of methane in marine sediments 1314 6.2 2018 Global diffusive fluxes of methane in marine sediments 1000 7.9<	1008	5	2018 Global diffusive fluxes of methane in marine sediments
2000 5.1 2018 Global diffusive fluxes of methane in marine sediments 1327 5.2 2018 Global diffusive fluxes of methane in marine sediments 1076 5.3 2018 Global diffusive fluxes of methane in marine sediments 1076 5.3 2018 Global diffusive fluxes of methane in marine sediments 1000 5.5 2018 Global diffusive fluxes of methane in marine sediments 1000 5.7 2018 Global diffusive fluxes of methane in marine sediments 1000 5.7 2018 Global diffusive fluxes of methane in marine sediments 639 6 2018 Global diffusive fluxes of methane in marine sediments 113 6 2018 Global diffusive fluxes of methane in marine sediments 1326 6.1 2018 Global diffusive fluxes of methane in marine sediments 1312 6.2 2018 Global diffusive fluxes of methane in marine sediments 1312 6.2 2018 Global diffusive fluxes of methane in marine sediments 1312 6.2 2018 Global diffusive fluxes of methane in marine sediments 1312 6.2 2018 Global diffusive fluxes of methane in marine sediments 1314 7.6 2018 Global diffusive fluxes of methane in marine sediments 1045 7.6 <td>238</td> <td>5.1</td> <td>2018 Global diffusive fluxes of methane in marine sediments</td>	238	5.1	2018 Global diffusive fluxes of methane in marine sediments
1327 5.2 2018 Global diffusive fluxes of methane in marine sediments 1076 5.3 2018 Global diffusive fluxes of methane in marine sediments 575 5.4 2018 Global diffusive fluxes of methane in marine sediments 576 5.2 2018 Global diffusive fluxes of methane in marine sediments 800 5.5 2018 Global diffusive fluxes of methane in marine sediments 800 5.7 2018 Global diffusive fluxes of methane in marine sediments 639 6 2018 Global diffusive fluxes of methane in marine sediments 1013 6 2018 Global diffusive fluxes of methane in marine sediments 1326 6.1 2018 Global diffusive fluxes of methane in marine sediments 1312 6.2 2018 Global diffusive fluxes of methane in marine sediments 1312 6.2 2018 Global diffusive fluxes of methane in marine sediments 1312 6.2 2018 Global diffusive fluxes of methane in marine sediments 1474 6.8 2018 Global diffusive fluxes of methane in marine sediments 1045 7.6 2018 Global diffusive fluxes of methane in marine sediments 1045 7.8 2018 Global diffusive fluxes of methane in marine sediments 1048 2018 Glob	2000	5.1	2018 Global diffusive fluxes of methane in marine sediments
1076 5.3 2018 Global diffusive fluxes of methane in marine sediments 1076 5.3 2018 Global diffusive fluxes of methane in marine sediments 1000 5.5 2018 Global diffusive fluxes of methane in marine sediments 1000 5.7 2018 Global diffusive fluxes of methane in marine sediments 1000 5.7 2018 Global diffusive fluxes of methane in marine sediments 1000 5.7 2018 Global diffusive fluxes of methane in marine sediments 1013 6 2018 Global diffusive fluxes of methane in marine sediments 1131 6 2018 Global diffusive fluxes of methane in marine sediments 1326 6.1 2018 Global diffusive fluxes of methane in marine sediments 1312 6.2 2018 Global diffusive fluxes of methane in marine sediments 1474 6.8 2018 Global diffusive fluxes of methane in marine sediments 1774 6.8 2018 Global diffusive fluxes of methane in marine sediments 1000 7.9 2018 Global diffusive fluxes of methane in marine sediments 10145 7.6 2018 Global diffusive fluxes of methane in marine sediments 1000 7.9 2018 Global diffusive fluxes of methane in marine sediments 1000 7.9	1327	5.2	2018 Global diffusive fluxes of methane in marine sediments
1076 5.3 2018 Global diffusive fluxes of methane in marine sediments 575 5.4 2018 Global diffusive fluxes of methane in marine sediments 1000 5.5 2018 Global diffusive fluxes of methane in marine sediments 1000 5.7 2018 Global diffusive fluxes of methane in marine sediments 1000 5.7 2018 Global diffusive fluxes of methane in marine sediments 1013 6 2018 Global diffusive fluxes of methane in marine sediments 1131 6.1 2018 Global diffusive fluxes of methane in marine sediments 1326 6.1 2018 Global diffusive fluxes of methane in marine sediments 1312 6.2 2018 Global diffusive fluxes of methane in marine sediments 1312 6.2 2018 Global diffusive fluxes of methane in marine sediments 1312 6.2 2018 Global diffusive fluxes of methane in marine sediments 1474 6.8 2018 Global diffusive fluxes of methane in marine sediments 1774 6.8 2018 Global diffusive fluxes of methane in marine sediments 1045 7.6 2018 Global diffusive fluxes of methane in marine sediments 1000 7.9 2018 Global diffusive fluxes of methane in marine sediments 1000 7.9	1076	5.3	2018 Global diffusive fluxes of methane in marine sediments
575 5.4 2018 Global diffusive fluxes of methane in marine sediments 1000 5.5 2018 Global diffusive fluxes of methane in marine sediments 1000 5.7 2018 Global diffusive fluxes of methane in marine sediments 1010 5.7 2018 Global diffusive fluxes of methane in marine sediments 1013 6 2018 Global diffusive fluxes of methane in marine sediments 1013 6 2018 Global diffusive fluxes of methane in marine sediments 1326 6.1 2018 Global diffusive fluxes of methane in marine sediments 1312 6.2 2018 Global diffusive fluxes of methane in marine sediments 1417 6.8 2018 Global diffusive fluxes of methane in marine sediments 1774 6.8 2018 Global diffusive fluxes of methane in marine sediments 1774 6.8 2018 Global diffusive fluxes of methane in marine sediments 1881 7.6 2018 Global diffusive fluxes of methane in marine sediments 1945 7.6 2018 Global diffusive fluxes of methane in marine sediments 1900 7.9 2018 Global diffusive fluxes of methane in marine sediments 1900 7.9 2018 Global diffusive fluxes of methane in marine sediments 1981 8 <td>1076</td> <td>5.3</td> <td>2018 Global diffusive fluxes of methane in marine sediments</td>	1076	5.3	2018 Global diffusive fluxes of methane in marine sediments
1000 5.5 2018 Global diffusive fluxes of methane in marine sediments 800 5.6 2018 Global diffusive fluxes of methane in marine sediments 1000 5.7 2018 Global diffusive fluxes of methane in marine sediments 639 6 2018 Global diffusive fluxes of methane in marine sediments 1013 6 2018 Global diffusive fluxes of methane in marine sediments 1326 6.1 2018 Global diffusive fluxes of methane in marine sediments 1312 6.2 2018 Global diffusive fluxes of methane in marine sediments 1312 6.2 2018 Global diffusive fluxes of methane in marine sediments 1312 6.2 2018 Global diffusive fluxes of methane in marine sediments 1312 6.2 2018 Global diffusive fluxes of methane in marine sediments 1314 6.2 2018 Global diffusive fluxes of methane in marine sediments 1314 7.6 2018 Global diffusive fluxes of methane in marine sediments 1318 8010ad diffusive fluxes of methane in marine sediments 1000 1318 8 2018 Global diffusive fluxes of methane in marine sediments 1000 1318 8 2018 Global diffusive fluxes of methane in marine sediments 1281	575	5.4	2018 Global diffusive fluxes of methane in marine sediments
800 5.6 2018 Global diffusive fluxes of methane in marine sediments 1000 5.7 2018 Global diffusive fluxes of methane in marine sediments 1013 6 2018 Global diffusive fluxes of methane in marine sediments 1013 6 2018 Global diffusive fluxes of methane in marine sediments 111 6 2018 Global diffusive fluxes of methane in marine sediments 112 6.1 2018 Global diffusive fluxes of methane in marine sediments 11312 6.2 2018 Global diffusive fluxes of methane in marine sediments 11312 6.2 2018 Global diffusive fluxes of methane in marine sediments 1147 6.8 2018 Global diffusive fluxes of methane in marine sediments 1174 6.8 2018 Global diffusive fluxes of methane in marine sediments 1045 7.6 2018 Global diffusive fluxes of methane in marine sediments 1045 7.6 2018 Global diffusive fluxes of methane in marine sediments 1080 7.9 2018 Global diffusive fluxes of methane in marine sediments 1081 8 2018 Global diffusive fluxes of methane in marine sediments 1981 8 2018 Global diffusive fluxes of methane in marine sediments 1985 8.1	1000	5.5	2018 Global diffusive fluxes of methane in marine sediments
1000 5.7 2018 Global diffusive fluxes of methane in marine sediments 639 6 2018 Global diffusive fluxes of methane in marine sediments 1013 6 2018 Global diffusive fluxes of methane in marine sediments 1326 6.1 2018 Global diffusive fluxes of methane in marine sediments 1312 6.2 2018 Global diffusive fluxes of methane in marine sediments 1312 6.2 2018 Global diffusive fluxes of methane in marine sediments 647 6.7 2018 Global diffusive fluxes of methane in marine sediments 1774 6.8 2018 Global diffusive fluxes of methane in marine sediments 1881 7.6 2018 Global diffusive fluxes of methane in marine sediments 1000 7.9 2018 Global diffusive fluxes of methane in marine sediments 1000 7.9 2018 Global diffusive fluxes of methane in marine sediments 1000 7.9 2018 Global diffusive fluxes of methane in marine sediments 1208 8.1 2018 Global diffusive fluxes of methane in marine sediments 1308 8.1 2018 Global diffusive fluxes of methane in marine sediments 1956 8.1 2018 Global diffusive fluxes of methane in marine sediments 1969 8.3 <td>800</td> <td>5.6</td> <td>2018 Global diffusive fluxes of methane in marine sediments</td>	800	5.6	2018 Global diffusive fluxes of methane in marine sediments
639 6 2018 Global diffusive fluxes of methane in marine sediments 1013 6 2018 Global diffusive fluxes of methane in marine sediments 1326 6.1 2018 Global diffusive fluxes of methane in marine sediments 1312 6.2 2018 Global diffusive fluxes of methane in marine sediments 1312 6.2 2018 Global diffusive fluxes of methane in marine sediments 647 6.7 2018 Global diffusive fluxes of methane in marine sediments 1774 6.8 2018 Global diffusive fluxes of methane in marine sediments 1045 7.6 2018 Global diffusive fluxes of methane in marine sediments 1045 7.6 2018 Global diffusive fluxes of methane in marine sediments 1000 7.9 2018 Global diffusive fluxes of methane in marine sediments 1000 7.9 2018 Global diffusive fluxes of methane in marine sediments 188 2018 Global diffusive fluxes of methane in marine sediments 1981 8 2018 Global diffusive fluxes of methane in marine sediments 1985 8.1 2018 Global diffusive fluxes of methane in marine sediments 1986 8.1 2018 Global diffusive fluxes of methane in marine sediments 1969 8.3 2018 Glob	1000	5.7	2018 Global diffusive fluxes of methane in marine sediments
1013 6 2018 Global diffusive fluxes of methane in marine sediments 825 6.1 2018 Global diffusive fluxes of methane in marine sediments 1312 6.2 2018 Global diffusive fluxes of methane in marine sediments 1312 6.2 2018 Global diffusive fluxes of methane in marine sediments 1312 6.2 2018 Global diffusive fluxes of methane in marine sediments 1474 6.8 2018 Global diffusive fluxes of methane in marine sediments 1774 6.8 2018 Global diffusive fluxes of methane in marine sediments 1045 7.6 2018 Global diffusive fluxes of methane in marine sediments 1045 7.6 2018 Global diffusive fluxes of methane in marine sediments 1000 7.9 2018 Global diffusive fluxes of methane in marine sediments 1000 7.9 2018 Global diffusive fluxes of methane in marine sediments 1308 8.1 2018 Global diffusive fluxes of methane in marine sediments 1308 8.1 2018 Global diffusive fluxes of methane in marine sediments 1969 8.3 2018 Global diffusive fluxes of methane in marine sediments 1969 8.3 2018 Global diffusive fluxes of methane in marine sediments 1969 8.3	639	6	2018 Global diffusive fluxes of methane in marine sediments
825 6.1 2018 Global diffusive fluxes of methane in marine sediments 1326 6.1 2018 Global diffusive fluxes of methane in marine sediments 1312 6.2 2018 Global diffusive fluxes of methane in marine sediments 647 6.7 2018 Global diffusive fluxes of methane in marine sediments 1774 6.8 2018 Global diffusive fluxes of methane in marine sediments 1881 7.6 2018 Global diffusive fluxes of methane in marine sediments 1045 7.6 2018 Global diffusive fluxes of methane in marine sediments 1000 7.9 2018 Global diffusive fluxes of methane in marine sediments 1000 7.9 2018 Global diffusive fluxes of methane in marine sediments 1981 8 2018 Global diffusive fluxes of methane in marine sediments 1982 8.1 2018 Global diffusive fluxes of methane in marine sediments 1981 8 2018 Global diffusive fluxes of methane in marine sediments 1982 8.1 2018 Global diffusive fluxes of methane in marine sediments 1986 8.1 2018 Global diffusive fluxes of methane in marine sediments 1987 8.9 2018 Global diffusive fluxes of methane in marine sediments 1969 8.3 <td>1013</td> <td>6</td> <td>2018 Global diffusive fluxes of methane in marine sediments</td>	1013	6	2018 Global diffusive fluxes of methane in marine sediments
13266.12018 Global diffusive fluxes of methane in marine sediments13126.22018 Global diffusive fluxes of methane in marine sediments6476.72018 Global diffusive fluxes of methane in marine sediments17746.82018 Global diffusive fluxes of methane in marine sediments10457.62018 Global diffusive fluxes of methane in marine sediments10457.62018 Global diffusive fluxes of methane in marine sediments10457.62018 Global diffusive fluxes of methane in marine sediments10007.92018 Global diffusive fluxes of methane in marine sediments10007.92018 Global diffusive fluxes of methane in marine sediments198182018 Global diffusive fluxes of methane in marine sediments198182018 Global diffusive fluxes of methane in marine sediments19868.12018 Global diffusive fluxes of methane in marine sediments19968.32018 Global diffusive fluxes of methane in marine sediments19698.32018 Global diffusive fluxes of methane in marine sediments19698.32018 Global diffusive fluxes of methane in marine sediments19778.92018 Global diffusive fluxes of methane in marine sediments19378.92018 Global diffusive fluxes of methane in marine sediments19378.92018 Global diffusive fluxes of methane in marine sediments2013 Quantitative fluxes of methane in marine sediments2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments2013 Quantitative anal	825	6.1	2018 Global diffusive fluxes of methane in marine sediments
1312 6.2 2018 Global diffusive fluxes of methane in marine sediments 647 6.7 2018 Global diffusive fluxes of methane in marine sediments 1774 6.8 2018 Global diffusive fluxes of methane in marine sediments 881 7.6 2018 Global diffusive fluxes of methane in marine sediments 1045 7.6 2018 Global diffusive fluxes of methane in marine sediments 1045 7.6 2018 Global diffusive fluxes of methane in marine sediments 1000 7.9 2018 Global diffusive fluxes of methane in marine sediments 1000 7.9 2018 Global diffusive fluxes of methane in marine sediments 1981 8 2018 Global diffusive fluxes of methane in marine sediments 1981 8 2018 Global diffusive fluxes of methane in marine sediments 1308 8.1 2018 Global diffusive fluxes of methane in marine sediments 1956 8.1 2018 Global diffusive fluxes of methane in marine sediments 1969 8.3 2018 Global diffusive fluxes of methane in marine sediments 1967 8.4 2018 Global diffusive fluxes of methane in marine sediments 1937 8.9 2018 Global diffusive fluxes of methane in marine sediments 900 9.5 <td>1326</td> <td>6.1</td> <td>2018 Global diffusive fluxes of methane in marine sediments</td>	1326	6.1	2018 Global diffusive fluxes of methane in marine sediments
647 6.7 2018 Global diffusive fluxes of methane in marine sediments 1774 6.8 2018 Global diffusive fluxes of methane in marine sediments 881 7.6 2018 Global diffusive fluxes of methane in marine sediments 1045 7.6 2018 Global diffusive fluxes of methane in marine sediments 1045 7.6 2018 Global diffusive fluxes of methane in marine sediments 1000 7.9 2018 Global diffusive fluxes of methane in marine sediments 1000 7.9 2018 Global diffusive fluxes of methane in marine sediments 1981 8 2018 Global diffusive fluxes of methane in marine sediments 1982 8.1 2018 Global diffusive fluxes of methane in marine sediments 1988 8.1 2018 Global diffusive fluxes of methane in marine sediments 1996 8.3 2018 Global diffusive fluxes of methane in marine sediments 1969 8.3 2018 Global diffusive fluxes of methane in marine sediments 1907 8.5 2018 Global diffusive fluxes of methane in marine sediments 1937 8.9 2018 Global diffusive fluxes of methane in marine sediments 1937 8.9 2018 Global diffusive fluxes of methane in marine sediments 1930 9.8<	1312	6.2	2018 Global diffusive fluxes of methane in marine sediments
17746.82018 Global diffusive fluxes of methane in marine sediments8817.62018 Global diffusive fluxes of methane in marine sediments10457.62018 Global diffusive fluxes of methane in marine sediments8617.82018 Global diffusive fluxes of methane in marine sediments10007.92018 Global diffusive fluxes of methane in marine sediments108182018 Global diffusive fluxes of methane in marine sediments198182018 Global diffusive fluxes of methane in marine sediments8228.12018 Global diffusive fluxes of methane in marine sediments13088.12018 Global diffusive fluxes of methane in marine sediments19568.12018 Global diffusive fluxes of methane in marine sediments19698.32018 Global diffusive fluxes of methane in marine sediments19698.32018 Global diffusive fluxes of methane in marine sediments19778.42018 Global diffusive fluxes of methane in marine sediments19378.92018 Global diffusive fluxes of methane in marine sediments19378.92018 Global diffusive fluxes of methane in marine sediments9009.52018 Global diffusive fluxes of methane in marine sediments9138.92018 Global diffusive fluxes of methane in marine sediments92018 Global diffusive fluxes of methane in marine sediments9378.92018 Global diffusive fluxes of methane in marine sediments9439.82018 Global diffusive fluxes of methane in marine sediments939 <td>647</td> <td>6.7</td> <td>2018 Global diffusive fluxes of methane in marine sediments</td>	647	6.7	2018 Global diffusive fluxes of methane in marine sediments
881 7.6 2018 Global diffusive fluxes of methane in marine sediments 1045 7.6 2018 Global diffusive fluxes of methane in marine sediments 861 7.8 2018 Global diffusive fluxes of methane in marine sediments 1000 7.9 2018 Global diffusive fluxes of methane in marine sediments 1981 8 2018 Global diffusive fluxes of methane in marine sediments 822 8.1 2018 Global diffusive fluxes of methane in marine sediments 1308 8.1 2018 Global diffusive fluxes of methane in marine sediments 1956 8.1 2018 Global diffusive fluxes of methane in marine sediments 1969 8.3 2018 Global diffusive fluxes of methane in marine sediments 1969 8.3 2018 Global diffusive fluxes of methane in marine sediments 1976 8.4 2018 Global diffusive fluxes of methane in marine sediments 1987 8.9 2018 Global diffusive fluxes of methane in marine sediments 1937 8.9 2018 Global diffusive fluxes of methane in marine sediments 900 9.5 2018 Global diffusive fluxes of methane in marine sediments 913 9.8 2018 Global diffusive fluxes of methane in marine sediments 913 9.8	1774	6.8	2018 Global diffusive fluxes of methane in marine sediments
10457.62018 Global diffusive fluxes of methane in marine sediments8617.82018 Global diffusive fluxes of methane in marine sediments10007.92018 Global diffusive fluxes of methane in marine sediments198182018 Global diffusive fluxes of methane in marine sediments8228.12018 Global diffusive fluxes of methane in marine sediments13088.12018 Global diffusive fluxes of methane in marine sediments19568.12018 Global diffusive fluxes of methane in marine sediments19698.32018 Global diffusive fluxes of methane in marine sediments19698.32018 Global diffusive fluxes of methane in marine sediments19768.42018 Global diffusive fluxes of methane in marine sediments19878.92018 Global diffusive fluxes of methane in marine sediments9078.52018 Global diffusive fluxes of methane in marine sediments91378.92018 Global diffusive fluxes of methane in marine sediments9509.72018 Global diffusive fluxes of methane in marine sediments9509.72018 Global diffusive fluxes of methane in marine sediments6139.82018 Global diffusive fluxes of methane in marine sediments10939.82018 Global diffusive fluxes of methane in marine sediments118610.12018 Global diffusive fluxes of methane in marine sediments118610.12018 Global diffusive fluxes of methane in marine sediments118610.12018 Global diffusive fluxes of methane in marine sediments <tr< td=""><td>881</td><td>7.6</td><td>2018 Global diffusive fluxes of methane in marine sediments</td></tr<>	881	7.6	2018 Global diffusive fluxes of methane in marine sediments
861 7.8 2018 Global diffusive fluxes of methane in marine sediments 1000 7.9 2018 Global diffusive fluxes of methane in marine sediments 1981 8 2018 Global diffusive fluxes of methane in marine sediments 822 8.1 2018 Global diffusive fluxes of methane in marine sediments 1308 8.1 2018 Global diffusive fluxes of methane in marine sediments 1956 8.1 2018 Global diffusive fluxes of methane in marine sediments 1969 8.3 2018 Global diffusive fluxes of methane in marine sediments 1607 8.4 2018 Global diffusive fluxes of methane in marine sediments 1969 8.3 2018 Global diffusive fluxes of methane in marine sediments 1970 8.4 2018 Global diffusive fluxes of methane in marine sediments 907 8.5 2018 Global diffusive fluxes of methane in marine sediments 9137 8.9 2018 Global diffusive fluxes of methane in marine sediments 950 9.7 2018 Global diffusive fluxes of methane in marine sediments 913 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments= 913 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments= 9203	1045	7.6	2018 Global diffusive fluxes of methane in marine sediments
10007.92018 Global diffusive fluxes of methane in marine sediments198182018 Global diffusive fluxes of methane in marine sediments8228.12018 Global diffusive fluxes of methane in marine sediments13088.12018 Global diffusive fluxes of methane in marine sediments19568.12018 Global diffusive fluxes of methane in marine sediments19698.32018 Global diffusive fluxes of methane in marine sediments16078.42018 Global diffusive fluxes of methane in marine sediments16078.42018 Global diffusive fluxes of methane in marine sediments9078.52018 Global diffusive fluxes of methane in marine sediments9078.52018 Global diffusive fluxes of methane in marine sediments9089.52018 Global diffusive fluxes of methane in marine sediments9099.52018 Global diffusive fluxes of methane in marine sediments9139.82018 Global diffusive fluxes of methane in marine sediments9239.18 Global diffusive fluxes of methane in marine sediments13409.92018 Global diffusive fluxes of methane in marine sediments13449.0	861	7.8	2018 Global diffusive fluxes of methane in marine sediments
198182018 Global diffusive fluxes of methane in marine sediments8228.12018 Global diffusive fluxes of methane in marine sediments13088.12018 Global diffusive fluxes of methane in marine sediments19568.12018 Global diffusive fluxes of methane in marine sediments19698.32018 Global diffusive fluxes of methane in marine sediments19698.42018 Global diffusive fluxes of methane in marine sediments19678.42018 Global diffusive fluxes of methane in marine sediments9078.52018 Global diffusive fluxes of methane in marine sediments9078.52018 Global diffusive fluxes of methane in marine sediments9089.52018 Global diffusive fluxes of methane in marine sediments9099.52018 Global diffusive fluxes of methane in marine sediments9138.92018 Global diffusive fluxes of methane in marine sediments9139.82018 Global diffusive fluxes of methane in marine sediments2013Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A6139.82018 Global diffusive fluxes of methane in marine sediments10939.82018 Global diffusive fluxes of methane in marine sediments13409.92018 Global diffusive fluxes of methane in marine sediments118610.12018 Global diffusive fluxes of methane in marine sediments48910.22018 Global diffusive fluxes of methane in marine sediments48910.22018 Global diffusive fluxes of methane in marine sediments	1000	7.9	2018 Global diffusive fluxes of methane in marine sediments
8228.12018 Global diffusive fluxes of methane in marine sediments13088.12018 Global diffusive fluxes of methane in marine sediments19568.12018 Global diffusive fluxes of methane in marine sediments19698.32018 Global diffusive fluxes of methane in marine sediments16078.42018 Global diffusive fluxes of methane in marine sediments9078.52018 Global diffusive fluxes of methane in marine sediments9078.52018 Global diffusive fluxes of methane in marine sediments9089.52018 Global diffusive fluxes of methane in marine sediments9099.52018 Global diffusive fluxes of methane in marine sediments9009.52018 Global diffusive fluxes of methane in marine sediments9139.72018 Global diffusive fluxes of methane in marine sediments9139.82018 Global diffusive fluxes of methane in marine sediments9149.92018 Global diffusive fluxes of methane in marine sediments9139.82018 Global diffusive fluxes of methane in marine sediments9149.92018 Global diffusive fluxes of methane in marine sediments9149.92018 Global diffusive fluxes of methane in marine sediments914 <td>1981</td> <td>8</td> <td>2018 Global diffusive fluxes of methane in marine sediments</td>	1981	8	2018 Global diffusive fluxes of methane in marine sediments
13088.12018 Global diffusive fluxes of methane in marine sediments19568.12018 Global diffusive fluxes of methane in marine sediments19698.32018 Global diffusive fluxes of methane in marine sediments16078.42018 Global diffusive fluxes of methane in marine sediments9078.52018 Global diffusive fluxes of methane in marine sediments9078.52018 Global diffusive fluxes of methane in marine sediments9089.52018 Global diffusive fluxes of methane in marine sediments9099.52018 Global diffusive fluxes of methane in marine sediments9009.52018 Global diffusive fluxes of methane in marine sediments91378.92018 Global diffusive fluxes of methane in marine sediments9209.52018 Global diffusive fluxes of methane in marine sediments9309.52018 Global diffusive fluxes of methane in marine sediments94099.82018 Global diffusive fluxes of methane in marine sediments9509.72018 Global diffusive fluxes of methane in marine sediments9519.82018 Global diffusive fluxes of methane in marine sediments9539.82018 Global diffusive fluxes of methane in marine sediments9539.82018 Global diffusive fluxes of methane in marine sediments9539.82018 Global diffusive fluxes of methane in marine sediments9549.92018 Global diffusive fluxes of methane in marine sediments9559.122018 Global diffusive fluxes of methane in marine sediments954	822	8.1	2018 Global diffusive fluxes of methane in marine sediments
19568.12018 Global diffusive fluxes of methane in marine sediments19698.32018 Global diffusive fluxes of methane in marine sediments16078.42018 Global diffusive fluxes of methane in marine sediments9078.52018 Global diffusive fluxes of methane in marine sediments19378.92018 Global diffusive fluxes of methane in marine sediments9009.52018 Global diffusive fluxes of methane in marine sediments9009.52018 Global diffusive fluxes of methane in marine sediments9019.72018 Global diffusive fluxes of methane in marine sediments9029.72018 Global diffusive fluxes of methane in marine sediments9139.82018 Global diffusive fluxes of methane in marine sediments9139.82018 Global diffusive fluxes of methane in marine sediments9139.82018 Global diffusive fluxes of methane in marine sediments91939.82018 Global diffusive fluxes of methane in marine sediments10939.82018 Global diffusive fluxes of methane in marine sediments13409.92018 Global diffusive fluxes of methane in marine sediments118610.12018 Global diffusive fluxes of methane in marine sediments48910.22018 Global diffusive fluxes of methane in marine sediments	1308	8.1	2018 Global diffusive fluxes of methane in marine sediments
19698.32018 Global diffusive fluxes of methane in marine sediments16078.42018 Global diffusive fluxes of methane in marine sediments9078.52018 Global diffusive fluxes of methane in marine sediments19378.92018 Global diffusive fluxes of methane in marine sediments9009.52018 Global diffusive fluxes of methane in marine sediments9009.52018 Global diffusive fluxes of methane in marine sediments9509.72018 Global diffusive fluxes of methane in marine sediments6139.82018 Global diffusive fluxes of methane in marine sediments6139.82018 Global diffusive fluxes of methane in marine sediments10939.82018 Global diffusive fluxes of methane in marine sediments13409.92018 Global diffusive fluxes of methane in marine sediments118610.12018 Global diffusive fluxes of methane in marine sediments48910.22018 Global diffusive fluxes of methane in marine sediments	1956	8.1	2018 Global diffusive fluxes of methane in marine sediments
16078.42018 Global diffusive fluxes of methane in marine sediments9078.52018 Global diffusive fluxes of methane in marine sediments19378.92018 Global diffusive fluxes of methane in marine sediments9009.52018 Global diffusive fluxes of methane in marine sediments9509.72018 Global diffusive fluxes of methane in marine sediments6139.82018 Global diffusive fluxes of methane in marine sediments2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A6139.82018 Global diffusive fluxes of methane in marine sediments10939.82018 Global diffusive fluxes of methane in marine sediments13409.92018 Global diffusive fluxes of methane in marine sediments118610.12018 Global diffusive fluxes of methane in marine sediments48910.22018 Global diffusive fluxes of methane in marine sediments	1969	8.3	2018 Global diffusive fluxes of methane in marine sediments
9078.52018 Global diffusive fluxes of methane in marine sediments19378.92018 Global diffusive fluxes of methane in marine sediments9009.52018 Global diffusive fluxes of methane in marine sediments9509.72018 Global diffusive fluxes of methane in marine sediments6139.82018 Global diffusive fluxes of methane in marine sediments2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A6139.82018 Global diffusive fluxes of methane in marine sediments10939.82018 Global diffusive fluxes of methane in marine sediments13409.92018 Global diffusive fluxes of methane in marine sediments118610.12018 Global diffusive fluxes of methane in marine sediments48910.22018 Global diffusive fluxes of methane in marine sediments	1607	8.4	2018 Global diffusive fluxes of methane in marine sediments
19378.92018 Global diffusive fluxes of methane in marine sediments9009.52018 Global diffusive fluxes of methane in marine sediments9509.72018 Global diffusive fluxes of methane in marine sediments6139.82018 Global diffusive fluxes of methane in marine sediments2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A6139.82018 Global diffusive fluxes of methane in marine sediments10939.82018 Global diffusive fluxes of methane in marine sediments13409.92018 Global diffusive fluxes of methane in marine sediments118610.12018 Global diffusive fluxes of methane in marine sediments48910.22018 Global diffusive fluxes of methane in marine sediments	907	8.5	2018 Global diffusive fluxes of methane in marine sediments
9009.52018 Global diffusive fluxes of methane in marine sediments9509.72018 Global diffusive fluxes of methane in marine sediments6139.82018 Global diffusive fluxes of methane in marine sediments2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A6139.82018 Global diffusive fluxes of methane in marine sediments10939.82018 Global diffusive fluxes of methane in marine sediments13409.92018 Global diffusive fluxes of methane in marine sediments118610.12018 Global diffusive fluxes of methane in marine sediments48910.22018 Global diffusive fluxes of methane in marine sediments	1937	8.9	2018 Global diffusive fluxes of methane in marine sediments
9509.72018 Global diffusive fluxes of methane in marine sediments6139.82018 Global diffusive fluxes of methane in marine sediments2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A6139.8modeling perspective10939.82018 Global diffusive fluxes of methane in marine sediments13409.92018 Global diffusive fluxes of methane in marine sediments118610.12018 Global diffusive fluxes of methane in marine sediments48910.22018 Global diffusive fluxes of methane in marine sediments	900	9.5	2018 Global diffusive fluxes of methane in marine sediments
6139.82018 Global diffusive fluxes of methane in marine sediments 2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A6139.8modeling perspective10939.82018 Global diffusive fluxes of methane in marine sediments13409.92018 Global diffusive fluxes of methane in marine sediments118610.12018 Global diffusive fluxes of methane in marine sediments48910.22018 Global diffusive fluxes of methane in marine sediments	950	9.7	2018 Global diffusive fluxes of methane in marine sediments
2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A6139.8modeling perspective10939.82018 Global diffusive fluxes of methane in marine sediments13409.92018 Global diffusive fluxes of methane in marine sediments118610.12018 Global diffusive fluxes of methane in marine sediments48910.22018 Global diffusive fluxes of methane in marine sediments	613	9.8	2018 Global diffusive fluxes of methane in marine sediments
1093 9.8 2018 Global diffusive fluxes of methane in marine sediments 1340 9.9 2018 Global diffusive fluxes of methane in marine sediments 1186 10.1 2018 Global diffusive fluxes of methane in marine sediments 489 10.2 2018 Global diffusive fluxes of methane in marine sediments	613	9.8	2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A modeling perspective
1340 9.9 2018 Global diffusive fluxes of methane in marine sediments 1186 10.1 2018 Global diffusive fluxes of methane in marine sediments 489 10.2 2018 Global diffusive fluxes of methane in marine sediments	1093	9.8	2018 Global diffusive fluxes of methane in marine sediments
1186 10.1 2018 Global diffusive fluxes of methane in marine sediments 489 10.2 2018 Global diffusive fluxes of methane in marine sediments	1340	9.0	2018 Global diffusive fluxes of methane in marine sediments
489 10.2 2018 Global diffusive fluxes of methane in marine sediments	1186	10.1	2018 Global diffusive fluxes of methane in marine sediments
	489	10.2	2018 Global diffusive fluxes of methane in marine sediments
1350 10.2 2018 Global diffusive fluxes of methane in marine sediments	1350	10.2	2018 Global diffusive fluxes of methane in marine sediments

1309	10.3	2018 Global diffusive fluxes of methane in marine sediments
1873	10.4	2018 Global diffusive fluxes of methane in marine sediments
846	10.8	2018 Global diffusive fluxes of methane in marine sediments
1165	11.1	2018 Global diffusive fluxes of methane in marine sediments
838	11.3	2018 Global diffusive fluxes of methane in marine sediments
427	12.4	2018 Global diffusive fluxes of methane in marine sediments
522	12.5	2018 Global diffusive fluxes of methane in marine sediments
1430	13	2018 Global diffusive fluxes of methane in marine sediments
955	13.3	2018 Global diffusive fluxes of methane in marine sediments
1963	13.3	2018 Global diffusive fluxes of methane in marine sediments
993	13.8	2018 Global diffusive fluxes of methane in marine sediments
447	14.4	2018 Global diffusive fluxes of methane in marine sediments
397	14.7	2018 Global diffusive fluxes of methane in marine sediments
1108	14.8	2018 Global diffusive fluxes of methane in marine sediments
1691	14.8	2018 Global diffusive fluxes of methane in marine sediments
348	15.6	2018 Global diffusive fluxes of methane in marine sediments
1074	15.6	2018 Global diffusive fluxes of methane in marine sediments
1146	16.7	2018 Global diffusive fluxes of methane in marine sediments
1038	17	2018 Global diffusive fluxes of methane in marine sediments
1100	17.1	2018 Global diffusive fluxes of methane in marine sediments
1429	17.4	2018 Global diffusive fluxes of methane in marine sediments
685	17.7	2018 Global diffusive fluxes of methane in marine sediments
730	17.9	2018 Global diffusive fluxes of methane in marine sediments
1037	18	2018 Global diffusive fluxes of methane in marine sediments
1100	18.5	2018 Global diffusive fluxes of methane in marine sediments
1480	18.5	2018 Global diffusive fluxes of methane in marine sediments
1773	18.8	2018 Global diffusive fluxes of methane in marine sediments
1564	19.1	2018 Global diffusive fluxes of methane in marine sediments
1364	19.5	2018 Global diffusive fluxes of methane in marine sediments
2000	19.5	2018 Global diffusive fluxes of methane in marine sediments
1279	20.4	2018 Global diffusive fluxes of methane in marine sediments
479	21.6	2018 Global diffusive fluxes of methane in marine sediments
556	21.7	2018 Global diffusive fluxes of methane in marine sediments
1404	22	2018 Global diffusive fluxes of methane in marine sediments
1470	22	2018 Global diffusive fluxes of methane in marine sediments
565	22.5	2018 Global diffusive fluxes of methane in marine sediments
895	23.2	2018 Global diffusive fluxes of methane in marine sediments
808	24.4	2018 Global diffusive fluxes of methane in marine sediments
1062	26.1	2018 Global diffusive fluxes of methane in marine sediments
913	26.4	2018 Global diffusive fluxes of methane in marine sediments
1809	26.7	2018 Global diffusive fluxes of methane in marine sediments
902	26.8	2018 Global diffusive fluxes of methane in marine sediments
1010	29	2018 Global diffusive fluxes of methane in marine sediments
1018	29	2018 Global diffusive fluxes of methane in marine sediments
1927	30	2018 Global diffusive fluxes of methane in marine sediments
427	30.8	2018 Global diffusive fluxes of methane in marine sediments
1672	31.5	2018 Global diffusive fluxes of methane in marine sediments

1742	31.7	2018 Global diffusive fluxes of methane in marine sediments
1060	34.3	2018 Global diffusive fluxes of methane in marine sediments
471	34.6	2018 Global diffusive fluxes of methane in marine sediments
593	38.9	2018 Global diffusive fluxes of methane in marine sediments
1713	41.8	2018 Global diffusive fluxes of methane in marine sediments
428	42.8	2018 Global diffusive fluxes of methane in marine sediments
808	43.2	2018 Global diffusive fluxes of methane in marine sediments
1638	43.2	2018 Global diffusive fluxes of methane in marine sediments
1984	44.1	2018 Global diffusive fluxes of methane in marine sediments
1303	46	2018 Global diffusive fluxes of methane in marine sediments
278	49.8	2018 Global diffusive fluxes of methane in marine sediments
800	50	2007 Rates of methanogenesis and methanotrophy deep-sea sediments ¹⁸
794	50.3	2018 Global diffusive fluxes of methane in marine sediments
738	51.7	2018 Global diffusive fluxes of methane in marine sediments
915	53.5	2018 Global diffusive fluxes of methane in marine sediments
307	55	2018 Global diffusive fluxes of methane in marine sediments
1414	65.5	2018 Global diffusive fluxes of methane in marine sediments
1320	67.3	2018 Global diffusive fluxes of methane in marine sediments
419	74.1	2018 Global diffusive fluxes of methane in marine sediments
1372	74.4	2018 Global diffusive fluxes of methane in marine sediments
1428	78.3	2018 Global diffusive fluxes of methane in marine sediments
1869	79.6	2018 Global diffusive fluxes of methane in marine sediments
1057	84.2	2018 Global diffusive fluxes of methane in marine sediments
1945	97.8	2018 Global diffusive fluxes of methane in marine sediments
1274	99.1	2018 Global diffusive fluxes of methane in marine sediments
1649	101.9	2018 Global diffusive fluxes of methane in marine sediments
1983	117.5	2018 Global diffusive fluxes of methane in marine sediments
312	119	2018 Global diffusive fluxes of methane in marine sediments
1650	105	2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A
212	125	2018 Clabel difference of mothers in marine adjusters
	134.3	2018 Global diffusive fluxes of methane in marine sediments
948	147.9	2018 Global diffusive fluxes of methane in marine sediments
/81	159.3	2018 Global diffusive fluxes of methane in marine sediments
440	169.9	2018 Global diffusive fluxes of methane in marine sediments
	1/8.7	2018 Global diffusive fluxes of methane in marine sediments
/96	180.3	2018 Global diffusive fluxes of methane in marine sediments
1149	195	2018 Global diffusive fluxes of methane in marine sediments
1066	205	2018 Global diffusive fluxes of methane in marine sediments
1365	208.9	2018 Global diffusive fluxes of methane in marine sediments
658	209.5	2018 Global diffusive fluxes of methane in marine sediments
1368	282	2018 Global diffusive fluxes of methane in marine sediments
1305	349.7	2018 Global diffusive fluxes of methane in marine sediments
1209	374.8	2018 Global diffusive fluxes of methane in marine sediments
416	380.9	2018 Global diffusive fluxes of methane in marine sediments
1970	562.5	2018 Global diffusive fluxes of methane in marine sediments
647	711.4	2018 Global diffusive fluxes of methane in marine sediments
1345	783.5	2018 Global diffusive fluxes of methane in marine sediments

		2008 Thermodynamic and kinetic control on anaerobic oxidation of methane in marine
391	0.5	sediments ¹⁹
205	0.2	2008 Thermodynamic and kinetic control on anaerobic oxidation of methane in marine sediments
325	0.1	2008 Thermodynamic and kinetic control on anaerobic oxidation of methane in marine sediments

Rise, 20 3500 m)00-	
Depth	SMT	
[m]	[mbsf]	Reference
2070	0.02	2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A modeling perspective
2005	0.025	2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A
2085	0.025	modeling perspective
2089	0.035	2018 Global diffusive fluxes of methane in marine sediments
2085	0.05	2018 Global diffusive fluxes of methane in marine sediments
3100	0.6	2018 Global diffusive fluxes of methane in marine sediments
2160	1	2018 Global diffusive fluxes of methane in marine sediments
2911	1	2018 Global diffusive fluxes of methane in marine sediments
2196	1.4	2018 Global diffusive fluxes of methane in marine sediments
2861	1.4	2018 Global diffusive fluxes of methane in marine sediments
2161	1.5	2018 Global diffusive fluxes of methane in marine sediments
3525	2	anaerobic oxidation of methane for the burial of sulfur in marine sediments ²⁰
2744	2	2018 Global diffusive fluxes of methane in marine sediments
2010	2.1	2018 Global diffusive fluxes of methane in marine sediments
2772	2.1	2018 Global diffusive fluxes of methane in marine sediments
3361	2.3	2018 Global diffusive fluxes of methane in marine sediments
3100	2.7	2018 Global diffusive fluxes of methane in marine sediments
3100	3.3	2018 Global diffusive fluxes of methane in marine sediments
2300	5	2018 Global diffusive fluxes of methane in marine sediments
2797	5	2018 Global diffusive fluxes of methane in marine sediments
2750	5.4	2018 Global diffusive fluxes of methane in marine sediments
2750	5.4	2018 Global diffusive fluxes of methane in marine sediments
3169	5.4	2018 Global diffusive fluxes of methane in marine sediments
2166	5.6	2018 Global diffusive fluxes of methane in marine sediments
3446	5.6	2018 Global diffusive fluxes of methane in marine sediments
2593	5.7	2018 Global diffusive fluxes of methane in marine sediments
2065	5.8	2018 Global diffusive fluxes of methane in marine sediments
3100	5.8	2018 Global diffusive fluxes of methane in marine sediments
3476	5.8	2018 Global diffusive fluxes of methane in marine sediments
2065	5.8	2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A modeling perspective
2141	6.1	2018 Global diffusive fluxes of methane in marine sediments
2766	6.2	2018 Global diffusive fluxes of methane in marine sediments
2170	7.2	2018 Global diffusive fluxes of methane in marine sediments
2750	7.3	2018 Global diffusive fluxes of methane in marine sediments
2750	8.1	2018 Global diffusive fluxes of methane in marine sediments
2751	8.1	2018 Global diffusive fluxes of methane in marine sediments
2571	8.3	2018 Global diffusive fluxes of methane in marine sediments
3178	8.3	2018 Global diffusive fluxes of methane in marine sediments
2160	9.1	2018 Global diffusive fluxes of methane in marine sediments

2015	9.2	2018 Global diffusive fluxes of methane in marine sediments
3215	9.5	2018 Global diffusive fluxes of methane in marine sediments
2681	9.9	2018 Global diffusive fluxes of methane in marine sediments
2997	10.1	2018 Global diffusive fluxes of methane in marine sediments
2982	10.2	2018 Global diffusive fluxes of methane in marine sediments
3226	10.4	2018 Global diffusive fluxes of methane in marine sediments
3346	11.5	2018 Global diffusive fluxes of methane in marine sediments
2037	11.6	2018 Global diffusive fluxes of methane in marine sediments
2138	11.7	2018 Global diffusive fluxes of methane in marine sediments
3137	12	2018 Global diffusive fluxes of methane in marine sediments
2171	12.1	2018 Global diffusive fluxes of methane in marine sediments
3493	12.2	2018 Global diffusive fluxes of methane in marine sediments
2998	12.4	2018 Global diffusive fluxes of methane in marine sediments
2066	12.8	2018 Global diffusive fluxes of methane in marine sediments
2147	12.9	2018 Global diffusive fluxes of methane in marine sediments
3084	13.2	2018 Global diffusive fluxes of methane in marine sediments
3028	13.3	2018 Global diffusive fluxes of methane in marine sediments
2470	13.6	2018 Global diffusive fluxes of methane in marine sediments
2153	14	2018 Global diffusive fluxes of methane in marine sediments
2791	14.1	2018 Global diffusive fluxes of methane in marine sediments
2996	14.3	2018 Global diffusive fluxes of methane in marine sediments
2190	14.6	2018 Global diffusive fluxes of methane in marine sediments
2595	15.2	2018 Global diffusive fluxes of methane in marine sediments
2544	15.3	2018 Global diffusive fluxes of methane in marine sediments
2052	15.5	2018 Global diffusive fluxes of methane in marine sediments
2681	16.2	2018 Global diffusive fluxes of methane in marine sediments
2198	16.8	2018 Global diffusive fluxes of methane in marine sediments
2178	17.1	2018 Global diffusive fluxes of methane in marine sediments
2750	17.1	2018 Global diffusive fluxes of methane in marine sediments
3306	17.1	2018 Global diffusive fluxes of methane in marine sediments
2073	18.2	2018 Global diffusive fluxes of methane in marine sediments
2627	18.8	2018 Global diffusive fluxes of methane in marine sediments
3021	18.9	2018 Global diffusive fluxes of methane in marine sediments
2194	19.6	2018 Global diffusive fluxes of methane in marine sediments
2764	19.9	2018 Global diffusive fluxes of methane in marine sediments
		2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A
2500	21	modeling perspective
2380	21.7	2018 Global diffusive fluxes of methane in marine sediments
2779	21.8	2018 Global diffusive fluxes of methane in marine sediments
2770	22	2018 Global diffusive fluxes of methane in marine sediments
2799	22	2018 Global diffusive fluxes of methane in marine sediments
2519	22.6	2018 Global diffusive fluxes of methane in marine sediments
2500	22.7	Ridge gas hydrates ²¹
2642	23.4	2018 Global diffusive fluxes of methane in marine sediments
2181	23.8	2018 Global diffusive fluxes of methane in marine sediments
2653	26.2	2018 Global diffusive fluxes of methane in marine sediments
3089	26.8	2018 Global diffusive fluxes of methane in marine sediments

2414	28.6	2018 Global diffusive fluxes of methane in marine sediments
2178	29.8	2018 Global diffusive fluxes of methane in marine sediments
2006	29.9	2018 Global diffusive fluxes of methane in marine sediments
2996	30.3	2018 Global diffusive fluxes of methane in marine sediments
3191	31.8	2018 Global diffusive fluxes of methane in marine sediments
3429	32.9	2018 Global diffusive fluxes of methane in marine sediments
2698	36.1	2018 Global diffusive fluxes of methane in marine sediments
2568	36.5	2018 Global diffusive fluxes of methane in marine sediments
2593	41.1	2018 Global diffusive fluxes of methane in marine sediments
2022	44.9	2018 Global diffusive fluxes of methane in marine sediments
3152	48	2018 Global diffusive fluxes of methane in marine sediments
2578	50.8	2018 Global diffusive fluxes of methane in marine sediments
3463	52.4	2018 Global diffusive fluxes of methane in marine sediments
2587	53.2	2018 Global diffusive fluxes of methane in marine sediments
2656	57.3	2018 Global diffusive fluxes of methane in marine sediments
2803	57.8	2018 Global diffusive fluxes of methane in marine sediments
2854	63.1	2018 Global diffusive fluxes of methane in marine sediments
3300	76.6	2018 Global diffusive fluxes of methane in marine sediments
2614	77.3	2018 Global diffusive fluxes of methane in marine sediments
3300	81	2018 Global diffusive fluxes of methane in marine sediments
2516	82	2018 Global diffusive fluxes of methane in marine sediments
2575	84.5	2018 Global diffusive fluxes of methane in marine sediments
3038	86	2018 Global diffusive fluxes of methane in marine sediments
2271	88.6	2018 Global diffusive fluxes of methane in marine sediments
2088	90.3	2018 Global diffusive fluxes of methane in marine sediments
2028	98.2	2018 Global diffusive fluxes of methane in marine sediments
2211	110.2	2018 Global diffusive fluxes of methane in marine sediments
3280	130.2	2018 Global diffusive fluxes of methane in marine sediments
2951	149	2018 Global diffusive fluxes of methane in marine sediments
		2013 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments=A
3200	150	modeling perspective ²²
2935	151.6	2018 Global diffusive fluxes of methane in marine sediments 2013 Quantitative analysis of anaerobic oxidation of methane (AQM) in marine sediments=A
2825	160	modeling perspective
3451	185.1	2018 Global diffusive fluxes of methane in marine sediments
2663	216.1	2018 Global diffusive fluxes of methane in marine sediments
2091	238.4	2018 Global diffusive fluxes of methane in marine sediments
2901	238.4	2018 Global diffusive fluxes of methane in marine sediments
2463	240.3	2018 Global diffusive fluxes of methane in marine sediments
2304	257.2	2018 Global diffusive fluxes of methane in marine sediments
2422	296	2018 Global diffusive fluxes of methane in marine sediments
3069	301.5	2018 Global diffusive fluxes of methane in marine sediments
2862	314.2	2018 Global diffusive fluxes of methane in marine sediments
3192	340.1	2018 Global diffusive fluxes of methane in marine sediments
2549	346.9	2018 Global diffusive fluxes of methane in marine sediments
2354	460.1	2018 Global diffusive fluxes of methane in marine sediments
2705	477.8	2018 Global diffusive fluxes of methane in marine sediments
3319	805.9	2018 Global diffusive fluxes of methane in marine sediments

2622	834	2018 Global diffusive fluxes of methane in marine sediments
3042	891.7	2018 Global diffusive fluxes of methane in marine sediments

Paddy fields	Paddy fields, Aerobic				
CH ₄ (atm)	Rates	K (d-1)	Reference		
	$(\mu mol/g/d \text{ or } \mu mol/cm^3/d)$				
1.85E-06	2.19E-03	9.09E+02	2001 Methane Oxidation and Production Activity in Soils from Natural		
1.85E-06	1.79E-03	7.44E+02	2001 Methane Oxidation and Production Activity in Soils from Natural		
1.00E-02	7.20E-02	5.54E+00	2001 Methane Oxidation and Production Activity in Soils from Natural		
1.00E-02	1.77E+01	1.36E+03	2001 Methane Oxidation and Production Activity in Soils from Natural		
2.00E-02	1.14E-01	4.39E+00	1991 Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium		
2.00E-02	1.92E-01	7.39E+00	1991 Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium		
2.00E-02	1.82E-01	7.00E+00	1991 Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium		
2.00E-02	2.64E-03	1.02E-01	1991 Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium		
2.00E-02	1.39E-01	5.35E+00	1991 Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium		
5.00E-04	1.68E-01	2.58E+02	2000 Effect of NH4Cl addition on methane oxidation by paddy soils		
1.00E-03	3.78E-01	2.91E+02	2000 Effect of NH4Cl addition on methane oxidation by paddy soils		
1.50E-03	7.58E-01	3.89E+02	2000 Effect of NH4Cl addition on methane oxidation by paddy soils		
2.00E-03	7.98E-01	3.07E+02	2000 Effect of NH4Cl addition on methane oxidation by paddy soils		
1.07E-02	8.40E+00	6.03E+02	2003 Effect of a late season urea fertilization on methane emission from a rice field in Ital		
1.07E-02	7.20E+00	5.17E+02	2003 Effects of N-fertilization on CH4 oxidation and production, and consequences for CH4 emissions from microcosms and rice fields		
1.07E-02	1.08E+01	7.75E+02	2003 Effects of N-fertilization on CH4 oxidation and production, and consequences for CH4 emissions from microcosms and rice fields		
5.00E-02	2.00E-02	3.08E-01	2012 Methane oxidation and methane driven redox process during sequential reduction of a flooded soil ecosystem		
5.00E-02	4.25E-02	6.54E-01	2012 Methane oxidation and methane driven redox process during sequential reduction of a flooded soil ecosystem		
1.00E-02	2.88E+00	2.22E+02	2020 Disentangling abiotic and biotic controls of aerobic methane oxidation during re-colonization		
1.00E-02	1.01E+01	7.75E+02	2020 Disentangling abiotic and biotic controls of aerobic methane oxidation during re-colonization		
5.88E-03	1.60E+01	2.09E+03	2002 Microbial aerobic oxidation of methane in paddy soil		
5.88E-03	1.74E+01	2.28E+03	2002 Microbial aerobic oxidation of methane in paddy soil		
1.80E-06	7.20E-03	3.08E+03	1994 Microbial oxidation of methane, ammonium and carbon monoxide, and		
			turnover of nitrous oxide and nitric oxide in soils		
3.50E-03	3.90E+00	8.57E+02	1994 Microbial oxidation of methane, ammonium and carbon monoxide, and turnover of nitrous oxide and nitric oxide in soils		
5.00E-02	1.40E+01	2.15E+02	2018 Effect of salt stress on aerobic methane oxidation and associated		
-			methanotrophs; a microcosm study of a natural community from a nonsaline environment		

Table S2. The rates of aerobic methane oxidation in paddy fields.

-

Table S3. The rates of anaerobic methane oxidation in paddy fields.

Paddy fields	Paddy fields, Anaerobic				
CH ₄ (atm)	Rates K (d ⁻¹)		Reference		
	(µmol/g/d or				
	µmol/cm ³ /d)				
1.01E-01	2.00E-04	1.53E-03	2014 Evidence for the cooccurrence of nitrite-dependent anaerobic ammonium and		
			methane oxidation processes in a flooded paddy field		
1.01E-01	2.10E-03	1.60E-02	2014 Evidence for the cooccurrence of nitrite-dependent anaerobic ammonium and		

			methane oxidation processes in a flooded paddy field
1.00E-01	7.99E-02	6.15E-01	2016 Distribution and activity of the anaerobic methanotrophic community in a nitrogen-fertilized Italian paddy soi
3.10E-02	1.60E-03	3.97E-02	2020 Anaerobic oxidation of methane in paddy soil: Role of electron acceptors and fertilization in mitigating CH4 fluxes
6.86E-02	4.20E-04	4.71E-03	2019 To shake or not to shake: 13C-based evidence on anaerobic methane oxidation in paddy soil
6.86E-02	8.80E-04	9.87E-03	2019 To shake or not to shake: 13C-based evidence on anaerobic methane oxidation in paddy soil
2.50E-02	3.46E-02	1.06E+00	2021 Effects of antimony on anaerobic methane oxidization and microbial community in an antimony-contaminated paddy soil: A microcosm study
2.00E-01	2.26E-03	8.69E-03	2021 Long-term effects of four environment-related iron minerals on microbial anaerobic oxidation of methane in paddy so
2.00E-01	7.53E-04	2.90E-03	2021 Long-term effects of four environment-related iron minerals on microbial anaerobic oxidation of methane in paddy so
5.00E-02	4.38E-03	6.73E-02	2012 Methane oxidation and methane driven redox process during sequential reduction of a flooded soil ecosystem
5.00E-02	2.88E-02	4.42E-01	2012 Methane oxidation and methane driven redox process during sequential reduction of a flooded soil ecosystem
5.00E-02	2.32E-04	3.57E-03	2021 Electron shuttles facilitate anaerobic methane oxidation coupled to nitrous oxide reduction in paddy soil
5.00E-02	2.27E-04	3.49E-03	2021 Electron shuttles facilitate anaerobic methane oxidation coupled to nitrous oxide reduction in paddy soil
3.49E-02	1.53E-02	3.38E-01	2017 Using 13C isotopes to explore denitrification-dependent anaerobic methane oxidation in a paddy-peatland
3.49E-02	7.37E-03	1.62E-01	2017 Using 13C isotopes to explore denitrification-dependent anaerobic methane oxidation in a paddy-peatland
3.10E-02	6.80E-04	1.69E-02	2021 Temperature sensitivity of anaerobic methane oxidation versus methanogenesis in paddy soil Implications for the CH4 balance

Table S4. The rates of aerobic methane oxidation in freshwater wetlands.

Freshwater wetlands, Aerobic				
CH ₄ (atm)	Rates	K (d ⁻¹)	Reference	
	$(\mu mol/g/d \text{ or } \mu mol/cm^3/d)$			
1.20E-03	3.00E-05	1.92E-02	1996 Moisture and temperature sensitivity of CH4 oxidation in boreal soils	
1.80E-06	6.24E-04	2.67E+02	1993 Kinetics of methane oxidation in oxic soils	
1.20E-03	7.50E-04	4.81E-01	1996 Moisture and temperature sensitivity of CH4 oxidation in boreal soils	
2.00E-06	8.40E-04	3.23E+02	2004 Methane oxidation in boreal forest soils: kinetics and sensitivity to pH and ammonium	
1.20E-03	1.80E-03	1.15E+00	1996 Moisture and temperature sensitivity of CH4 oxidation in boreal soils	
1.80E-06	2.40E-03	1.03E+03	2004 Methane oxidation in boreal forest soils: kinetics and sensitivity to pH and ammonium	
5.60E-05	5.40E-03	7.42E+01	2004 Methane oxidation in boreal forest soils: kinetics and sensitivity to pH and ammonium	
2.50E-04	7.20E-03	2.22E+01	2004 Methane oxidation in boreal forest soils: kinetics and sensitivity to pH and ammonium	
8.00E-05	7.44E-03	7.15E+01	2004 Methane oxidation in boreal forest soils: kinetics and sensitivity to pH and ammonium	
-	8.64E-03		1998 Methane production and methane consumption: a review of processes underlying wetland methane fluxes	
1.00E-02	1.00E-02	7.69E-01	1994 Methane Metabolism in a Temperate Swamp	
1.00E-03	1.18E-02	9.05E+00	2004 Methane oxidation in boreal forest soils: kinetics and sensitivity to pH and ammonium	
5.00E-05	1.44E-02	2.22E+02	2004 Methane oxidation in boreal forest soils: kinetics and sensitivity to pH and ammonium	
5.00E-03	1.56E-02	2.40E+00	2004 Methane oxidation in boreal forest soils: kinetics and sensitivity to pH and ammonium	
1.80E-06	1.78E-02	7.59E+03	1993 Kinetics of methane oxidation in oxic soils	
1.00E-04	2.40E-02	1.85E+02	2004 Methane oxidation in boreal forest soils: kinetics and sensitivity to pH and ammonium	

9.00E-04	3.13E-02	2.67E+01	1997 Methane and carbon dioxide exchange potentials of peat soils in aerobic and anaerobic laboratory incubation
1.80E-06	3.43E-02	1.47E+04	1993 Kinetics of methane oxidation in oxic soils
3.50E-03	4.80E-02	1.05E+01	2014 Seasonal methanotrophy across a hydrological gradient in a freshwater wetland
3.50E-03	4.80E-02	1.05E+01	2014 Seasonal methanotrophy across a hydrological gradient in a freshwater wetland
2.50E-04	5.04E-02	1.55E+02	2004 Methane oxidation in boreal forest soils: kinetics and sensitivity to pH and ammonium
6.00E-01	6.00E-02	7.69E-02	2020 Active Methanotrophs in Suboxic Alpine Swamp Soils of the Qinghai- Tibetan Plateau
3.50E-03	6.00E-02	1.32E+01	2014 Seasonal methanotrophy across a hydrological gradient in a freshwater wetland
1.00E-03	8.40E-02	6.46E+01	2004 Methane oxidation in boreal forest soils: kinetics and sensitivity to pH and ammonium
3.50E-03	8.40E-02	1.85E+01	2014 Seasonal methanotrophy across a hydrological gradient in a freshwater wetland
1.80E-06	8.64E-02	3.69E+04	1993 Kinetics of methane oxidation in oxic soils
3.50E-03	9.60E-02	2.11E+01	2014 Seasonal methanotrophy across a hydrological gradient in a freshwater wetland
3.50E-03	9.60E-02	2.11E+01	2014 Seasonal methanotrophy across a hydrological gradient in a freshwater wetland
1.00E-04	1.01E-01	7.75E+02	1993 Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH.
1.00E-02	1.10E-01	8.46E+00	1994 Methane Metabolism in a Temperate Swamp
2.00E-04	1.20E-01	4.62E+02	1993 Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH.
6.00E-01	1.20E-01	1.54E-01	2020 Active Methanotrophs in Suboxic Alpine Swamp Soils of the Qinghai- Tibetan Plateau
3.50E-03	1.20E-01	2.64E+01	2014 Seasonal methanotrophy across a hydrological gradient in a freshwater wetland
1.20E-03	1.50E-01	9.62E+01	1996 Moisture and temperature sensitivity of CH4 oxidation in boreal soils
6.00E-01	1.50E-01	1.92E-01	2020 Active Methanotrophs in Suboxic Alpine Swamp Soils of the Qinghai- Tibetan Plateau
5.00E-03	1.56E-01	2.40E+01	2004 Methane oxidation in boreal forest soils: kinetics and sensitivity to pH and ammonium
3.50E-03	1.68E-01	3.69E+01	2014 Seasonal methanotrophy across a hydrological gradient in a freshwater wetland
3.00E-04	1.92E-01	4.92E+02	1993 Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH.
3.50E-03	1.92E-01	4.22E+01	2014 Seasonal methanotrophy across a hydrological gradient in a freshwater wetland
1.20E-03	2.06E-01	1.32E+02	1996 Moisture and temperature sensitivity of CH4 oxidation in boreal soils
-	2.50E-01	1.25E-01	2020 Methylobacter accounts for strong aerobic methane oxidation in the Yellow River Delta with characteristics of a methane sink during the dry season
3.50E-03	2.88E-01	6.33E+01	2014 Seasonal methanotrophy across a hydrological gradient in a freshwater wetland
1.00E-02	3.10E-01	2.38E+01	1994 Methane Metabolism in a Temperate Swamp
3.50E-03	3.12E-01	6.86E+01	2014 Seasonal methanotrophy across a hydrological gradient in a freshwater wetland
3.50E-03	3.12E-01	6.86E+01	2014 Seasonal methanotrophy across a hydrological gradient in a freshwater wetland
1.00E-02	4.30E-01	3.31E+01	1994 Methane Metabolism in a Temperate Swamp
3.50E-03	4.32E-01	9.49E+01	2014 Seasonal methanotrophy across a hydrological gradient in a freshwater wetland
1.20E-03	4.50E-01	2.88E+02	1996 Moisture and temperature sensitivity of CH4 oxidation in boreal soils
1.00E-02	5.28E-01	4.06E+01	1995 CH4 production, oxidation and emission in a U.K. ombrotrophic peat bog: Influence of SO42- from acid rain
3.36E-05	5.40E-01	1.24E+04	2014 Methanogenesis and methanotrophy within a Sphagnum peatland
-	5.40E-01	5.40E+02	2014 Methanogenesis and methanotrophy within a Sphagnum peatland
9.00E-04	6.25E-01	5.34E+02	1997 Methane and carbon dioxide exchange potentials of peat soils in aerobic and anaerobic laboratory incubation

1.00E-03	7.20E-01	5.54E+02	1993 Methane production and consumption in temperate and subarctic peat soils:
			response to temperature and pH.
2.00E-03	7.68E-01	2.95E+02	1993 Methane production and consumption in temperate and subarctic peat soils:
	7.69E.01	5 12E+02	2014 Methanogeneois and methanotrophy within a Sphagnum postland
-	7.08E-01	3.12E+02	2014 Methanogenesis and methanotrophy within a Spriaghum peatiand
1.00E-02	8.40E-01	6.46E+01	1994 Methane Metabolism in a Temperate Swamp
1.00E-02	8.40E-01	6.46E+01	1995 CH4 production, oxidation and emission in a U.K. ombrotrophic peat bog: Influence of SO42- from acid rain
1.00E-02	8.50E-01	6.54E+01	1994 Methane Metabolism in a Temperate Swamp
1.00E-02	9.30E-01	7.15E+01	1994 Methane Metabolism in a Temperate Swamp
1.00E-02	9.60E-01	7.38E+01	1995 CH4 production, oxidation and emission in a U.K. ombrotrophic peat bog:
			Influence of SO42- from acid rain
6.50E-03	1.03E+00	1.22E+02	1993 Methane production and consumption in temperate and subarctic peat soils:
			response to temperature and pH.
9.00E-03	1.08E+00	9.23E+01	1993 Methane production and consumption in temperate and subarctic peat soils:
1.005.00	1.005.00	0.215+01	response to temperature and pH.
1.00E-02	1.08E+00	8.31E+01	1995 CH4 production, oxidation and emission in a U.K. ombrotrophic peat bog:
1.000 02	1.20E+00	0.22E+01	Influence of SO42- from acid rain
1.00E-02	1.20E+00	9.23E+01	Influence of SO(2- from acid rain
1.00E_02	1 20E+00	9 23E+01	1995 CH4 production ovidation and emission in a U.K. ombrotrophic peat bog:
1.001 02	1.201 00	J.23E+01	Influence of SO42– from acid rain
9.00E-04	1.25E+00	1.07E+03	1997 Methane and carbon dioxide exchange potentials of peat soils in aerobic and
			anaerobic laboratory incubation
-	1.38E+00	9.20E+01	2014 Methanogenesis and methanotrophy within a Sphagnum peatland
-	1.39E+00	1.86E+02	2014 Methanogenesis and methanotrophy within a Sphagnum peatland
1.00E-02	1.44E+00	1.11E+02	1995 CH4 production, oxidation and emission in a U.K. ombrotrophic peat bog:
			Influence of SO42- from acid rain
1.00E-02	1.56E+00	1.20E+02	1995 CH4 production, oxidation and emission in a U.K. ombrotrophic peat bog:
		_	Influence of SO42- from acid rain
1.00E-02	1.58E+00	1.22E+02	1995 CH4 production, oxidation and emission in a U.K. ombrotrophic peat bog:
1.005.00	1.505+00	1.000	Influence of SO42- from acid rain
1.00E-02	1.59E+00	1.22E+02	1994 Methane Metabolism in a Temperate Swamp
3.36E-04	1.61E+00	3.68E+03	2014 Methanogenesis and methanotrophy within a Sphagnum peatland
3.00E-03	1.95E+00	5.00E+02	1994 Depth Distribution of Microbial Production and Oxidation of Methane in Northern Boreal Peatlands
1.00E-02	2.40E+00	1.85E+02	1995 CH4 production, oxidation and emission in a U.K. ombrotrophic peat bog: Influence of SO42- from acid rain
1.00E-02	2.43E+00	1.87E+02	1994 Methane Metabolism in a Temperate Swamp
1.00E-02	3.00E+00	2.31E+02	2014 CH4 production, oxidation and emission in a U.K. ombrotrophic peat bog:
			Influence of SO42– from acid rain
9.00E-04	3.13E+00	2.67E+03	1997 Methane and carbon dioxide exchange potentials of peat soils in aerobic and
			anaerobic laboratory incubation
1.00E-02	3.60E+00	2.77E+02	2014 CH4 production, oxidation and emission in a U.K. ombrotrophic peat bog:
			Influence of SO42– from acid rain

Table S	5. The rat	es of ana	erobic met	thane oxida	tion in	freshwater	wetlands.
---------	------------	-----------	------------	-------------	---------	------------	-----------

Freshwater wetland, Anaerobic				
CH ₄ (atm)	Rates	K (d ⁻¹)	Reference	
	(µmol/g/d or			
	µmol/cm ³ /d)			
1.00E-01	2.70E-03	2.08E-02	2020 Niche differentiation of denitrifying anaerobic methane oxidizing bacteria and	
			archaea leads to effective methane filtration in a Tibetan alpine wetland	
1.00E-01	1.22E-02	9.41E-02	2020 Niche differentiation of denitrifying anaerobic methane oxidizing bacteria and	
			archaea leads to effective methane filtration in a Tibetan alpine wetland	
1.00E-01	2.00E-03	1.54E-02	2020 Niche differentiation of denitrifying anaerobic methane oxidizing bacteria and	
			archaea leads to effective methane filtration in a Tibetan alpine wetland	
1.00E-01	4.00E-03	3.08E-02	2020 Niche differentiation of denitrifying anaerobic methane oxidizing bacteria and	
			archaea leads to effective methane filtration in a Tibetan alpine wetland	
1.00E-01	3.77E-02	2.90E-01	2020 Niche differentiation of denitrifying anaerobic methane oxidizing bacteria and	
			archaea leads to effective methane filtration in a Tibetan alpine wetland	

2.00E-05	1.10E-03	4.23E+01	2015 More evidence that anaerobic oxidation of methane is prevalent in soils: Is it
			time to upgrade our biogeochemical models
1.00E+00	5.00E-02	3.85E-02	2015 High rates of anaerobic methane oxidation in freshwater wetlands reduce
1.007.00	1.505.00		potential atmospheric methane emissions
1.00E+00	1.50E-02	1.15E-02	2015 High rates of anaerobic methane oxidation in freshwater wetlands reduce
2.500.02	1.((E.02	5 110 01	2012 Ct 11 L to D = 1 W'1 = 1 A = 1' M the O='1 t' A
2.50E-02	1.66E-02	5.11E-01	2013 Stable Isotopes Reveal Widespread Anaerobic Methane Oxidation Across
1.00E-01	3 80E-04	2 92E-03	2020 Exogenous nitrogen addition inhibits sulfate mediated anaerobic oxidation of
1.00L-01	5.002-04	2.721-05	methane in estuarine coastal sediments
1.00E-01	2.40E-03	1.85E-02	2020 Exogenous nitrogen addition inhibits sulfate-mediated anaerobic oxidation of
			methane in estuarine coastal sediments
1.00E-01	2.56E-03	1.97E-02	2020 Exogenous nitrogen addition inhibits sulfate-mediated anaerobic oxidation of
			methane in estuarine coastal sediments
1.00E-01	8.00E-04	6.15E-03	2020 Exogenous nitrogen addition inhibits sulfate-mediated anaerobic oxidation of
			methane in estuarine coastal sediments
-	3.10E-04	-	2014 Evidence for nitrite-dependent anaerobic methane oxidation as a previously
			overlooked microbial methane sink
9.10E-02	5.43E-03	4.59E-02	2014 Evidence for nitrite-dependent anaerobic methane oxidation as a previously
			overlooked microbial methane sink
9.10E-02	8.00E-04	6.76E-03	2014 Evidence for nitrite-dependent anaerobic methane oxidation as a previously
			overlooked microbial methane sink
9.10E-02	4.80E-03	4.06E-02	2014 Evidence for nitrite-dependent anaerobic methane oxidation as a previously
			overlooked microbial methane sink
9.10E-02	1.50E-03	1.27E-02	2014 Evidence for nitrite-dependent anaerobic methane oxidation as a previously
			overlooked microbial methane sink
9.10E-02	4.60E-03	3.89E-02	2014 Evidence for nitrite-dependent anaerobic methane oxidation as a previously
			overlooked microbial methane sink
9.10E-02	3.50E-03	2.96E-02	2014 Evidence for nitrite-dependent anaerobic methane oxidation as a previously
			overlooked microbial methane sink
9.10E-02	2.00E-03	1.69E-02	2014 Evidence for nitrite-dependent anaerobic methane oxidation as a previously
			overlooked microbial methane sink
1.00E+00	4.90E-03	3.77E-03	2013 Impact of electron acceptor availability on the anaerobic oxidation of methane
			in coastal freshwater and brackish wetland sediments
1.00E+00	2.66E-02	2.05E-02	2013 Impact of electron acceptor availability on the anaerobic oxidation of methane
			in coastal freshwater and brackish wetland sediments
1.00E-01	3.41E-03	2.62E-02	2013 Impact of electron acceptor availability on the anaerobic oxidation of methane
			in coastal freshwater and brackish wetland sediments
1.00E-01	8.48E-03	6.52E-02	2020 Depth-specific distribution and significance of nitrite-dependent anaerobic
			methane oxidation process in tidal flow constructed wetlands used for treating river
			water
1.00E-01	2.50E-03	1.92E-02	2020 Depth-specific distribution and significance of nitrite-dependent anaerobic
			methane oxidation process in tidal flow constructed wetlands used for treating river
			water
1.00E-01	1.50E-03	1.15E-02	2020 Depth-specific distribution and significance of nitrite-dependent anaerobic
			methane oxidation process in tidal flow constructed wetlands used for treating river
			water

	T 1 (C 1	• .1	• • •	•	•	•	
Table S6.	The rates	of anaerot	nc methane	e oxidation	ın	marine	environmer	ıt.

Marine, Anaerobic				
Category	CH ₄ (atm)	Rates (µmol/g/d or µmol/cm ³ /d)	K (d ⁻¹)	Reference
inner shelf (10-50m)	1.00E-01	3.00E-03	-	2019 Denitrifying Anaerobic Methane
				Oxidation: A Previously Overlooked Methane
				Sink in Intertidal Zone
inner shelf (10-50m)	1.00E-01	2.00E-04	-	2016 Anaerobic methane oxidation coupled to
				nitrite reduction can be a potential methane sink
				in coastal environments
inner shelf (10-50m)	1.00E-01	1.30E-03	-	2016 Anaerobic methane oxidation coupled to
				nitrite reduction can be a potential methane sink
				in coastal environments
inner shelf (10-50m)	1.00E-02	3.99E-02	-	2020 Denitrifying anaerobic methane oxidation

				in intertidal marsh soils: Occurrence and
				environmental significance
inner shelf (10-50m)	1.00E+00	1.50E-03	-	2020 Denitrifying anaerobic methane oxidation
				in intertidal marsh soils: Occurrence and
				environmental significance
inner shelf (10-50m) 45 m	1.00E-01	6.48E+00	-	2016 Anaerobic Oxidation of Methane Coupled
				to Nitrite Reduction by Halophilic Marine NC10
				Bacteria
inner shelf (10-50m)28 m	1.00E-02	1.00E-01	-	2020 Denitrifying anaerobic methane oxidation
				in marsh sediments of Chongming eastern
				intertidal flat
inner shelf (10-50m)28 m	1.00E-02	4.67E-02	-	2020 Denitrifying anaerobic methane oxidation
				in marsh sediments of Chongming eastern
	1.005.00			intertidal flat
inner shelf (10-50m)28 m	1.00E-02	8.43E-02	-	2021 Microbial abundance and activity of
				nitrite/nitrate-dependent anaerobic methane
				oxidizers in estuarine and intertidal wetlands:
. 1.10(10.50.)00	1.005.00			Heterogeneity and driving factors
inner shelf (10-50m)28 m	1.00E-02	3.26E-02	-	2021 Microbial abundance and activity of
				nitrite/nitrate-dependent anaerobic methane
				oxidizers in estuarine and intertidal wetlands:
<u>S1</u> (200, 2,000) 520	2.505+00	2.905.02		Heterogeneity and driving factors
Slope (200–2,000),520m	2.50E+00	3.80E-02	-	2009 Manganese- and Iron-Dependent Marine
Slana (200, 2,000) 520m	2 00E 01	2.21E.02		2020 Influence of electron accenter evailability
Slope (200–2,000),520III	2.00E-01	3.21E-02	-	and miarchiel community structure on
				and interoblat community structure on
				estuary
Slope (200, 2,000) -850 m	3 50E-01	7.00E_01		2016 Artificial electron accentors decouple
Stope (200–2,000),-850 m	5.501-01	7.00L-01	-	archaeal methane ovidation from sulfate
				reduction
Slope (200, 2,000) -850 m	3 50E-01	8 10E-01		2016 Artificial electron accentors decouple
510pc (200-2,000),-850 m	5.50L-01	0.102-01		archaeal methane oxidation from sulfate
				reduction
Rise (2.000–3.500).2428	2.15E+00	1.52E-01	-	2012 Anaerobic methane oxidation in
m				metalliferous hydrothermal sediments: influence
				on carbon flux and decoupling from sulfate
				reduction
Outer shelf (50–200)	1.00E+00	9.50E-05	6.33E-05	2020 Rates and Microbial Players of Iron-Driven
				Anaerobic Oxidation of Methane in Methanic
				Marine Sediments
Slope (200–2,000),210m	4.50E-01	3.60E-03	-	2015 Iron-Mediated Anaerobic Oxidation of
				Methane in Brackish Coastal Sediments
Outer shelf (50–200),100	1.00E+00	3.63E-02	-	2018Anaerobic methane oxidation inducing
m				carbonate precipitation at abiogenic methane
				seeps in the Tuscan archipelago
Outer shelf (50–200), 71 m	1.54E+00	7.00E+01	-	2018 Methane as an Organic Matter Source and
				the Trophic Basis of a Laptev Sea Cold Seep
				Microbial Communit
inner shelf (10-50m),28 m	7.69E-01	2.20E-01	-	2005 Microbial methane turnover in different
				marine habitats
inner shelf (10-50m)	7.69E-01	1.20E-01	-	2005 Microbial methane turnover in different
				marine habitats
Inner shelf (0–10),0.5 m	-	1.20E-03	-	1994 Field and laboratory studies of methane
				oxidation in an anoxic
Inner shelf (0–10)	1.00E-01	7.40E-04	-	2019 Denitrifying Anaerobic Methane
				Oxidation: A Previously Overlooked Methane
				Sink in Intertidal Zone
Inner shelf (0–10), 4 m	6.92E-01	4.34E-02	-	2018 Decoupling between sulfate reduction and
				the anaerobic oxidation of methane in the
				shallow methane seep of the Black sea
Inner shelf (0–10), 4 m	5.00E-01	2.00E-03	3.08E-03	2018 Decoupling between sulfate reduction and
				the anaerobic oxidation of methane in the
	1.5.00	1.007.07		shallow methane seep of the Black sea
Inner shelf $(0-10)$, 4 m	1.54E-03	1.00E-05	5.00E-03	2018 Decoupling between sulfate reduction and

				the anaerobic oxidation of methane in the
				shallow methane seep of the Black sea
Inner shelf (0–10), 4 m	4.23E-03	7.00E-05	1.27E-02	2018 Decoupling between sulfate reduction and
				the anaerobic oxidation of methane in the
				shallow methane seep of the Black sea
Inner shelf (0–10)	1.00E+00	1.50E-03	-	2020 Denitrifying anaerobic methane oxidation
				in intertidal marsh soils: Occurrence and
				environmental significance
inner shelf (10-50m)	2.00E-05	2.60E-03	-	2019 More evidence that anaerobic oxidation of
				methane is prevalent in soils: Is it time to
				upgrade our biogeochemical models
inner shelf (10-50m)	1.00E+00	1.28E-02	-	2015 Growth of Anaerobic Methane-Oxidizing
				Archaea and Sulfate-Reducing Bacteria in a
· 1.10(10.50.)	1.005.00	1.005.00		High-Pressure Membrane
inner shelf (10-50m)	1.00E+00	1.89E-02	-	2015 Growth of Anaerobic Methane-Oxidizing
				Archaea and Sulfate-Reducing Bacteria in a
		1.0(5.00	1.0(5.01	High-Pressure Membrane
inner shelf (10-50m), 30-	7.67E-02	1.26E-02	1.26E-01	2011 Weak coupling between sulfate reduction
40 m				and the anaerobic oxidation of methane in
				methane-rich seafloor sediments during ex situ
· 1.10(10.50.) 20	0.000 01	1.005.04	0.225.05	
inner shelf (10-50m), 30-	9.23E-01	1.00E-04	8.33E-05	2012 Sulfate Reduction, Methanogenesis, and
40 m				Methane Oxidation in the Holocene Sediments
· 1.16(10.50.) 20	0.225.01	2.005.04	1 (75.04	Of the vyborg Bay, Baltic Sea
inner shelf (10-50m), 30-	9.23E-01	2.00E-04	1.6/E-04	2012 Sulfate Reduction, Methanogenesis, and
40 m				of the Vyherra Day, Daltie See
$\frac{1}{10000000000000000000000000000000000$	0.22E.01	4.00E.04	2 22E 04	2012 Sulfata Badyatian Mathemaganasis and
40 m	9.23E-01	4.00E-04	3.33E-04	2012 Suffate Reduction, Methanogenesis, and Mothana Ovidation in the Hologone Sadiments
40 111				of the Wyborg Bay, Baltic Sea
inner shelf $(10, 50m), 30$	0.23E.01	2 30E 03	1.02E.03	2012 Sulfate Peduction Methanogenesis and
40 m	9.2512-01	2.50E-05	1.921-05	Methane Oxidation in the Holocene Sediments
40 111				of the Vyborg Bay, Baltic Sea
inner shelf (10-50m) 30-	9 23E-01	1 00F-04	8 33E-05	2012 Sulfate Reduction Methanogenesis and
40 m	J.23E 01	1.002 04	0.551 05	Methane Oxidation in the Holocene Sediments
				of the Vyborg Bay, Baltic Sea
inner shelf (10-50m), 30-	9.23E-01	5.00E-04	4.17E-04	2012 Sulfate Reduction, Methanogenesis, and
40 m	J.25E 01	STOOL OF		Methane Oxidation in the Holocene Sediments
				of the Vyborg Bay, Baltic Sea
inner shelf (10-50m), 30-	9.23E-01	1.00E-03	8.33E-04	2012 Sulfate Reduction, Methanogenesis, and
40 m				Methane Oxidation in the Holocene Sediments
				of the Vyborg Bay, Baltic Sea
inner shelf (10-50m), 30-	-	1.40E-03	-	2012 Sulfate Reduction, Methanogenesis, and
40 m				Methane Oxidation in the Holocene Sediments
				of the Vyborg Bay, Baltic Sea
inner shelf (10-50m), 30-	-	9.00E-05	-	2012 Sulfate Reduction, Methanogenesis, and
40 m				Methane Oxidation in the Holocene Sediments
				of the Vyborg Bay, Baltic Sea
inner shelf (10-50m), 30-	-	5.00E-05	-	2012 Sulfate Reduction, Methanogenesis, and
40 m				Methane Oxidation in the Holocene Sediments
				of the Vyborg Bay, Baltic Sea
inner shelf (10-50m), 30-	-	7.00E-06	-	2012 Sulfate Reduction, Methanogenesis, and
40 m				Methane Oxidation in the Holocene Sediments
				of the Vyborg Bay, Baltic Sea
Slope (200–2,000), 880 m	9.23E-01	1.40E-03	1.17E-03	2012 Sulfate Reduction, Methanogenesis, and
				Methane Oxidation in the Holocene Sediments
				of the Vyborg Bay, Baltic Sea
Slope (200–2,000), 880 m	4.39E-01	6.50E-03	1.14E-02	2011 Weak coupling between sulfate reduction
				and the anaerobic oxidation of methane in
				methane-rich seafloor sediments during ex situ
	4.007.61			
Slope (200–2,000), 880 m	4.99E-01	8.00E-04	1.23E-03	2011 Weak coupling between sulfate reduction
				and the anaerobic oxidation of methane in
				methane-rich seafloor sediments during ex situ
				incubatio

Slope (200–2,000), 880 m	4.12E-01	1.00E-03	1.87E-03	2011 Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubatio
Slope (200–2,000), 880 m	6.00E-01	1.30E-03	1.67E-03	2011 Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubatio
Slope (200–2,000), 880 m	2.37E-01	1.07E-02	3.47E-02	2011 Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubatio
Slope (200–2,000), 880 m	3.84E-01	6.70E-03	1.34E-02	2011 Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation
Slope (200–2,000), 880 m	4.75E-01	2.70E-03	4.37E-03	2011 Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation
Slope (200–2,000), 880 m	4.95E-01	2.90E-03	4.51E-03	2011 Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation
Slope (200–2,000), 880 m	5.05E-01	3.60E-03	5.48E-03	2011 Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation
Slope (200–2,000), 880 m	4.89E-01	3.20E-03	5.03E-03	2011 Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation
Slope (200–2,000), 880 m	1.26E-02	1.90E-03	1.16E-01	2011 Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation
Slope (200–2,000), 880 m	2.38E-02	1.10E-03	3.55E-02	2011 Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation
Slope (200–2,000), 880 m	3.36E-02	1.30E-03	2.97E-02	2011 Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation
Slope (200–2,000), 880 m	3.19E-02	1.00E-04	2.41E-03	2011 Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation
Slope (200–2,000), 880 m	1.52E-01	2.00E-04	1.01E-03	2011 Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation
Slope (200–2,000), 880 m	7.00E-01	1.40E-03	1.54E-03	2011 Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation
Slope (200–2,000), 880 m	1.33E-02	2.80E-03	1.62E-01	2011 Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation
Slope (200–2,000), 880 m	2.67E-02	1.50E-03	4.32E-02	2011 Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation
Slope (200–2,000), 880 m	1.31E-02	6.00E-04	3.53E-02	2011 Weak coupling between sulfate reduction and the anaerobic oxidation of methane in

				methane-rich seafloor sediments during ex situ
Slope (200–2,000), 880 m	5.55E-02	1.30E-03	1.80E-02	2011 Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation
Slope (200–2,000), 880 m	2.29E-02	1.50E-03	5.03E-02	2011 Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubatio
Slope (200–2,000), 880 m	5.84E-02	6.00E-04	7.91E-03	2011 Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation
Slope (200–2,000), 880 m	8.95E-01	2.30E-03	1.98E-03	2011 Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation
Slope (200–2,000), 880 m	7.64E-01	1.30E-03	1.31E-03	2011 Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation
Slope (200–2,000), 880 m	7.54E-01	1.40E-03	1.43E-03	2011 Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation
Slope (200–2,000), 880 m	3.48E-01	3.00E-04	6.64E-04	2011 Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation
Slope (200–2,000), 880 m	5.05E-01	6.00E-04	9.14E-04	2011 Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation
Outer shelf (50–200), 71 m	4.15E-01	3.90E-03	7.24E-03	2017 Methane as an Organic Matter Source and the Trophic Basis of a Laptev Sea Cold Seep Microbial Community
Outer shelf (50–200),100 m	1.00E+00	1.80E-03	1.20E-03	2018 Anaerobic methane oxidation inducing carbonate precipitation at abiogenic methane seeps in the Tuscan archipelago
Slope (200–2,000), 280/340 m	1.00E+00	8.00E-03	5.41E-03	2014 Sulfate reduction and methane oxidation activity below the sulfate-methane transition zone in Alaskan Beaufort Sea continental margin sediments: Implications for deep sulfur cycling.
Slope (200–2,000), 1400 m	4.33E-01	1.50E-02	-	2021 Depth profiles of geochemical features, geochemical activities and biodiversity of microbial communities in marine sediments from the Shenhua area, the northern South China Se
Slope (200–2,000), 1400 m	2.27E-03	1.42E-06	4.83E-04	2018 Carbon and sulfur cycling rate measurements and geochemistry from three sites in the northern South China Sea
Slope (200–2,000), 1400 m	2.39E-03	5.43E-07	1.75E-04	2018 Carbon and sulfur cycling rate measurements and geochemistry from three sites in the northern South China Sea
Slope (200–2,000), 1400 m	2.36E-03	4.79E-07	1.57E-04	2018 Carbon and sulfur cycling rate measurements and geochemistry from three sites in the northern South China Sea
Slope (200–2,000), 1400 m	3.14E-03	4.35E-07	1.07E-04	2018 Carbon and sulfur cycling rate measurements and geochemistry from three sites in the northern South China Sea
Slope (200–2,000), 1400 m	3.08E-03	9.06E-07	2.26E-04	2018 Carbon and sulfur cycling rate measurements and geochemistry from three sites in the northern South China Sea
Slope (200–2,000), 1400 m	3.62E-03	1.06E-06	2.24E-04	2018 Carbon and sulfur cycling rate measurements and geochemistry from three sites

				in the northern South China Sea
Slope (200–2,000), 1400 m	5.28E-03	6.49E-07	9.46E-05	2018 Carbon and sulfur cycling rate measurements and geochemistry from three sites
				in the northern South China Sea
Slope (200–2,000), 1400	4.33E-03	9.04E-07	1.61E-04	2018 Carbon and sulfur cycling rate
m				measurements and geochemistry from three sites
				in the northern South China Sea
Slope (200–2,000), 1400	3.57E-03	5.68E-07	1.22E-04	2018 Carbon and sulfur cycling rate
m				measurements and geochemistry from three sites
				in the northern South China Sea
Slope (200–2,000), 1400	4.46E-03	1.03E-06	1.77E-04	2018 Carbon and sulfur cycling rate
m				measurements and geochemistry from three sites
<u>Slama (200, 2,000), 1400</u>	4.05E.02	6 16E 07	0.570.05	in the northern South China Sea
Slope (200–2,000), 1400	4.93E-05	0.10E-07	9.37E-03	2018 Carbon and surfur cycling rate
111				in the northern South China Sea
Slope (200–2.000) 1400	4 98E-03	5 14E-07	7 93E-05	2018 Carbon and sulfur cycling rate
m	1.901 05	5.1 IE 07	1.551 05	measurements and geochemistry from three sites
				in the northern South China Sea
Slope (200–2,000), 1400	5.17E-03	4.97E-07	7.38E-05	2018 Carbon and sulfur cycling rate
m				measurements and geochemistry from three sites
				in the northern South China Sea
Slope (200–2,000), 1400	6.66E-03	6.42E-07	7.42E-05	2018 Carbon and sulfur cycling rate
m				measurements and geochemistry from three sites
				in the northern South China Sea
Slope (200–2,000), 1400	6.23E-03	6.64E-07	8.20E-05	2018 Carbon and sulfur cycling rate
m				measurements and geochemistry from three sites
				in the northern South China Sea
Slope (200–2,000), 1400	6.96E-03	7.50E-07	8.29E-05	2018 Carbon and sulfur cycling rate
m				measurements and geochemistry from three sites
<u>S1</u> (200 2 000) 1400	5 725 02	5 405 07	7.275.05	in the northern South China Sea
Slope (200–2,000), 1400	5./2E-03	5.49E-07	7.37E-05	2018 Carbon and sulfur cycling rate
111				in the northern South China Sea
Slope (200, 2,000), 1400	2 03E 03	6 72E 03	1 71E+00	2018 Carbon and sulfur ovaling rate
stope (200–2,000), 1400	5.03E-05	0.72E-03	1./12+00	measurements and geochemistry from three sites
111				in the northern South China Sea
Slope (200–2.000) 1400	5 29E-03	4 27E-03	6.21E-01	2018 Carbon and sulfur cycling rate
m	0.272 00	1.27 2 00	0.212 01	measurements and geochemistry from three sites
				in the northern South China Sea
Slope (200–2,000), 1400	2.23E-03	4.74E-03	1.63E+00	2018 Carbon and sulfur cycling rate
m				measurements and geochemistry from three sites
				in the northern South China Sea
Slope (200–2,000), 1400	2.06E-03	5.14E-03	1.92E+00	2018 Carbon and sulfur cycling rate
m				measurements and geochemistry from three sites
				in the northern South China Sea
Slope (200–2,000), 1400	2.74E-03	4.93E-03	1.38E+00	2018 Carbon and sulfur cycling rate
m				measurements and geochemistry from three sites
			1.425+00	in the northern South China Sea
Slope (200–2,000), 1400	2.29E-03	4.22E-03	1.42E+00	2018 Carbon and sulfur cycling rate
m				in the next level Sector China Sec
Slama (200, 2,000) 585 m	5 91E 02	5 25E 06	6 05E 04	in the northern South China Sea
Slope (200–2,000),585 III	5.81E-05	5.25E-00	0.951-04	measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from
				2016-07-26 to 2016-08-14
Slope (200–2.000).585 m	3.14E-03	2.20E-06	5.38E-04	2019 Sediment geochemistry and process rate
				measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from
				2016-07-26 to 2016-08-14
Slope (200–2,000),585 m	3.67E-03	1.84E-06	3.85E-04	2019 Sediment geochemistry and process rate
				measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from
				2016-07-26 to 2016-08-14
Slope (200–2,000),585 m	3.32E-03	1.45E-06	3.35E-04	2019 Sediment geochemistry and process rate

				measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from $2016.07, 26 \text{ to } 2016.08, 14$
Slope (200–2.000).585 m	3.25E-03	1.13E-06	2.67E-04	2010-07-20 to 2010-08-14 2019 Sediment geochemistry and process rate
Stope (200 2,000),505 m	5.251 05		2.0712 01	measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from
				2016-07-26 to 2016-08-14
Slope (200–2,000),585 m	4.04E-03	9.39E-07	1.79E-04	2019 Sediment geochemistry and process rate
				measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from
<u>Slama (200, 2,000) 595 m</u>	2.025.02	5.64E.06	1.42E.02	2016-07-26 to 2016-08-14
Slope (200–2,000),585 m	3.03E-03	3.04E-00	1.45E-05	2019 Sediment geochemistry and process rate measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from
				2016-07-26 to 2016-08-14
Slope (200–2,000),585 m	4.45E-03	9.32E-07	1.61E-04	2019 Sediment geochemistry and process rate
-				measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from
			4.607.04	2016-07-26 to 2016-08-14
Slope (200–2,000),585 m	3.64E-03	7.95E-07	1.68E-04	2019 Sediment geochemistry and process rate
				EN586 in the porthern Gulf of Maxico from
				2016-07-26 to 2016-08-14
Slope (200–2.000).803 m	1.16E-03	1.61E-05	1.07E-02	2019 Sediment geochemistry and process rate
				measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from
				2016-07-26 to 2016-08-14
Slope (200–2,000),803 m	4.52E-03	1.32E-05	2.24E-03	2019 Sediment geochemistry and process rate
				measurements aboard the R/V Endeavor cruise
				EN386 in the northern Gulf of Mexico from $2016.07.26$ to $2016.08.14$
Slope (200–2 000) 803 m	5.02E-03	9 26E-07	1 42F-04	2010-07-20 to 2010-08-14 2019 Sediment geochemistry and process rate
Stope (200-2,000),005 iii	5.02E 05	9.20E 07	1.4212 04	measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from
				2016-07-26 to 2016-08-14
Slope (200–2,000),1210 m	2.13E-02	5.60E-05	2.03E-03	2019 Sediment geochemistry and process rate
				measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from
<u>Slama (200, 2,000) 1210 m</u>	8 20E 02	5.62E.04	5 27E 02	2016-0/-26 to 2016-08-14
Slope (200–2,000),1210 m	8.20E-02	3.02E-04	3.2/E-03	2019 Sediment geochemistry and process rate measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from
				2016-07-26 to 2016-08-14
Slope (200–2,000),1210 m	1.12E-01	1.31E-03	8.97E-03	2019 Sediment geochemistry and process rate
				measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from
				2016-07-26 to 2016-08-14
Slope (200–2,000),1210 m	2.92E-01	1.63E-03	4.30E-03	2019 Sediment geochemistry and process rate
				EN586 in the northern Gulf of Maxico from
				2016-07-26 to 2016-08-14
Slope (200–2.000) 1210 m	3 41E-01	5 36E-03	1 21E-02	2019 Sediment geochemistry and process rate
210pt (200 2,000),1210 m				measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from
				2016-07-26 to 2016-08-14
Slope (200–2,000),1210 m	4.64E-01	2.28E-03	3.78E-03	2019 Sediment geochemistry and process rate
				measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from $2016.07, 264$
Slope (200, 2,000) 1210	7.04E.01	5 21E 04	5 60F 04	2010-0/-20 to 2010-08-14 2010 Sediment geochemistry and process rate
Stope (200–2,000),1210 m	/.04E-01	J.21E-04	J.07E-04	measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from
				2016-07-26 to 2016-08-14
Slope (200–2,000),1526 m	1.80E-03	7.44E-07	3.17E-04	2019 Sediment geochemistry and process rate
				measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from

				2016-07-26 to 2016-08-14
Slope (200–2,000),1526 m	1.90E-03	1.92E-06	7.75E-04	2019 Sediment geochemistry and process rate measurements aboard the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from
				2016-07-26 to 2016-08-14
Slope (200–2,000),1526 m	2.54E-03	1.94E-06	5.86E-04	2019 Sediment geochemistry and process rate measurements aboard the R/V Endeavor cruise EN586 in the porthern Gulf of Maxico from
				2016-07-26 to 2016-08-14
Slope (200–2,000),1526 m	1.97E-03	8.26E-07	3.23E-04	2019 Sediment geochemistry and process rate measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from 2016-07-26 to 2016-08-14
Slope (200–2,000),1526 m	3.01E-03	9.88E-07	2.53E-04	2019 Sediment geochemistry and process rate measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from 2016-07-26 to 2016-08-14
Slope (200–2,000),1526 m	2.20E-03	5.13E-07	1.79E-04	2019 Sediment geochemistry and process rate measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from 2016-07-26 to 2016-08-14
Slope (200–2,000),1372 m	3.57E-03	1.31E-05	2.82E-03	2019 Sediment geochemistry and process rate
				EN586 in the northern Gulf of Mexico from
Slope (200–2,000),1372 m	7.01E-03	1.67E-05	1.83E-03	2019 Sediment geochemistry and process rate
				measurements aboard the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-26 to 2016-08-14
Slope (200–2,000),1372 m	8.92E-03	4.62E-06	3.98E-04	2019 Sediment geochemistry and process rate
				measurements aboard the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-26 to 2016-08-14
Slope (200–2,000),1372 m	1.15E-02	5.07E-06	3.40E-04	2019 Sediment geochemistry and process rate
				EN586 in the northern Gulf of Mexico from 2016-07-26 to 2016-08-14
Slope (200–2,000),1372 m	9.17E-03	3.44E-06	2.89E-04	2019 Sediment geochemistry and process rate
				measurements aboard the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-26 to 2016-08-14
Slope (200–2,000),1372 m	1.13E-02	5.11E-06	3.48E-04	2019 Sediment geochemistry and process rate
				measurements aboard the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-26 to 2016-08-14
Slope (200–2,000),1372 m	8.39E-03	3.51E-06	3.22E-04	2019 Sediment geochemistry and process rate
				measurements aboard the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-26 to 2016-08-14
Outer shelf (50–200), 123	2.64E-03	3.81E-06	1.11E-03	2019 Sediment geochemistry and process rate
m				measurements aboard the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from
Outer shelf (50–200), 123	3.97E-03	5.38E-06	1.04E-03	2010-07-26 to 2010-08-14 2019 Sediment geochemistry and process rate
m	0.072.00		110.12.00	measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from 2016-07-26 to 2016-08-14
Outer shelf (50–200), 123	4.38E-03	7.81E-06	1.37E-03	2010-07-20 to 2010-08-14 2019 Sediment geochemistry and process rate
m				measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from 2016-07-26 to 2016-08-14
Outer shelf (50–200), 123	3.73E-03	4.80E-06	9.89E-04	2019 Sediment geochemistry and process rate
m				measurements aboard the R/V Endeavor cruise
				2016-07-26 to 2016-08-14

Outer shelf (50–200), 123	5.44E-03	6.20E-06	8.77E-04	2019 Sediment geochemistry and process rate
m				measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from
				2016-07-26 to 2016-08-14
Outer shelf $(50-200)$, 123	3.23E-03	3.82E-06	9.10E-04	2019 Sediment geochemistry and process rate
m				ENIS (in the north are Calf of Maniae from
				$2016.07.26 \pm 2016.08.14$
Outer shelf $(50, 200)$ 123	1 40E-03	6.41E-06	1 12E_03	2010-07-20 to 2010-08-14
m	4.4012-03	0.4112-00	1.121-05	measurements aboard the R/V Endeavor cruise
111				EN586 in the northern Gulf of Mexico from
				2016-07-26 to 2016-08-14
Slope (200–2,000),1634 m	2.26E-03	2.51E-06	8.52E-04	2019 Sediment geochemistry and process rate
				measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from
				2016-07-26 to 2016-08-14
Slope (200–2,000),1634 m	2.30E-03	1.56E-06	5.22E-04	2019 Sediment geochemistry and process rate
				measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from
	1.505.02	0.505.07	4.675.04	2016-07-26 to 2016-08-14
Slope (200–2,000),1634 m	1.58E-03	9.59E-07	4.67E-04	2019 Sediment geochemistry and process rate
				EN586 in the northern Culf of Maxima from
				2016.07-26 to $2016.08-14$
Slope (200–2.000) 1634 m	2 76E-03	1.51E-06	4 21E-04	2010-07-20 to 2010-08-14
Slope (200–2,000),1054 III	2.70L-03	1.512-00	4.212-04	measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from
				2016-07-26 to 2016-08-14
Slope (200–2,000),1634 m	1.53E-03	7.36E-07	3.71E-04	2019 Sediment geochemistry and process rate
				measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from
				2016-07-26 to 2016-08-14
Slope (200–2,000),1634 m	2.56E-03	1.08E-06	3.25E-04	2019 Sediment geochemistry and process rate
				measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from
<u>S1</u> (200, 2,000) 1(24	2 (25 02	1.02E.00	2.095.04	2016-07-26 to 2016-08-14
Slope (200–2,000),1634 m	2.62E-03	1.02E-06	2.98E-04	2019 Sediment geochemistry and process rate
				EN586 in the northern Gulf of Mexico from
				2016-07-26 to 2016-08-14
Slope (200–2 000) 1634 m	1 90E-03	7 40E-07	2.99E-04	2019 Sediment geochemistry and process rate
210 200 2,000,000 1 11	11,02.00	,		measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from
				2016-07-26 to 2016-08-14
Slope (200–2,000),1053 m	4.11E-03	1.24E-06	2.33E-04	2019 Sediment geochemistry and process rate
				measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from
				2016-07-26 to 2016-08-14
Slope (200–2,000),1053 m	9.28E-02	2.33E-05	1.93E-04	2019 Sediment geochemistry and process rate
				measurements aboard the R/V Endeavor cruise
				$2016.07.26 \pm 2016.08.14$
Slope (200, 2,000) 15/3 m	1 50E 03	5 32E 07	2 73E 04	2010-07-20 to 2010-08-14
Slope (200–2,000),1343 III	1.50E-05	5.521-07	2.7512-04	measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from
				2016-07-26 to 2016-08-14
Slope (200–2,000),1306 m	1.77E-03	8.66E-07	3.75E-04	2019 Sediment geochemistry and process rate
I				measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from
				2016-07-26 to 2016-08-14
Slope (200–2,000),1306 m	1.49E-02	7.76E-06	4.00E-04	2019 Sediment geochemistry and process rate
				measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from
				2016-07-26 to 2016-08-14
Slope (200–2,000),1306 m	1.16E-02	6.05E-06	4.01E-04	2019 Sediment geochemistry and process rate
	1	1		measurements aboard the R/V Endeavor cruise

				EN586 in the northern Gulf of Mexico from 2016-07-26 to 2016-08-14
Slope (200–2 000) 1306 m	1 84E-02	1.04E-05	4 33E-04	2019 Sediment geochemistry and process rate
Stope (200 2,000),1500 m	1.012 02	1.012.02	1.551 01	measurements aboard the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-26 to 2016-08-14
Slope (200–2,000),1306 m	2.28E-02	1.16E-05	3.90E-04	2019 Sediment geochemistry and process rate measurements aboard the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-26 to 2016-08-14
Slope (200–2,000),1366 m	3.22E-03	6.51E-06	1.56E-03	2019 Sediment geochemistry and process rate measurements aboard the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-26 to 2016-08-14
Slope (200–2,000),1366 m	3.47E-03	2.18E-06	4.83E-04	2019 Sediment geochemistry and process rate measurements aboard the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-26 to 2016-08-14
Slope (200–2,000),880 m	1.35E-02	4.58E-05	2.61E-03	2019 Sediment geochemistry and process rate measurements aboard the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-26 to 2016-08-14
Slope (200–2,000),880 m	1.44E-02	7.92E-05	4.22E-03	2019 Sediment geochemistry and process rate measurements aboard the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-26 to 2016-08-14
Slope (200–2,000),880 m	4.91E-02	1.89E-03	2.96E-02	2019 Sediment geochemistry and process rate measurements aboard the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-26 to 2016-08-14
Slope (200–2,000),880 m	3.87E-02	1.13E-03	2.26E-02	2019 Sediment geochemistry and process rate measurements aboard the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-26 to 2016-08-14
Slope (200–2,000),880 m	3.91E-01	6.36E-03	1.25E-02	2019 Sediment geochemistry and process rate measurements aboard the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-26 to 2016-08-14
Rise (2,000–3,500), 2300 m	4.42E-01	3.00E-05	5.22E-05	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Rise (2,000–3,500), 2300 m	4.26E-01	3.16E-06	5.71E-06	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Rise (2,000–3,500), 2300 m	3.72E-01	4.09E-03	8.46E-03	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Rise (2,000–3,500), 2300 m	4.29E-01	1.32E-06	2.38E-06	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Rise (2,000–3,500), 2300 m	2.96E-01	7.38E-04	1.92E-03	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Rise (2,000–3,500), 2300 m	3.21E-01	3.36E-03	8.06E-03	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Rise (2,000–3,500), 2300 m	2.78E-01	1.50E-05	4.15E-05	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Rise (2,000–3,500), 2300 m	2.39E-01	3.19E-06	1.03E-05	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000), 1046 m	1.06E+00	6.46E-02	4.69E-02	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013

Slope (200–2,000), 1062 m	5.00E-03	2.22E-06	3.41E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000), 1062 m	6.15E-03	2.09E-06	2.62E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000), 1062 m	7.78E-03	2.99E-06	2.96E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000), 1062 m	7.91E-03	4.81E-06	4.68E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000), 1062 m	6.74E-03	3.21E-06	3.67E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000), 1062 m	7.28E-03	7.38E-06	7.80E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000), 1062 m	1.19E-02	5.08E-06	3.27E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000), 1062 m	8.73E-03	2.43E-06	2.14E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000),595 m	3.10E-03	2.52E-06	6.26E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000),595 m	4.05E-03	2.46E-06	4.67E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000),595 m	5.26E-03	6.24E-06	9.13E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000),595 m	5.33E-03	4.14E-06	5.98E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000),595 m	5.61E-03	4.62E-06	6.33E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000),595 m	5.80E-03	5.16E-06	6.85E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000),595 m	5.27E-03	1.73E-06	2.52E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000),567 m	4.14E-03	2.92E-06	5.43E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000),567 m	4.41E-03	1.23E-06	2.14E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000),567 m	4.85E-03	9.45E-06	1.50E-03	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000),567 m	5.67E-03	1.52E-06	2.06E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000),567 m	6.76E-03	2.02E-06	2.29E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000),567 m	9.78E-03	1.46E-06	1.15E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000),567 m	1.12E-02	1.36E-06	9.34E-05	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22,

				2013
Slope (200–2,000),609 m	3.86E-03	2.98E-06	5.94E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000),609 m	6.11E-03	3.25E-06	4.09E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000),609 m	4.81E-03	2.99E-06	4.78E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000),609 m	4.95E-03	2.74E-06	4.26E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000),609 m	4.64E-03	2.35E-06	3.90E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000),609 m	7.89E-03	1.20E-05	1.17E-03	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000),609 m	3.82E-03	1.51E-06	3.03E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000),609 m	4.82E-03	2.23E-06	3.56E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000),287 m	2.74E-03	1.70E-06	4.76E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000),287 m	3.46E-03	2.24E-06	4.98E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000),287 m	4.44E-03	2.46E-06	4.25E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000),287 m	4.01E-03	1.93E-06	3.70E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000),287 m	4.46E-03	2.45E-06	4.23E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000),287 m	4.45E-03	1.58E-06	2.73E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000),287 m	4.34E-03	2.00E-06	3.55E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Slope (200–2,000),287 m	5.54E-03	1.89E-06	2.63E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Outer shelf (50–200), 147 m	4.16E-03	4.06E-06	7.49E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Outer shelf (50–200), 147 m	5.46E-03	3.64E-06	5.13E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Outer shelf (50–200), 147 m	4.54E-03	2.51E-06	4.24E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Outer shelf (50–200), 147 m	6.25E-03	2.59E-06	3.19E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Outer shelf (50–200), 147 m	6.97E-03	2.81E-06	3.10E-04	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
Outer shelf (50–200), 147	7.13E-03	4.12E-06	4.45E-04	2016 R/V Endeavor: EN528 Water and

Outer shelf (50–200), 147 7,63E-03 3.12E-06 3.14E-04 2016 RV Endewore ENS28 Water and Soliment Chemistry, Gulf of Mexico, July 7-22, 2013 Outer shelf (30–200), 147 9,30E-03 3.39E-06 2.80E-04 2016 RV Endewore ENS28 Water and Soliment Chemistry, Gulf of Mexico, July 7-22, 2013 inner shelf (10-50m) 28 m - 5.00E-03 - 2005 Environmental control on anaerobic oridition of methace in the gassy sediments of EckemBrote Bay Rise (2.000-3.500), 3200 - 1.00E-04 - 2011 Quantitative analysis of anaerobic oridition of methace in the gassy sediments of EckemBrote Bay Rise (2.000-3.500), 3200 - 9.13E-10 - 2011 Quantitative analysis of anaerobic oridition of methace (ADM) in marine sediments: A modeling perspective Rise (2.000-3.500), 3200 - 1.10E-09 - 2011 Quantitative analysis of anaerobic oridition of methace (ADM) in marine sediments: A modeling perspective Rise (2.000-3.500), 2500 - 5.22F-07 - 2011 Quantitative analysis of anaerobic oridition of methace (ADM) in marine sediments: A modeling perspective Rise (2.000-3.500), 2500 - 5.22F-07 - 2011 Quantitative analysis of anaerobic oridition of methace (ADM) in marine sediments: A modeling perspective Rise (2.000-3.500), 2500	m				Sediment Chemistry, Gulf of Mexico, July 7-22, 2013
m Instruction Instruction Instruction Sediment Chemistry, Gulf of Mexico, July 7-22, 2013 Outer shelf (50-200), 147 9.30E-03 3.39E-06 2.80E-04 Sediment Chemistry, Gulf of Mexico, July 7-22, 2013 inner shelf (10-50m) 28 m - 5.00E-03 - 2005 Environmental control on anaerobic oxidation of mechane in the gass y sediments of Eckerm@rde Bay inner shelf (10-50m) 28 m - 1.00E-04 - 005 Environmental control on anaerobic oxidation of mechane in the gass y sediments of Eckerm@rde Bay Rise (2,000-3,500), 3200 - 9.13F-10 - 2005 Environmental control on anaerobic oxidation of mechane (AOM) in marrine sediments: A modeling perspective Rise (2,000-3,500), 3200 1.54F-02 3.42F-10 1.71F-08 2011 Quantitative analysis of anaerobic oxidation of mechane (AOM) in marrine sediments: A modeling perspective Rise (2,000-3,500), 3200 - 5.22E-07 - 2011 Quantitative analysis of anaerobic oxidation of mechane (AOM) in marrine sediments: A modeling perspective Rise (2,000-3,500), 2700 - 1.31F-06 - 2011 Quantitative analysis of anaerobic oxidation of mechane (AOM) in marrine sediments: A modeling perspective Rise (2,000-3,500), 2700 - 1.31F-06 -	Outer shelf (50–200) 147	7.63E-03	3 12E-06	3 14E-04	2016 R/V Endeavor: EN528 Water and
Image: 2013 2013 Outre shelf (50–200), 147 9.30E-03 3.39E-06 2.80E-04 2016 RV backgroup ENS28 Water and Sediment Chemistry, Gulf of Mexics, July 7-22, 2013 inner shelf (10–50m) 28 m - 5.00E-03 - 2005 Environmental control on anaerobic exidation of methane in the gassy sediments of EckernBioted Bay inner shelf (10–50m) 28 m - 1.00E-04 - 2005 Environmental control on anaerobic exidation of methane in the gassy sediments of EckernBioted Bay Rise (2.000–3.500), 3200 - 9.13E-10 - 2011 Quantitative analysis of anaerobic exidation of methane (AOM) in marine sediments: A modeling perspective Rise (2.000–3.500), 3200 - 1.10E-09 - 2011 Quantitative analysis of anaerobic exidation of methane (AOM) in marine sediments: A modeling perspective Rise (2.000–3.500), 2500 - 1.10E-09 - 2011 Quantitative analysis of anaerobic exidation of methane (AOM) in marine sediments: A modeling perspective Rise (2.000–3.500), 2500 - 1.31F-06 - 2011 Quantitative analysis of anaerobic exidation of methane (AOM) in marine sediments: A modeling perspective Rise (2.000–3.500), 2300 - 1.31F-06 - 2011 Quantitative analysis of anaerobic exidation of methane (AOM) in marine sediments: A modeling	m	1.052.05	5.122 00	5.112 01	Sediment Chemistry, Gulf of Mexico, July 7-22
Outer shelf (50–200), 147 m9.30E-033.39E-06 3.39E-062.80E-04 2.80E-04 Science Charavor: EMS28 Warr and Science Charavor, EMS28 Warr, EMS28					2013
m Sectiment Chemistry, Gulf of Mexico, July 7-22, 2013 inner shelf (10-50m) 28 m - 5.00F-03 - 2005 Travironmental control on anaerobic oxidation of methane in the gassy sediments of EckemBride Bay Rise (2,000–3,500), 3200 - 9.13E-10 - 2005 Travironmental control on anaerobic oxidation of methane in the gassy sediments of FickerBride Bay Rise (2,000–3,500), 3200 - 9.13E-10 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 3200 1.54E-02 3.42E-10 1.71E-08 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 3200 - 5.22F-07 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 2770 - 1.31E-06 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 2770 - 1.31E-06 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 2700 - 1.41F-04 - 2011 Quantitative analysis of anaerobi	Outer shelf (50–200) 147	9 30E-03	3 39E-06	2.80E-04	2016 R/V Endeavor: EN528 Water and
Inner shelf (10-50m) 28 m - 5.00E-03 - 2013 inner shelf (10-50m) 28 m - 5.00E-03 - 2005 Environmental control on anserobic rocidation of methane in the gasesy sediments of Ficker firste Bay Rise (2,000-3,500), 3200 - 9.13E-10 - 2015 Environmental control on anserobic oxidation of methane in the gasesy sediments of Ficker/firste Bay Rise (2,000-3,500), 3200 - 9.13E-10 - 2011 Quantitative analysis of anserobic oxidation of methane (AOM) in marine sediments. A modeling perspective Rise (2,000-3,500), 3200 1.54E-02 3.42E-10 1.71E-08 2011 Quantitative analysis of anserobic oxidation of methane (AOM) in marine sediments. A modeling perspective Rise (2,000-3,500), 2200 - 1.10E-09 - 2011 Quantitative analysis of anserobic oxidation of methane (AOM) in marine sediments. A modeling perspective Rise (2,000-3,500), 2500 - 5.22F-07 - 2011 Quantitative analysis of anserobic oxidation of methane (AOM) in marine sediments. A modeling perspective Rise (2,000-3,500), 2500 - 5.27F-07 - 2011 Quantitative analysis of anserobic oxidation of methane (AOM) in marine sediments. A modeling perspective Rise (2,000-3,500), 2500 - 1.31F-06 -	m	7.502 05	5.572 00	2.002 01	Sediment Chemistry, Gulf of Mexico, July 7-22
inner shelf (10-50m) 28 m - 5.00T-03 - 2005 Trivinsmental centrol on sumerobic oxidation of methane in the gassy sediments of fickernfinde Bay Rise (2,000 - 3,500), 3200 - 9.13E-10 - 2005 Trivinsmental centrol on sumerobic oxidation of methane in the gassy sediments of fickernfinde Bay Rise (2,000 - 3,500), 3200 - 9.13E-10 - 2011 Quantitative analysis of namerobic oxidation of methane (AOM) in marine sediments? A modeling perspective Rise (2,000 - 3,500), 3200 1.54E-02 3.42E-10 1.71E-08 2011 Quantitative analysis of namerobic oxidation of methane (AOM) in marine sediments? A modeling perspective Rise (2,000 - 3,500), 3200 - 1.10E-09 - 2011 Quantitative analysis of namerobic oxidation of methane (AOM) in marine sediments? A modeling perspective Rise (2,000 - 3,500), 2770 - 1.31E-06 - 2011 Quantitative analysis of suscrobic oxidation of methane (AOM) in marine sediments? A modeling perspective Rise (2,000 - 3,500), 4200 - 1.31E-06 - 2011 Quantitative analysis of suscrobic oxidation of methane (AOM) in marine sediments? A modeling perspective Rise (2,000 - 3,500), 4200 - 1.41E-04 - 2011 Quantitative analysis of suscrobic oxidation of methane (AOM) in marine sediments? A modeling perspective <					2013
Number (15 - 500) 20 mm Lobit - 500 - 500 mm revidation of methane in the gassy sediments of FickernRinde Bay inner shelf (10-50m) 28 m - 1.001-04 - 2005 Environmental control on anaerobic origination of methane in the gassy sediments of FickernRinde Bay Rise (2.000-3,500), 3200 - 9.13E-10 - 2011 Quantitative analysis of macrobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2.000-3,500), 3200 1.54E-42 3.42E-10 1.71E-08 2011 Quantitative analysis of macrobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2.000-3,500), 2200 - 1.10E-09 - 2011 Quantitative analysis of macrobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2.000-3,500), 2700 - 5.22E-07 - 2011 Quantitative analysis of macrobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2.000-3,500), 4312 - 5.07E-07 - 2011 Quantitative analysis of macrobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2.000-3,500), 4312 - 5.07E-07 - 2011 Quantitative analysis of macrobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2.000-3,500), 3200 - 1.41F-0	inner shelf (10-50m) 28 m	_	5 00E-03	_	2005 Environmental control on anaerobic
Inner shelf (10-50m) 28 m - 1.00E-04 - 2005 Environmental control on anaerobic oxidation of methane in the gassy sediments of Pickerni/role Hay Rise (2.000–3,500), 3200 - 9.13E-10 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2.000–3,500), 3200 1.54E-02 3.42E-10 1.71E-08 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2.000–3,500), 3200 - 1.10E-09 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2.000–3,500), 2200 - 5.22E-07 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2.000–3,500), 2770 - 1.31E-06 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2.000–3,500), 4200 - 1.31E-06 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2.000–3,500), 4200 - 1.41E-04 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective	niner sheri (10 50m) 20 m		5.001 05		oxidation of methane in the gassy sediments of
inner shelf (10-50m) 28 m - 1.001-04 - 2005 Environmental control on anaerobic oxidation of methane in the gassy sediments of Eckenfrörde Bassy sediments of Eckenfrörde Bassy sediments of Eckenfrörde Bassy and Station of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 3200 - 9.13E-10 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 3200 - 1.01F-09 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 2500 - 5.22E-07 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 2500 - 5.22E-07 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 4312 - 5.07E-07 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 200 - 1.41E-04 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 3200 - 1.41E-04 - 2011 Quantitative					Eckernförde Bay
Internation (10 - 0.01, 90 m) International (10 - 0.01, 90 m) International (10 - 0.01, 90 m) Rise (2,000-3,500), 3200 - 9.131:-10 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000-3,500), 3200 1.54E-02 3.42E-10 1.71E-08 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000-3,500), 3200 - 1.10E-09 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000-3,500), 2500 - 5.22E-07 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000-3,500), 2770 - 1.31E-06 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000-3,500), 4000 - 1.41E-04 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000-3,500), 3200 - 2.74E-05 - 2010 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000-3,500), 3200 - 1.41E-04 <td>inner shelf (10-50m) 28 m</td> <td>_</td> <td>1 00E-04</td> <td>_</td> <td>2005 Environmental control on anaerobic</td>	inner shelf (10-50m) 28 m	_	1 00E-04	_	2005 Environmental control on anaerobic
Rise (2,000-3,500), 3200 - 9.131-10 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000-3,500), 3200 1.54F-02 3.42F-10 1.71F-08 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000-3,500), 3200 - 1.10F-09 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000-3,500), 2500 - 5.22F-07 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000-3,500), 2770 - 1.31F-06 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000-3,500), 4312 - 5.07E-07 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000-3,500), 4000 - 1.41F-04 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000-3,500), 3200 - 2.74E-05 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective <t< td=""><td></td><td></td><td>1.002 01</td><td></td><td>oxidation of methane in the gassy sediments of</td></t<>			1.002 01		oxidation of methane in the gassy sediments of
Rise (2,000-3,500), 3200 - 9.13E-10 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000-3,500), 3200 1.54E-02 3.42E-10 1.71E-08 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000-3,500), 3200 - 1.10E-09 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000-3,500), 2500 - 5.22E-07 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000-3,500), 2770 - 1.31E-06 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000-3,500), 4312 - 5.07F-07 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000-3,500), 4000 - 1.41E-04 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000-3,500), 3200 - 2.74F-05 - 2006 Cretacous black shales as active bioreactors-A biogeochemical Rise (2,000-3,500), 3200					Eckernförde Bay
Number of the object	Rise (2,000–3,500), 3200	_	9 13E-10	_	2011 Quantitative analysis of anaerobic
m sediments: A modeling perspective Rise (2,000-3,500), 3200 1.54E-02 3.42E-10 1.71E-08 2011 Quanitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000-3,500), 3200 - 1.10E-09 - 2011 Quanitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000-3,500), 2500 - 5.22E-07 - 2011 Quanitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000-3,500), 2700 - 1.31E-06 - 2011 Quanitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000-3,500), 4312 - 5.07E-07 - 2011 Quanitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000-3,500), 4000 - 1.41E-04 - 2011 Quanitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000-3,500), 3200 - 2.74E-05 - 2006 Cretaceous black shales as active bioreactors-A biogeochemical m - 2006 Cretaceous black shales as active bioreactors-A biogeochemical Bioreactors-A biogeochemical Rise (2,00	m		<i><i>J</i>.152 10</i>		oxidation of methane (AOM) in marine
Rise (2,000–3,500), 3200 1.54E-02 3.42E-10 1.71E-08 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 3200 - 1.10E-09 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 2500 - 5.22E-07 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 2570 - 1.31E-06 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 4312 - 5.07E-07 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 4312 - 5.07E-07 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 200 - 1.41E-04 - 2010 Createcous black shales as active bioreactors-A biogeochemical Rise (2,000–3,500), 3200 - 5.48E-05 - 2006 Cretaceous black shales as active bioreactors-A biogeochemical Rise (2,000–3,500), 3200 1.15E+00 1.92					sediments: A modeling perspective
Internet mInternet mInternet mInternet mInternet mInternet mRise (2,000-3,500), 3200 m-1.10E-09 m-2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspectiveRise (2,000-3,500), 2500 m-5.22E-07 m-2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspectiveRise (2,000-3,500), 2770 m-1.31E-06 m-2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspectiveRise (2,000-3,500), 4312 m-5.07E-07 m-2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspectiveRise (2,000-3,500), 4000 m-1.41E-04 m-2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspectiveRise (2,000-3,500), 3200 m-2.74F-05 m-2006 Cretaccous black shales as active bioreactors-A biogecohemicalRise (2,000-3,500), 3200 m-5.48E-05 m-2006 Cretaccous black shales as active bioreactors-A biogecohemicalRise (2,000-3,500), 3200 m-1.10F-049.13F-05 2.22E-052006 Cretaccous black shales as active bioreactors-A biogecohemicalRise (2,000-3,500), 3200 m1.15E+001.22E-041.03L-042006 Cretaccous black shales as active bioreactors-A biogecohemicalRise (2,000-3,500), 3200 m1.15E+001.22E-041.03L-04<	Rise (2 000-3 500) 3200	1 54E-02	3 42E-10	1 71E-08	2011 Quantitative analysis of anaerobic
m sediments: A modeling perspective Rise (2,000–3,500), 3200 - 1.10E-09 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 2500 - 5.22E-07 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 2770 - 1.31E-06 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 4312 - 5.07E-07 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 4000 - 1.41E-04 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 3200 - 2.74E-05 - 2006 Cretaceous black shales as active bioreactors-A biogeochemical Rise (2,000–3,500), 3200 - 5.48E-05 - 2006 Cretaceous black shales as active bioreactors-A biogeochemical Rise (2,000–3,500), 3200 - 5.48E-05 - 2006 Cretaceous black shales as active bioreactors-A biogeochemical Rise (2,000–3,500), 3200 <	m	1.0 12 02	5.122 10	11,12 00	oxidation of methane (AOM) in marine
Rise (2,000–3,500), 3200 - 1.10E-09 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 2500 - 5.22E-07 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 2770 - 1.31E-06 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 4312 - 5.07E-07 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 4000 - 1.41E-04 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 3200 - 2.74E-05 - 2006 Cretaccous black shales as active bioreactors-A biogeochemical m mise (2,000–3,500), 3200 - 5.48E-05 - 2006 Cretaccous black shales as active bioreactors-A biogeochemical m Rise (2,000–3,500), 3200 1.15E+00 1.92E-04 1.28E-04 2006 Cretaccous black shales as active bioreactors-A biogeochemical m Rise (2,000–3,500), 3200 1.15E+00 1.92E-04 1.02E-04 2006 Cretaccous black s					sediments: A modeling perspective
Intervent Intervent Intervent m oxidation of methane (AOM) in marine sediments: A modeling prespective Rise (2,000–3,500), 2500 - 5.22E-07 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling prespective Rise (2,000–3,500), 2770 - 1.31E-06 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 4312 - 5.07E-07 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 4000 - 1.41E-04 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 3200 - 1.41E-04 - 2006 Cretaceous black shales as active bioreactors=A biogeochemical Rise (2,000–3,500), 3200 - 5.48E-05 - 2006 Cretaceous black shales as active bioreactors=A biogeochemical Rise (2,000–3,500), 3200 - 5.48E-05 - 2006 Cretaceous black shales as active bioreactors=A biogeochemical Rise (2,000–3,500), 3200 1.15E+00 1.03E-04 2006 Cretaceous black shales as active bioreactors=A biogeochemical Rise (2,000–3,500), 3200 <	Rise (2 000-3 500) 3200	_	1 10E-09	_	2011 Quantitative analysis of anaerobic
m sediments: A modeling perspective Rise (2,000-3,500), 2500 - 5.22E-07 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000-3,500), 2770 - 1.31E-06 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000-3,500), 4312 - 5.07E-07 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000-3,500), 4000 - 1.41E-04 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000-3,500), 3200 - 2.74E-05 - 2006 Cretaceous black shales as active bioreactors=A biogeochemical Rise (2,000-3,500), 3200 - 5.48E-05 - 2006 Cretaceous black shales as active bioreactors=A biogeochemical Rise (2,000-3,500), 3200 6.15E-01 8.22E-05 1.03E-04 2006 Cretaceous black shales as active bioreactors=A biogeochemical Rise (2,000-3,500), 3200 1.15E+00 1.92E-04 1.28E-04 2006 Cretaceous black shales as active bioreactors=A biogeochemical Rise (2,000-3,500), 3200 1.25E+00 1.92E-04 2006 Cretaceous black shales as active bio	m		1.102 09		oxidation of methane (AOM) in marine
Rise (2,000–3,500), 2500 - 5.22E-07 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 2770 - 1.31E-06 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 4312 - 5.07E-07 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 4300 - 1.41E-04 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 3200 - 2.74E-05 - 2016 Cretaceous black shales as active bioreactors-A biogeochemical Rise (2,000–3,500),3200 - 5.48E-05 - 2006 Cretaceous black shales as active bioreactors-A biogeochemical Rise (2,000–3,500),3200 6.15E-01 8.22E-05 1.03E-04 2006 Cretaceous black shales as active bioreactors-A biogeochemical Rise (2,000–3,500),3200 1.15E+00 1.92E-04 1.28E-04 2006 Cretaceous black shales as active bioreactors-A biogeochemical Rise (2,000–3,500),3200 1.54E+00 8.22E-05 4.11E-05 2006 Cretaceous black shales as active bioreactors-A biogeochemical Rise (2,000–3,500),3200 1.54E+00 8.22E-04 1.03E-04 2006 Cretaceous black shales as active bio					sediments: A modeling perspective
Note (2,000-3,500), 2.00Note (AOM) in marine sediments: A modeling perspectiveRise (2,000-3,500), 2770-1.31E-06-2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspectiveRise (2,000-3,500), 4312 m-5.07E-07-2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspectiveRise (2,000-3,500), 4000 m-1.41E-04-2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspectiveRise (2,000-3,500), 3200 m-2.74E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500), 3200 m-5.48E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500), 3200 m6.15E-01 m8.22E-051.03E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500), 3200 m1.15E+001.92E-041.28E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500), 3200 m1.54E+008.22E-054.11E-052006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500), 3200 m1.54E+008.22E-054.11E-052006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500), 3200 m1.54E+008.22E-054.11E-052006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500), 3200 m1.37E-05- <td>Rise (2 000-3 500) 2500</td> <td>_</td> <td>5 22E-07</td> <td>_</td> <td>2011 Quantitative analysis of anaerobic</td>	Rise (2 000-3 500) 2500	_	5 22E-07	_	2011 Quantitative analysis of anaerobic
Image sediments: A modeling perspective Rise (2,000–3,500), 2770 - 1.31E-06 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 4312 - 5.07E-07 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 4000 - 1.41E-04 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 3200 - 2.74E-05 - 2006 Cretaceous black shales as active bioreactors=A biogeochemical Rise (2,000–3,500), 3200 - 5.48E-05 - 2006 Cretaceous black shales as active bioreactors=A biogeochemical Rise (2,000–3,500), 3200 6.15E-01 8.22E-05 1.03E-04 2006 Cretaceous black shales as active bioreactors=A biogeochemical Rise (2,000–3,500), 3200 1.23E+00 1.02E-04 1.020C Cretaceous black shales as active bioreactors=A biogeochemical Rise (2,000–3,500), 3200 1.23E+00 1.28E-04 2006 Cretaceous black shales as active bioreactors=A biogeochemical Rise (2,000–3,500), 3200 1.24E+00 1.02E-04 2006 Cretaceous black shales as active bioreactors=A biogeochemical Rise (2,000	m		5.22E 07		oxidation of methane (AOM) in marine
Rise (2,000–3,500), 2770 - 1.31E-06 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 4312 - 5.07E-07 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 4000 - 1.41E-04 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 3200 - 2.74E-05 - 2006 Cretaceous black shales as active bioreactors=A biogeochemical Rise (2,000–3,500), 3200 - 5.48E-05 - 2006 Cretaceous black shales as active bioreactors=A biogeochemical Rise (2,000–3,500), 3200 6.15E-01 8.22E-05 1.03E-04 2006 Cretaceous black shales as active bioreactors=A biogeochemical Rise (2,000–3,500), 3200 1.15E+00 1.92E-04 1.28E-04 2006 Cretaceous black shales as active bioreactors=A biogeochemical Rise (2,000–3,500), 3200 1.54E+00 1.92E-04 1.03E-04 2006 Cretaceous black shales as active bioreactors=A biogeochemical Rise (2,000–3,500), 3200 1.54E+00 1.92E-04 1.02E-04 2006 Cretaceous black shales as active bioreactors=A	111				sediments: A modeling perspective
NumNumNumDescriptionDescriptionmn5.07E-07-2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspectiveRise (2,000–3,500), 4000-1.41E-04-2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspectiveRise (2,000–3,500), 3200-2.74E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000–3,500), 3200-5.48E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000–3,500), 3200-5.48E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000–3,500), 32006.15E-018.22E-051.03E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000–3,500), 32001.15E+001.92E-041.28E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000–3,500), 32001.5E+001.92E-041.03E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000–3,500), 32001.5E+008.22E-054.11E-052006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000–3,500), 32001.5E+008.22E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000–3,500), 32001.5E+008.22E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000–3,500), 3200-4.11E-05 <td< td=""><td>Rise (2 000-3 500) 2770</td><td>_</td><td>1 31E-06</td><td>_</td><td>2011 Quantitative analysis of anaerobic</td></td<>	Rise (2 000-3 500) 2770	_	1 31E-06	_	2011 Quantitative analysis of anaerobic
m Solution methane (SOURCE) in marine sediments: A modeling perspective Rise (2,000–3,500), 4000 - 1.41E-04 - 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000–3,500), 3200 - 2.74E-05 - 2010 Cretacous black shales as active bioreactors=A biogeochemical Rise (2,000–3,500), 3200 - 5.48E-05 - 2006 Cretacous black shales as active bioreactors=A biogeochemical Rise (2,000–3,500), 3200 6.15E-01 8.22E-05 1.03E-04 2006 Cretacous black shales as active bioreactors=A biogeochemical Rise (2,000–3,500), 3200 9.23E-01 1.10E-04 9.13E-05 2006 Cretacous black shales as active bioreactors=A biogeochemical Rise (2,000–3,500), 3200 1.5E+00 1.92E-04 1.03E-04 2006 Cretacous black shales as active bioreactors=A biogeochemical Rise (2,000–3,500), 3200 1.54E+00 1.92E-04 1.03E-04 2006 Cretacous black shales as active bioreactors=A biogeochemical Rise (2,000–3,500), 3200 1.54E+00 8.22E-05 - 2006 Cretacous black shales as active bioreactors=A biogeochemical Rise (2,000–3,500), 3200 1.54E+00 8.22E-05 - 2006 Cretac	m	_	1.512-00		α and α
Rise (2,000–3,500), 4312 m-5.07E-07 5.07E-07-2011 Quanitative analysis of anacrobic oxidation of methane (AOM) in marine sediments: A modeling perspectiveRise (2,000–3,500), 4000 m-1.41E-04 2.74E-05-2011 Quanitative analysis of anacrobic oxidation of methane (AOM) in marine sediments: A modeling perspectiveRise (2,000–3,500), 3200 m-2.74E-05 5.48E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000–3,500), 3200 m-5.48E-05 8.22E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000–3,500), 3200 m6.15E-01 8.22E-051.03E-04 9.13E-052006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000–3,500), 3200 m1.15E+001.92E-041.28E-04 1.03E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000–3,500), 3200 m1.15E+001.92E-041.28E-04 1.03E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000–3,500), 3200 m1.54E+008.22E-054.11E-052006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000–3,500), 3200 m1.54E+008.22E-054.11E-052006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000–3,500), 3200 m-1.37E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000–3,500), 3200 m-1.37E-05-2006 Cretaceous black shales as active bioreactors=	111				sediments: A modeling perspective
NumDistrict of the section	Rise (2 000-3 500) 4312	_	5.07E-07	_	2011 Quantitative analysis of anaerobic
m Software Rise (2,000-3,500),4000 - 1.41E-04 - 2011 Quantitative analysis of anacrobic oxidation of methane (AOM) in marine sediments: A modeling perspective Rise (2,000-3,500),3200 - 2.74E-05 - 2006 Cretaccous black shales as active bioreactors=A biogeochemical Rise (2,000-3,500),3200 - 5.48E-05 - 2006 Cretaccous black shales as active bioreactors=A biogeochemical Rise (2,000-3,500),3200 6.15E-01 8.22E-05 1.03E-04 2006 Cretaccous black shales as active bioreactors=A biogeochemical Rise (2,000-3,500),3200 9.23E-01 1.10E-04 9.13E-05 2006 Cretaccous black shales as active bioreactors=A biogeochemical Rise (2,000-3,500),3200 1.5E+00 1.92E-04 1.28E-04 2006 Cretaccous black shales as active bioreactors=A biogeochemical Rise (2,000-3,500),3200 1.54E+00 1.03E-04 2006 Cretaccous black shales as active bioreactors=A biogeochemical Rise (2,000-3,500),3200 1.54E+00 8.22E-05 4.11E-05 2006 Cretaccous black shales as active bioreactors=A biogeochemical Rise (2,000-3,500),3200 - 4.11E-05 - 2006 Cretaccous black shales as active bioreactors=A biogeochemical Rise (2,000-3,500),3200 - 1.37E-05	m	_	5.0712-07		α and α
Rise (2,000-3,500), 4000 m-1.41E-04 2011 Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspectiveRise (2,000-3,500),3200 m-2.74E-05 2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05 2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m6.15E-01 .8.22E-051.03E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m9.23E-011.10E-049.13E-052006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m1.15E+001.92E-041.28E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m1.54E+001.64E-041.03E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m1.54E+008.22E-054.11E-052006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m1.54E+008.22E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.37E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.37E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.32E-06-20	111				sediments: A modeling perspective
New Case ConstraintNew Case ConstraintNew Case ConstraintNew Case ConstraintRise (2,000-3,500),3200 m-2.74E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m6.15E-018.22E-051.03E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m9.23E-011.10E-049.13E-052006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m1.15E+001.92E-041.28E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m1.54E+001.64E-041.03E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m1.54E+008.22E-054.11E-052006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m1.54E+008.22E-054.11E-052006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m1.54E+008.22E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-4.11E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.37E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,	Rise (2 000-3 500) 4000		1 41E-04		2011 Quantitative analysis of anaerobic
InSediments: A modeling perspectiveRise (2,000-3,500),3200 m-2.74E-05 2.74E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05 2.74E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05 2.74E-051.03E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m9.23E-01 1.15E+001.02E-042.28E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m1.25E+00 1.54E+001.64E-041.03E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m1.54E+008.22E-054.11E-052006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m1.54E+008.22E-054.11E-052006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.37E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m <t< td=""><td>m</td><td>_</td><td>1.412-04</td><td></td><td>oxidation of methane (AOM) in marine</td></t<>	m	_	1.412-04		oxidation of methane (AOM) in marine
Rise (2,000-3,500),3200 m-2.74E-05 2.74E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m6.15E-01 8.22E-018.22E-051.03E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m9.23E-011.10E-049.13E-052006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m1.5E+001.92E-041.28E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m1.54E+001.92E-041.28E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m1.54E+008.22E-054.11E-052006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m1.54E+008.22E-054.11E-052006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-4.11E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.37E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-8.22E-06-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.37E-05-2006 Cretaceous black shales as active <td>111</td> <td></td> <td></td> <td></td> <td>sediments: A modeling perspective</td>	111				sediments: A modeling perspective
Nume Elsor Elsor <the< td=""><td>Rise (2 000-3 500) 3200</td><td>_</td><td>2 74F-05</td><td>_</td><td>2006 Cretaceous black shales as active</td></the<>	Rise (2 000-3 500) 3200	_	2 74F-05	_	2006 Cretaceous black shales as active
In Rise (2,000-3,500),3200 m-5.48E-05 5.48E-05-2006 Cretaceous black shales as active 	m		2.7412 05		bioreactors=A biogeochemical
Nase (1900 2)000Ends 00Ends 00mbioreactorsbioreactorsRise (2,000-3,500),32006.15E-018.22E-051.03E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),32009.23E-011.10E-049.13E-052006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),32001.15E+001.92E-041.28E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),32001.23E+001.64E-041.03E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),32001.54E+008.22E-054.11E-052006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),32001.54E+008.22E-054.11E-052006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200-4.11E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200-1.37E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200-8.22E-06-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200-1.37E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200-1.10E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200-8.22E-06-2006 Cretaceous black sh	Rise (2 000–3 500) 3200	_	5 48E-05	_	2006 Cretaceous black shales as active
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	m		5.102.05		bioreactors=A biogeochemical
International methodInternational methodInternational methodm1.10E-011.10E-049.13E-052006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),32001.15E+001.92E-041.28E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalm1.23E+001.64E-041.03E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),32001.23E+001.64E-041.03E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),32001.54E+008.22E-054.11E-052006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200-4.11E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200-4.11E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200-1.37E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200-1.37E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200-1.32E-06-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200-1.10E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200-1.10E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-	Rise (2,000–3,500) 3200	6 15E-01	8 22E-05	1 03E-04	2006 Cretaceous black shales as active
Rise (2,000-3,500),3200 m9.23E-011.10E-049.13E-052006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m1.15E+001.92E-041.28E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m1.23E+001.64E-041.03E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m1.54E+008.22E-054.11E-052006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-4.11E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-4.11E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.37E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.37E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.37E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.10E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.10E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.10E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (m	0.122 01	0.222 00	11052 01	bioreactors=A biogeochemical
InterviewNumber of the second sec	Rise (2,000–3,500) 3200	9 23E-01	1 10E-04	9 13E-05	2006 Cretaceous black shales as active
Rise (2,000-3,500),3200 m1.15E+001.92E-041.28E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m1.23E+001.64E-041.03E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m1.54E+008.22E-054.11E-052006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-4.11E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-4.11E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.37E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-8.22E-06-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.10E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.10E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3	m	,	11102 01	51102 00	bioreactors=A biogeochemical
InterformInterformInterformbioreactors=A biogeochemicalRise (2,000-3,500),3200 m1.54E+001.64E-041.03E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m1.54E+008.22E-054.11E-052006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-4.11E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-4.11E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m3.85E-012.74E-065.48E-062006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.37E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-8.22E-06-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-8.22E-06-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.10E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.10E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05-2006 Cret	Rise (2.000–3.500).3200	1.15E+00	1.92E-04	1.28E-04	2006 Cretaceous black shales as active
Rise (2,000–3,500),3200 m1.23E+001.64E-041.03E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000–3,500),3200 m1.54E+008.22E-054.11E-052006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000–3,500),3200 m-4.11E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000–3,500),3200 m-4.11E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000–3,500),3200 m3.85E-012.74E-065.48E-062006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000–3,500),3200 m-1.37E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000–3,500),3200 m-1.37E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000–3,500),3200 m-8.22E-06-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000–3,500),3200 m-1.10E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000–3,500),3200 m-1.10E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000–3,500),3200 m-5.48E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000–3,500),3200 m-5.48E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000–3,500),3	m		1.0 22 0 .	1.202 01	bioreactors=A biogeochemical
mintercebioreactors=A biogeochemicalRise (2,000-3,500),3200 m1.54E+008.22E-054.11E-052006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-4.11E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.37E-065.48E-062006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.37E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-8.22E-06-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-8.22E-06-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.10E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.10E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.10E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05-2006 Cretaceous black shales as active bioreactors=A b	Rise (2.000–3.500).3200	1.23E+00	1.64E-04	1.03E-04	2006 Cretaceous black shales as active
Rise (2,000-3,500),3200 m1.54E+008.22E-054.11E-052006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-4.11E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m3.85E-012.74E-065.48E-062006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.37E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.37E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-8.22E-06-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.10E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-2.74E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-2.74E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemical	m				bioreactors=A biogeochemical
mbioreactors=A biogeochemicalRise (2,000-3,500),3200 m-4.11E-05 2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m3.85E-012.74E-065.48E-062006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.37E-05 2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-8.22E-06 2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-8.22E-06 2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.10E-05 -1.10E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.10E-05 2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05 2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05 2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05 2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-2.74E-05 2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-2.74E-05 2006 Cre	Rise (2,000–3,500),3200	1.54E+00	8.22E-05	4.11E-05	2006 Cretaceous black shales as active
Rise (2,000-3,500),3200 m-4.11E-05 2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m3.85E-012.74E-065.48E-062006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.37E-05 2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-8.22E-06 2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-8.22E-06 2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.10E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.10E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-2.74E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemical	m				bioreactors=A biogeochemical
mbioreactors=A biogeochemicalRise (2,000-3,500),3200 m3.85E-012.74E-065.48E-062006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.37E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-8.22E-06-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-8.22E-06-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.10E-051.10E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.10E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m2.74E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-2.74E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemical	Rise (2.000–3.500).3200	-	4.11E-05	-	2006 Cretaceous black shales as active
Rise (2,000-3,500),3200 m3.85E-012.74E-065.48E-062006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.37E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-8.22E-06-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-8.22E-06-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.10E-051.10E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.10E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.10E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-2.74E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-2.74E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemical	m				bioreactors=A biogeochemical
mbioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.37E-05 1.37E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-8.22E-06 2.31E-01-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m2.31E-013.29E-051.10E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.10E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.10E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.10E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-2.74E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemical	Rise (2.000–3.500).3200	3.85E-01	2.74E-06	5.48E-06	2006 Cretaceous black shales as active
Rise (2,000-3,500),3200 m-1.37E-05 1.37E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-8.22E-06 2.31E-01-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m2.31E-013.29E-051.10E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.10E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.10E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-2.74E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemical	m				bioreactors=A biogeochemical
mbioreactors=A biogeochemicalRise (2,000-3,500),3200 m-8.22E-06 8.22E-06-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m2.31E-013.29E-051.10E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.10E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.10E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-2.74E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-2.74E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemical	Rise (2.000–3.500).3200	-	1.37E-05	-	2006 Cretaceous black shales as active
Rise (2,000-3,500),3200 m-8.22E-06 8.22E-06-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m2.31E-013.29E-051.10E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.10E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-2.74E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemical	m				bioreactors=A biogeochemical
mbioreactors=A biogeochemicalRise (2,000-3,500),3200 m2.31E-013.29E-051.10E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.10E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-2.74E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemical	Rise (2.000–3.500).3200	-	8.22E-06	-	2006 Cretaceous black shales as active
Rise (2,000-3,500),3200 m2.31E-013.29E-051.10E-042006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.10E-05 1.10E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05 2.74E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05 2.74E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-2.74E-05 2.74E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemical	m				bioreactors=A biogeochemical
mbioreactors=A biogeochemicalRise (2,000-3,500),3200 m-1.10E-05 1.10E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-5.48E-05 2.74E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemicalRise (2,000-3,500),3200 m-2.74E-05 2.74E-05-2006 Cretaceous black shales as active bioreactors=A biogeochemical	Rise (2.000–3.500).3200	2.31E-01	3.29E-05	1.10E-04	2006 Cretaceous black shales as active
Rise (2,000-3,500),3200 - 1.10E-05 - 2006 Cretaceous black shales as active bioreactors=A biogeochemical Rise (2,000-3,500),3200 - 5.48E-05 - 2006 Cretaceous black shales as active bioreactors=A biogeochemical Rise (2,000-3,500),3200 - 5.48E-05 - 2006 Cretaceous black shales as active bioreactors=A biogeochemical Rise (2,000-3,500),3200 - 2.74E-05 - 2006 Cretaceous black shales as active bioreactors=A biogeochemical	m				bioreactors=A biogeochemical
m bioreactors=A biogeochemical Rise (2,000–3,500),3200 - 5.48E-05 - 2006 Cretaceous black shales as active bioreactors=A biogeochemical Rise (2,000–3,500),3200 - 2.74E-05 - 2006 Cretaceous black shales as active bioreactors=A biogeochemical m 2.74E-05 - 2006 Cretaceous black shales as active bioreactors=A biogeochemical	Rise (2,000–3.500).3200	-	1.10E-05	-	2006 Cretaceous black shales as active
Rise (2,000–3,500),3200 - 5.48E-05 - 2006 Cretaceous black shales as active bioreactors=A biogeochemical Rise (2,000–3,500),3200 - 2.74E-05 - 2006 Cretaceous black shales as active bioreactors=A biogeochemical m - 2.74E-05 - 2006 Cretaceous black shales as active bioreactors=A biogeochemical	m				bioreactors=A biogeochemical
m Dote of the bioreactors = A biogeochemical Rise (2,000-3,500),3200 - 2.74E-05 - 2006 Cretaceous black shales as active bioreactors=A biogeochemical	Rise (2,000–3,500).3200	-	5.48E-05	-	2006 Cretaceous black shales as active
Rise (2,000–3,500),3200 - 2.74E-05 - 2006 Cretaceous black shales as active bioreactors=A biogeochemical	m				bioreactors=A biogeochemical
m bioreactors=A biogeochemical	Rise (2,000–3,500).3200	-	2.74E-05	-	2006 Cretaceous black shales as active
	m		_		bioreactors=A biogeochemical

Slope (200–2,000), 800 m	-	6.85E-08	6.85E-07	2007 Rates of methanogenesis and
				methanotrophy in deep-sea sediment
Slope (200–2,000), 800 m	2.48E+00	5.48E-07	5.48E-06	2007 Rates of methanogenesis and
				methanotrophy in deep-sea sediment
Slope (200–2,000), 800 m	2.48E+00	8.22E-07	8.22E-06	2007 Rates of methanogenesis and
<u> </u>	2.405+00	1.105.07	1.105.05	methanotrophy in deep-sea sediment
Slope (200–2,000), 800 m	2.48E+00	1.10E-06	1.10E-05	2007 Rates of methanogenesis and methanotrophy in deep see sediment
Slope (200, 2,000), 800 m	2.48E+00	1.64E_06	1.64E-05	2007 Rates of methanogenesis and
Stope (200–2,000), 800 m	2.401100	1.041-00	1.041-03	methanotrophy in deep-sea sediment
Slope (200–2.000) 800 m	2 48E+00	1 92E-06	1 92E-05	2007 Rates of methanogenesis and
510pe (200 2,000), 000 m	2.102.00	1.,21 00	1.,21 00	methanotrophy in deep-sea sediment
inner shelf (10-50m) 45 m	2.48E+00	1.50E-04	3.75E-03	2008 Thermodynamic and kinetic control on
				anaerobic oxidation of methane in marine
				sediments
inner shelf (10-50m) 45 m	2.48E+00	3.00E-04	5.00E-03	2008 Thermodynamic and kinetic control on
				anaerobic oxidation of methane in marine
				sediments
inner shelf (10-50m) 45 m	2.48E+00	2.50E-04	3.13E-03	2008 Thermodynamic and kinetic control on
				anaerobic oxidation of methane in marine
· 1.10(10.50.).45	2.405+00	1.505.04	1.505.02	sediments
inner shelf (10-50m) 45 m	2.48E+00	1.50E-04	1.50E-03	2008 Thermodynamic and kinetic control on
				anaerobic oxidation of methane in marine
$\frac{1}{10000000000000000000000000000000000$	2 48E+00	4 00E 04	2 00E 02	2008 Thermodynamic and kinetic control on
miler sheri (10-30m) 43 m	2.46E+00	4.0012-04	2.001-03	anaerobic oxidation of methane in marine
				sediments
inner shelf (10-50m) 45 m	2.48E+00	2.00E-04	6.67E-04	2008 Thermodynamic and kinetic control on
	2.102.00	2.002 01	0.072 01	anaerobic oxidation of methane in marine
				sediments
inner shelf (10-50m) 45 m	2.48E+00	1.20E-04	3.00E-04	2008 Thermodynamic and kinetic control on
× /				anaerobic oxidation of methane in marine
				sediments
inner shelf (10-50m) 45 m	2.48E+00	2.50E-04	5.00E-04	2008 Thermodynamic and kinetic control on
				anaerobic oxidation of methane in marine
		6.005.04	4.005.04	sediments
inner shelf ($10-50m$) 45 m	2.48E+00	6.00E-04	4.00E-04	2008 Thermodynamic and kinetic control on
				anaerobic oxidation of methane in marine
$\frac{1}{10000000000000000000000000000000000$	2 48E+00	1 20E 02	1 20E 02	2008 Thermodynamic and kinetic control on
miler sheri (10-30m) 43 m	2.46E+00	1.2012-05	1.2012-05	anaerobic oxidation of methane in marine
				sediments
inner shelf (10-50m) 45 m	2.48E+00	1.35E-03	1.35E-03	2008 Thermodynamic and kinetic control on
				anaerobic oxidation of methane in marine
				sediments
inner shelf (10-50m) 45 m	2.48E+00	1.80E-03	1.80E-03	2008 Thermodynamic and kinetic control on
				anaerobic oxidation of methane in marine
				sediments
inner shelf (10-50m) 45 m	2.48E+00	2.10E-03	2.10E-03	2008 Thermodynamic and kinetic control on
				anaerobic oxidation of methane in marine
	2.405+00	1.005.05	5 00E 06	sediments
inner shelf (10-50m) 45 m	2.48E+00	1.00E-05	5.00E-06	2008 Thermodynamic and kinetic control on
				sadiments
Slope (200, 2,000), 301, m		1.00E.04		2008 Thermodynamic and kinetic control on
Stope (200–2,000), 591 III	-	1.001-04		anaerobic oxidation of methane in marine
				sediments
Slope (200–2.000). 391 m	-	2.00E-04	-	2008 Thermodynamic and kinetic control on
				anaerobic oxidation of methane in marine
				sediments
Slope (200–2,000), 391 m	-	1.50E-04	-	2008 Thermodynamic and kinetic control on
				anaerobic oxidation of methane in marine
				sediments
Slope (200–2,000), 391 m	-	2.30E-04	-	2008 Thermodynamic and kinetic control on
				anaerobic oxidation of methane in marine

				sediments
Slope (200–2,000), 391 m	-	3.00E-04	-	2008 Thermodynamic and kinetic control on anaerobic oxidation of methane in marine
<u> </u>		2.005.04		sediments
Slope (200–2,000), 391 m	-	2.00E-04	-	2008 Thermodynamic and kinetic control on anaerobic oxidation of methane in marine
Slope (200, 2,000), 301, m		5 00F 04		2008 Thermodynamic and kinetic control on
Slope (200–2,000), 391 m	-	5.001-04	-	anaerobic oxidation of methane in marine
				sediments
Slope (200–2.000) 391 m	_	3.00E-03	_	2008 Thermodynamic and kinetic control on
516pc (200 2,000), 591 m		5.001 05		anaerobic oxidation of methane in marine sediments
Slope (200–2.000), 391 m	-	4.00E-04	-	2008 Thermodynamic and kinetic control on
1 () //				anaerobic oxidation of methane in marine
				sediments
Outer shelf (50–200), 65 m	3.85E-02	1.00E-04	2.00E-03	2000 Sulfate Reduction in Marine Sediments,
				Marine Geochemistry
Outer shelf (50–200), 65 m	9.62E-02	1.00E-03	8.00E-03	2000 Sulfate Reduction in Marine Sediments,
				Marine Geochemistry
Outer shelf (50–200), 65 m	1.92E-01	2.00E-03	8.00E-03	2000 Sulfate Reduction in Marine Sediments,
				Marine Geochemistry
Outer shelf (50–200), 65 m	3.46E-01	6.00E-03	1.33E-02	2000 Sulfate Reduction in Marine Sediments,
				Marine Geochemistry
Outer shelf (50–200), 65 m	4.62E-01	3.50E-03	5.83E-03	2000 Sulfate Reduction in Marine Sediments,
				Marine Geochemistry
Outer shelf (50–200), 65 m	6.15E-01	2.00E-03	2.50E-03	2000 Sulfate Reduction in Marine Sediments,
				Marine Geochemistry
Outer shelf (50–200), 65 m	8.46E-02	2.00E-03	1.82E-02	2000 Sulfate Reduction in Marine Sediments,
				Marine Geochemistry
Outer shelf (50–200), 65 m	1.54E-01	2.50E-03	1.25E-02	2000 Sulfate Reduction in Marine Sediments,
				Marine Geochemistry
Outer shelf (50–200), 65 m	2.31E-01	5.00E-03	1.67E-02	2000 Sulfate Reduction in Marine Sediments,
				Marine Geochemistry
Outer shelf (50–200), 65 m	3.08E-01	1.20E-02	3.00E-02	2000 Sulfate Reduction in Marine Sediments,
				Marine Geochemistry
Outer shelf (50–200), 65 m	5.00E-01	5.00E-03	7.69E-03	2000 Sulfate Reduction in Marine Sediments,
				Marine Geochemistry
Outer shelf (50–200), 65 m	6.69E-01	2.50E-03	2.87E-03	2000 Sulfate Reduction in Marine Sediments,
				Marine Geochemistry
Outer shelf (50–200), 65 m	8.46E-01	2.00E-04	1.82E-04	2000 Sulfate Reduction in Marine Sediments,
				Marine Geochemistry
Slope (200–2,000),377 m	-	1.00E-05	-	2016 Anaerobic oxidation of methane alters
				sediment records of sulfur,
				iron and phosphorus in the Black Sea
Slope (200–2,000),377 m	-	2.00E-05	-	2016 Anaerobic oxidation of methane alters
				sediment records of sulfur,
				iron and phosphorus in the Black Sea
Slope (200–2,000),377 m	-	3.00E-05	-	2016 Anaerobic oxidation of methane alters
				sediment records of sulfur,
		5.005.05		iron and phosphorus in the Black Sea
Slope (200–2,000),377 m	-	5.00E-05	-	2016 Anaerobic oxidation of methane alters
				sediment records of sulfur,
<u><u> </u></u>				iron and phosphorus in the Black Sea
Slope (200–2,000),377 m	-	6.00E-05	-	2016 Anaerobic oxidation of methane alters
				iron and phosphorus in the Plack Sec
Slana (200, 2,000) 277 m	2.95E.02	1.00E.04	2.00E.02	2016 Anorphic avidation of mothers alters
Stope (200–2,000),377 m	3.03E-03	1.00E-04	2.00E-02	sediment records of sulfur
				iron and phosphorus in the Plack See
Slope (200, 2,000) 277	1 54E 02	1 50E 04	7 50E 02	2016 Apparobia ovidation of mathema altern
stope (200–2,000),377 m	1.34E-02	1.30E-04	/.50E-05	sediment records of sulfur
				iron and phosphorus in the Black Sea
Slope (200_2 000) 377 m	6 15F-01	1 80F-04	2 25E-04	2016 Anaerohic oxidation of methane alters
Stope (200–2,000),577 III	0.152-01	1.001-04	2.2315-04	sediment records of sulfur
			1	

				iron and phosphorus in the Black Sea
Slope (200–2,000),377 m	1.00E+00	1.60E-04	1.23E-04	2016 Anaerobic oxidation of methane alters
				sediment records of sulfur,
				iron and phosphorus in the Black Sea
Slope (200–2,000),377 m	1.38E+00	9.00E-05	5.00E-05	2016 Anaerobic oxidation of methane alters
				sediment records of sulfur,
				iron and phosphorus in the Black Sea
Slope (200–2,000),377 m	-	5.00E-05	-	2016 Anaerobic oxidation of methane alters
				sediment records of sulfur,
		2.005.05		iron and phosphorus in the Black Sea
Slope (200–2,000),377 m	-	3.00E-05	-	2016 Anaerobic oxidation of methane alters
				sediment records of sulfur,
<u>Sland</u> (200, 2,000) 277 m		2.005.05		2016 Angenetic anidation of mathema altern
Slope (200–2,000),377 III	-	2.001-03	-	sediment records of sulfur
				iron and phosphorus in the Black Sea
Slope (200–2 000) 377 m	_	5.00E-06		2016 Anaerobic oxidation of methane alters
Stope (200 2,000),577 III		5.00E 00		sediment records of sulfur
				iron and phosphorus in the Black Sea
Slope (200–2.000), 1200 m	_	2.74E-07	-	2013 Anaerobic methane oxidation in low-
21010 (200 2,000),1200				organic content methane seep sediments
Slope (200–2.000),1200 m	-	2.74E-06	-	2013 Anaerobic methane oxidation in low-
1				organic content methane seep sediments
Slope (200–2,000),1200 m	-	5.48E-06	-	2013 Anaerobic methane oxidation in low-
1				organic content methane seep sediments
Slope (200–2,000),1200 m	-	9.59E-06	-	2013 Anaerobic methane oxidation in low-
				organic content methane seep sediments
Slope (200–2,000),1200 m	-	1.67E-05	-	2013 Anaerobic methane oxidation in low-
				organic content methane seep sediments
Slope (200–2,000),1200 m	-	6.80E-04	-	2013 Anaerobic methane oxidation in low-
				organic content methane seep sediments
Slope (200–2,000), 308m	-	5.00E-05	-	2007 Biogeochemistry and biodiversity of
				methane cycling in subsurface marine sediments
Slope (200–2,000), 308m	-	5.00E-05	-	2007 Biogeochemistry and biodiversity of
				methane cycling in subsurface marine sediments
Slope (200–2,000), 308m	-	1.00E-04	-	2007 Biogeochemistry and biodiversity of
		1.005.04		methane cycling in subsurface marine sediments
Slope (200–2,000), 308m	-	1.00E-04	-	2007 Biogeochemistry and biodiversity of
<u> </u>		1.505.04		methane cycling in subsurface marine sediments
Slope (200–2,000), 308m	-	1.50E-04	-	2007 Biogeochemistry and biodiversity of
<u>Slama (200, 2,000), 208m</u>		2.00E.04		2007 Diagonal amistry and his diversity of
Slope (200–2,000), 308m	-	2.00E-04	-	2007 Biogeochemistry and biodiversity of
Slana (200, 2,000), 208m		2.00E.04		2007 Dia gao chemistry and his diversity of
Slope (200–2,000), 30811	-	2.00E-04	-	2007 Biogeochemistry and biodiversity of
Slope (200, 2,000), 308m		3 00F 04		2007 Biogeochemistry and biodiversity of
Stope (200–2,000), 50811	-	5.001-04	-	methane cycling in subsurface marine sediments
Slope (200–2.000) 308m		3 50F-04		2007 Biogeochemistry and biodiversity of
510pe (200° 2,000), 500m		5.50E 04		methane cycling in subsurface marine sediments
Slope (200–2.000) 308m	_	6.00E-04	_	2007 Biogeochemistry and biodiversity of
516pe (200° 2,000), 500m		0.001 01		methane cycling in subsurface marine sediments
Slope (200–2.000), 308m	-	2.00E-03	-	2007 Biogeochemistry and biodiversity of
				methane cycling in subsurface marine sediments
Slope (200–2.000), 308m	-	3.10E-03	-	2007 Biogeochemistry and biodiversity of
1				methane cycling in subsurface marine sediments
Slope (200–2,000),850 m	8.46E-01	1.41E-01	1.28E-01	2021 Carbonate-hosted microbial communities
• • • //				are prolific and pervasive methane oxidizers at
				geologically diverse marine methane seep sites
Slope (200–2,000),850 m	8.46E-01	3.87E-02	3.52E-02	2021 Carbonate-hosted microbial communities
				are prolific and pervasive methane oxidizers at
				geologically diverse marine methane seep sites
Slope (200–2,000),850 m	8.46E-01	5.72E-01	5.20E-01	2021 Carbonate-hosted microbial communities
				are prolific and pervasive methane oxidizers at
				geologically diverse marine methane seep sites
Slope (200–2,000),850 m	8.46E-01	4.33E-03	3.94E-03	2021 Carbonate-hosted microbial communities

				are prolific and pervasive methane oxidizers at
				geologically diverse marine methane seep sites
Slope (200–2,000),850 m	8.46E-01	8.42E-02	7.66E-02	2021 Carbonate-hosted microbial communities
				are prolific and pervasive methane oxidizers at
				geologically diverse marine methane seep sites
Slope (200–2,000),850 m	8.46E-01	1.17E-01	1.06E-01	2021 Carbonate-hosted microbial communities
				are prolific and pervasive methane oxidizers at
				geologically diverse marine methane seep sites
Slope (200–2,000),1300 m	8.46E-01	1.91E-01	1.74E-01	2021 Carbonate-hosted microbial communities
				are prolific and pervasive methane oxidizers at
				geologically diverse marine methane seep sites
Slope (200–2,000),1300 m	8.46E-01	1.49E-01	1.35E-01	2021 Carbonate-hosted microbial communities
				are prolific and pervasive methane oxidizers at
				geologically diverse marine methane seep sites
Slope (200–2,000),1300 m	8.46E-01	1.91E-01	1.74E-01	2021 Carbonate-hosted microbial communities
				are prolific and pervasive methane oxidizers at
				geologically diverse marine methane seep sites
Slope (200–2,000),1300 m	8.46E-01	1.89E-01	1.72E-01	2021 Carbonate-hosted microbial communities
				are prolific and pervasive methane oxidizers at
				geologically diverse marine methane seep sites
Slope (200–2,000),1000-	8.46E-01	2.00E-02	1.82E-02	2021 Carbonate-hosted microbial communities
2000 m				are prolific and pervasive methane oxidizers at
				geologically diverse marine methane seep sites
Slope (200–2,000),1000-	8.46E-01	1.20E-02	1.09E-02	2021 Carbonate-hosted microbial communities
2000 m				are prolific and pervasive methane oxidizers at
				geologically diverse marine methane seep sites
Slope (200–2,000),1000-	8.46E-01	3.80E-02	3.45E-02	2021 Carbonate-hosted microbial communities
2000 m				are prolific and pervasive methane oxidizers at
				geologically diverse marine methane seep sites
Slope (200–2,000),1000-	8.46E-01	5.82E-03	5.29E-03	2021 Carbonate-hosted microbial communities
2000 m				are prolific and pervasive methane oxidizers at
				geologically diverse marine methane seep sites
Slope (200–2,000),1000-	8.46E-01	5.82E-01	5.29E-01	2021 Carbonate-hosted microbial communities
2000 m				are prolific and pervasive methane oxidizers at
				geologically diverse marine methane seep sites
Slope (200–2,000),745 m	8.46E-01	1.09E-01	9.91E-02	2021 Carbonate-hosted microbial communities
				are prolific and pervasive methane oxidizers at
	0.465.01	0.015.01	1.025.01	geologically diverse marine methane seep sites
Slope (200–2,000), /45 m	8.46E-01	2.01E-01	1.83E-01	2021 Carbonate-hosted microbial communities
				are prolific and pervasive methane oxidizers at
	0.465.01	5.405.00	4.025.00	geologically diverse marine methane seep sites
Slope (200–2,000),745 m	8.46E-01	5.42E+00	4.93E+00	2021 Carbonate-hosted microbial communities
				are prolific and pervasive methane oxidizers at
<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u>_</u>	0.4(E.01	4.2(1):00	2.0(1):00	geologically diverse marine methane seep sites
Slope (200–2,000), /45 m	8.46E-01	4.36E+00	3.96E+00	2021 Carbonate-hosted microbial communities
				are prolific and pervasive methane oxidizers at
<u> </u>	0.4(E.01	0.225.01		geologically diverse marine methane seep sites
Slope (200–2,000), /45 m	8.46E-01	8.33E-01	/.5/E-01	2021 Carbonate-hosted microbial communities
				are prolific and pervasive methane oxidizers at
<u> </u>		1.125.00		geologically diverse marine methane seep sites
Slope (200–2,000), /00 m	/.69E-01	1.13E+00	-	2005 Microbial methane turnover in different
<u> </u>		2.145+00		
Slope (200–2,000), /00 m	7.69E-01	3.14E+00	-	2005 Microbial methane turnover in different
<u> </u>		(54E+00		
Slope (200–2,000), /00 m	/.69E-01	6.54E+00	-	2005 Microbial methane turnover in different
<u> </u>	4.055.00	1.605.02	0.545.00	marine habitats
Slope (200–2,000),597 m	4.85E-02	1.60E-03	2.54E-02	2016 Sediment geochemistry and alkane
				oxidation rates from sediments collected
<u>S1(2002.000)</u> 507			1.005.00	November 2010 and experimental incubations
Stope (200–2,000),597 m	2.91E-01	0.80E-03	1.80E-02	2016 Sediment geochemistry and alkane
				oxidation rates from sediments collected
Slama (200, 2,000) 507	2.9CE 01	5.005.02	1.245.02	November 2010 and experimental incubations
stope (200–2,000),59/ m	2.80E-01	3.00E-03	1.34E-02	2010 Sediment geochemistry and alkane
				November 2010 or 1 comparison to 1 is well at
				November 2010 and experimental incubations

Slope (200–2,000),597 m	1.54E-01	7.80E-03	3.90E-02	2016 Sediment geochemistry and alkane
• • • •				oxidation rates from sediments collected
				November 2010 and experimental incubations
Slope (200–2,000),597 m	2.75E-01	1.82E-02	5.09E-02	2016 Sediment geochemistry and alkane
1				oxidation rates from sediments collected
				November 2010 and experimental incubations
Slope (200–2.000),597 m	2.22E-01	1.89E-02	6.54E-02	2016 Sediment geochemistry and alkane
1	-			oxidation rates from sediments collected
				November 2010 and experimental incubations
Rise (2 000–3 500) 2428	2.15E+00	8 00E-02	-	2012 Anaerobic methane oxidation in
m	2.101.00	0.001 02		metalliferous hydrothermal sediments: influence
				on carbon flux and decoupling from sulfate
				reduction
Pise (2,000, 2,500) 2428	2 15E+00	5 00E 02		2012 Anaerobic methane ovidation in
Rise (2,000–3,300),2428	2.15E+00	5.001-02	-	matalliferous hydrothermal sodiments; influence
111				on earbon flux and decounting from sulfate
				reduction
Birs (2,000, 2,500) 2428	2.15E+00	1.005.01		2012 American strategic series in
Rise (2,000–3,300),2428	2.13E+00	1.00E-01	-	2012 Anaerobic methane oxidation in
m				metalifierous hydrothermal sediments: influence
				on carbon flux and decoupling from sulfate
				reduction
inner shelf (10-50m)28 m	1.15E+01	5.65E+00	-	2005 Microbial methane turnover in different
				marine habitats
Slope (200–2,000), 700m	1.15E+01	1.02E+01	-	2005 Microbial methane turnover in different
				marine habitats
Slope (200–2,000), 650m	1.15E+01	1.69E+01	-	2005 Microbial methane turnover in different
				marine habitats
Slope (200–2,000),880 m	1.42E+00	1.44E-02	7.78E-03	2019 Sediment geochemistry and process rate
• • • •				measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from
				2016-07-26 to 2016-08-76
Slope (200–2.000) 880 m	2.07E+00	1 42E-01	5 26E-02	2019 Sediment geochemistry and process rate
Stope (200 2,000),000 III	2.0712.00	1.121.01	5.201 02	measurements aboard the R/V Endeavor cruise
				EN586 in the northern Gulf of Mexico from
				2016_07_26 to 2016_08_77
Slope (200, 2,000) 880 m	1 78E+00	2 00E 02	1 72E 03	2010-07-20 to 2010-00-77
Stope (200–2,000),880 III	1.781+00	5.991-05	1.721-03	measurements aboard the P/V Endeavor cruise
				EN586 in the northern Gulf of Maxiao from
				$2016.07.26 \pm 2016.08.79$
<u>S1 (200, 2,000)</u> 104(1.2000	7.455.02	4.14E.02	D/UE 1
Slope (200–2,000), 1046	1.39E+00	7.45E-03	4.14E-03	R/V Endeavor: EN528 water and Sediment
<u>m</u>	1.105.00			Chemistry, Gulf of Mexico, July 7-22, 2022
Slope (200–2,000), 1046	1.10E+00	4.74E-04	3.32E-04	R/V Endeavor: EN528 Water and Sediment
<u>m</u>				Chemistry, Gulf of Mexico, July 7-22, 2023
Slope (200–2,000), 1046	1.71E+00	1.08E-03	4.84E-04	R/V Endeavor: EN528 Water and Sediment
<u>m</u>				Chemistry, Gulf of Mexico, July 7-22, 2024
Slope (200–2,000), 1046	1.27E+00	2.23E-03	1.35E-03	R/V Endeavor: EN528 Water and Sediment
<u>m</u>				Chemistry, Gulf of Mexico, July 7-22, 2025
Slope (200–2,000),520m	2.50E+00	1.42E-01	-	2009 Manganese- and Iron-Dependent Marine
				Methane Oxidation
inner shelf (10-50m) 45 m	1.08E+00	6.51E-02	4.65E-02	2019 Pressure Selects Dominant Anaerobic
× ,				Methanotrophic Phylotype and Sulfate Reducing
				Bacteria in Coastal Marine Lake Grevelingen
inner shelf (10-50m) 45 m	4.92E+00	1.13E-01	1.77E-02	2019 Pressure Selects Dominant Anaerobic
				Methanotrophic Phylotype and Sulfate Reducing
				Bacteria in Coastal Marine I ake Grevelingen
inner shelf $(10-50m)$ 45 m	7.84E+01	3.83E-02	3 76E-04	2010 Pressure Selects Dominant Anaerobic
miler sheri (10-30m) 45 m	7.04L+01	5.051-02	5.701-04	Mathematrophic Dhylatyne and Sulfate Deducing
				Rectario in Coastal Marina Laba Cravalinger
inn an al al (10,50,) 45	1.16100	2.01E.00	2.14E.04	2010 December 2010 to Decime the Deciment
inner sneit (10-50m) 45 m	1.15E+02	5.21E-02	2.14E-04	2019 Pressure Selects Dominant Anaerobic
				Niethanotrophic Phylotype and Sulfate Reducing
				Bacteria in Coastal Marine Lake Grevelingen
inner shelf (10-50m) 45 m	1.52E+02	1.35E-02	6.82E-05	2019 Pressure Selects Dominant Anaerobic
				Methanotrophic Phylotype and Sulfate Reducing
				Bacteria in Coastal Marine Lake Grevelingen
Rise (2,000–3,500), 2330	1.38E+01	1.80E-03	1.00E-04	2010 New constraints on methane fluxes and

m				rates of anaerobic methane oxidation in a Gulf of
			1.005.04	Mexico brine pool via in situ mass spectrometry
Rise (2,000–3,500), 2330	2.69E+01	3.50E-03	1.00E-04	2010 New constraints on methane fluxes and
m				rates of anaerobic methane oxidation in a Gulf of
Slame (200, 2,000) 1000	2.95E+01	4.800 + 00	0.60E.02	2010 Remerkable Canacity for Anographic
2000 m	5.83E+01	4.80E+00	9.00E-02	Ovidation of Mathana at High Mathana
2000 III				Concentration
Slope (200, 2,000) 1000	7.69E+00	3.60E+00	3.60E_01	2010 Remarkable Canacity for Anaerobic
2000 m	7.091100	5.001100	J.00L-01	Ovidation of Methane at High Methane
2000 11				Concentration
Slope (200–2.000), 1000-	3.85E±00	2.80E-01	5.60E-02	2019 Remarkable Capacity for Anaerobic
2000 m	51052 00	2.001 01	0.001 02	Oxidation of Methane at High Methane
				Concentration
inner shelf (10-50m)28 m	1.15E+01	4.50E-01	3.00E-02	2005 Microbial methane turnover in different
				marine habitats
Slope (200–2,000),700-	1.15E+01	3.70E-01	2.47E-02	2005 Microbial methane turnover in different
_1250 m				marine habitats
Slope (200–2,000),700-	1.15E+01	2.40E-01	1.60E-02	2005 Microbial methane turnover in different
1250 m				marine habitats
Slope (200–2,000),1200 m	9.87E+01	2.60E-01	3.21E-02	2018 Effect of pressure and temperature on
				anaerobic methanotrophic activities of a highly
				enriched ANME-2a community
Slope (200–2,000),1200 m	9.87E+01	6.80E-01	7.56E-02	2018 Effect of pressure and temperature on
				anaerobic methanotrophic activities of a highly
<u>S1</u> (200, 2,000) 1200	2.0(E+02	1.500 + 00	1.15E.01	enriched ANME-2a community
Slope (200–2,000),1200 m	2.96E+02	1.50E+00	1.15E-01	2018 Effect of pressure and temperature on
				anaerobic methanotrophic activities of a nighty
Slapa (200, 2,000) 1500	2 485+00	1 20E±00	8 57E 01	2011 Thermorphilic apparability
2000 m	2.46E+00	1.201+00	0.3/E-01	methane by marine microbial consortia
Slope (200–2 000) 850 m	3 50E+00	1.00E+00		2016 Artificial electron accentors decouple
Stope (200–2,000),050 m	5.50L+00	1.001+00	_	archaeal methane oxidation from sulfate
				reduction
Slope (200–2.000) 910 m	1 50E+00	6 20E-03	_	2014 Stratified Community Responses to
Stepe (200 2,000), 910 m	1.502.00	0.2012 000		Methane and Sulfate Supplies in Mud Volcano
				Deposits: Insights from an In Vitro Experiment.
inner shelf (10-50m) 45 m	2.00E+00	5.00E-02	-	2017 Anaerobic Methane-Oxidizing Microbial
				Community in a Coastal Marine Sediment:
				Anaerobic Methanotrophy Dominated by
				ANME-3
inner shelf (10-50m) 45 m	2.00E+00	1.70E-01	-	2017 Anaerobic Methane-Oxidizing Microbial
				Community in a Coastal Marine Sediment:
				Anaerobic Methanotrophy Dominated by
				ANME-3
Slope (200–2,000),520m	2.50E+00	1.64E-02	-	2009 Manganese- and Iron-Dependent Marine
. 1.10(10.50.)	1.005+02	4.000.00		Methane Oxidation
inner shelf (10-50m)	1.00E+02	4.60E-02	-	2015 Growth of Anaerobic Methane-Oxidizing
				Archaea and Sullate-Reducing Bacteria in a
Slope (200, 2,000) 597 m	0.41E.02	8 00E 04	6 54E 03	2016 Sediment geochemistry and alkane
Slope (200–2,000),597 III	9.411-02	0.001-04	0.542-05	ovidation rates from sediments collected
				November 2010 and experimental incubations
Slope (200–2.000).850 m	7.58E±01	1.13E+01	1.03E+01	2021 Carbonate-hosted microbial communities
				are prolific and pervasive methane oxidizers at
				geologically diverse marine methane seep sites
Slope (200–2,000),1300 m	7.58E+01	1.02E+01	9.32E+00	2021 Carbonate-hosted microbial communities
• • //				are prolific and pervasive methane oxidizers at
				geologically diverse marine methane seep sites
Slope (200–2,000),1000-	7.58E+01	7.44E+00	6.76E+00	2021 Carbonate-hosted microbial communities
2000 m				are prolific and pervasive methane oxidizers at
				geologically diverse marine methane seep sites
Slope (200–2,000),1000-	7.58E+01	2.35E+00	2.14E+00	2021 Carbonate-hosted microbial communities
2000 m				are prolific and pervasive methane oxidizers at
				geologically diverse marine methane seep sites

Slope (200–2,000),745 m	7.58E+01	2.80E+01	2.54E+01	2021 Carbonate-hosted microbial communities
				are profine and pervasive methane oxidizers at
				geologically diverse marine methane seep sites
Slope (200–2,000),745 m	7.58E+01	1.15E+01	1.04E+01	2021 Carbonate-hosted microbial communities
				are prolific and pervasive methane oxidizers at
				geologically diverse marine methane seep sites

	T 1	c 1 ·	.1	• • •	•			
Table S7.	The rates	of aerobic	methane	oxidation	1 n	marine	environme	ent
I HOIC ST	The faces	01 4010010	meeneme	omaanom		1110011110	environni	

Marine, Aerobi	c		
CH ₄ (atm)	Rates (µmol/g/d or µmol/cm ³ /d)	K (d ⁻¹)	Reference
2.25E-07	9.00E-09	3.00E-02	2020 Methane Seeps and Independent Methane Plumes in the South China Sea Offshore Taiwan
5.90E-07	4.25E-09	5.40E-03	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
1.41E-06	2.28E-09	1.21E-03	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements, Gulf of Mexico, May 29 - June 20, 2015
1.80E-06	3.60E-09	1.50E-03	2003 Methane Oxidation Potential in the Water Column of Two Diverse Coastal Marine Sites
1.80E-06	3.60E-09	1.50E-03	2010 Distributions of putative aerobic methanotrophs in diverse pelagic marine environments
1.91E-06	3.51E-09	1.38E-03	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements, Gulf of Mexico, May 29 - June 20, 2015
2.04E-06	2.85E-09	1.04E-03	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements, Gulf of Mexico, May 29 - June 20, 2015
2.48E-06	3.23E-09	9.77E-04	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements, Gulf of Mexico, May 29 - June 20, 2015
2.62E-06	2.80E-09	8.00E-04	2010 Distributions of putative aerobic methanotrophs in diverse pelagic marine environments
2.97E-06	2.97E-08	7.50E-03	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
3.08E-06	2.13E-08	5.20E-03	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
3.16E-06	2.34E-08	5.56E-03	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
3.29E-06	4.60E-08	1.05E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
3.31E-06	2.06E-08	4.65E-03	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
3.34E-06	1.30E-09	2.91E-04	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
3.36E-06	2.26E-10	5.03E-05	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
3.46E-06	2.27E-09	4.91E-04	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
3.48E-06	4.03E-09	8.68E-04	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
3.49E-06	7.07E-09	1.52E-03	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
3.49E-06	3.07E-08	6.60E-03	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
3.49E-06	1.53E-10	3.28E-05	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements, Gulf of Mexico, May 29 - June 20, 2015
3.51E-06	8.39E-08	1.79E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
3.53E-06	1.39E-07	2.94E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
3.56E-06	8.41E-09	1.77E-03	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
3.57E-06	1.08E-07	2.27E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14

3.61E-06	2.54E-09	5.26E-04	2019 Water column chemistry data collected on board the R/V Endeavor cruise
			EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
3.64E-06	1.10E-07	2.26E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise
2 (05 0)	2.425.00	(05E 02	EN586 in the northern Gulf of Mexico from $2016-07-24$ to $2016-08-14$
3.68E-06	3.42E-08	6.95E-03	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Maxico from 2016 07 24 to 2016 08 14
3 70E-06	3 40E-08	6 80E-03	2010 Water column chemistry data collected on board the P/V Endeavor cruise
J./0E-00	5.40E-08	0.8912-03	EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
3.75E-06	1.50E-10	3.00E-05	2010 Methane Oxidation in the Eastern Tropical North Pacific
3.75E 06	2 00E 10	4 00E 05	2010 Methane Ovidation in the Eastern Tropical North Pacific
3.75E-00	2.00E-10	4.00E-03	
3.76E-06	8.55E-08	1.71E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the porthern Gulf of Maxiao from 2016 07 24 to 2016 08 14
3 76E 06	1 81E 07	3 60E 02	2010 Water column chemistry data collected on board the P/V Endenvor cruise
5.702-00	1.012-07	5.0012-02	EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
3.77E-06	1.88E-10	3.73E-05	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process
5.77E 00	INCOL IV	5.752 00	rate measurements, Gulf of Mexico, May 29 - June 20, 2015
3.79E-06	1.38E-07	2.72E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise
			EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
3.87E-06	9.77E-08	1.89E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise
			EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
3.87E-06	8.95E-08	1.73E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise
			EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
3.92E-06	3.47E-08	6.64E-03	2019 Water column chemistry data collected on board the R/V Endeavor cruise
2.055.00	7.2(E.09	1.205.02	EN586 in the northern Gulf of Mexico from $2016-07-24$ to $2016-08-14$
3.95E-06	7.26E-08	1.38E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Maxiao from 2016 07 24 to 2016 08 14
3.96E-06	2.06E_00	3 90E-04	2017 R/V Endeavor: EN550 Water Column Chemistry and microbial process
5.902-00	2.00E-09	5.901-04	rate measurements Gulf of Mexico May 29 - June 20 2015
3.97E-06	6.86E-08	1.29E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise
5.97E 00	0.001 00	1.292 02	EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
4.00E-06	2.51E-07	4.71E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise
			EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
4.02E-06	8.35E-08	1.56E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise
			EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
4.03E-06	3.09E-10	5.75E-05	2019 Water column chemistry data collected on board the R/V Endeavor cruise
			EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
4.04E-06	3.66E-10	6.79E-05	2019 Water column chemistry data collected on board the R/V Endeavor cruise
4.005.06	1 205 00	2.27E.04	EN586 in the northern Gulf of Mexico from 2016-0/-24 to 2016-08-14
4.09E-06	1.29E-09	2.3/E-04	EN586 in the northern Gulf of Maxico from 2016 07 24 to 2016 08 14
4 09F-06	1 23E-07	2 25E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise
4.07L-00	1.231-07	2.2512-02	EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
4.12E-06	1.00E-08	1.82E-03	2010 Distributions of putative aerobic methanotrophs in diverse pelagic marine
			environments
4.19E-06	1.24E-07	2.21E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise
			EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
4.25E-06	1.36E-07	2.39E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise
	0.545.11	1.675.05	EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
4.28E-06	9.54E-11	1.67E-05	2019 Water column chemistry data collected on board the R/V Endeavor cruise
4 28E 06	0.00F.08	1 50E 02	2010 Water column chemistry data collected on board the P/V Endenvor cruise
4.201-00	9.09E-08	1.3912-02	EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
4.33E-06	5.51E-08	9.53E-03	2019 Water column chemistry data collected on board the R/V Endeavor cruise
			EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
4.38E-06	7.45E-07	1.27E-01	2019 Water column chemistry data collected on board the R/V Endeavor cruise
			EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
4.44E-06	5.96E-08	1.01E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise
4.405.01	0.045.10	4.017.07	EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
4.49E-06	2.94E-10	4.91E-05	2017 K/V Endeavor: EN559 Water Column Chemistry and microbial process
1 10E 06	2 00E 10	5 00E 05	2010 Methane Ovidation in the Eastern Transial North Desifie
4.47E-00	5.00E-10	0.20E-03	2010 Internate Oxfordation in the Eastern Hopical Notifi Pacific
4.30E-06	5.59E-07	9.30E-02	2010 K/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7 22, 2013
165E 06	5 16E 07	8 30E 02	July 7-22, 2013 2010 Water column chemistry data collected on board the D/V Endeavor emission
-100E-00	5.101-07	0.501-02	2017 mater continue eleminary data concercer on board the to v Endeavor cruise

			EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
4.66E-06	9.27E-10	1.49E-04	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
4.67E-06	7.88E-07	1.27E-01	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
4.69E-06	4.97E-09	7.92E-04	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
4.80E-06	3.69E-09	5.76E-04	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements, Gulf of Mexico, May 29 - June 20, 2015
4.87E-06	4.77E-08	7.33E-03	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
4.95E-06	2.24E-07	3.39E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
5.09E-06	2.61E-07	3.84E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
5.18E-06	1.88E-09	2.72E-04	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements, Gulf of Mexico, May 29 - June 20, 2015
5.24E-06	1.00E-09	1.43E-04	2010 Methane Oxidation in the Eastern Tropical North Pacific
5.35E-06	6.91E-10	9.67E-05	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements Gulf of Mexico May 29 - June 20, 2015
5.48E-06	1.67E-10	2.29E-05	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements. Gulf of Mexico. May 29 - June 20, 2015
5.54E-06	2.09E-07	2.83E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
5.62E-06	1.50E-09	2.00E-04	2010 Methane Oxidation in the Eastern Tropical North Pacific
5.93E-06	4.06E-09	5.13E-04	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
5.94E-06	4.89E-09	6.17E-04	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements Gulf of Mexico May 29 - June 20, 2015
5.94E-06	1.00E-08	1.27E-03	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements. Gulf of Mexico. May 29 - June 20, 2015
5.98E-06	2.08E-09	2.60E-04	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements, Gulf of Mexico, May 29 - June 20, 2015
5.98E-06	5.56E-09	6.97E-04	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements, Gulf of Mexico, May 29 - June 20, 2015
5.99E-06	6.00E-10	7.50E-05	2010 Methane Oxidation in the Eastern Tropical North Pacific
6.16E-06	2.86E-08	3.48E-03	2019 Water column chemistry data collected on board the R/V Endeavor cruise
6 17E-06	3 66E-09	4 44E-04	EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14 2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process
6 30E 06	8 60F 11	1.02E.05	rate measurements, Gulf of Mexico, May 29 - June 20, 2015
0.5012-00	8.00L-11	1.02E-05	rate measurements. Gulf of Mexico. May 29 - June 20, 2015
6.31E-06	6.33E-10	7.51E-05	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
6.33E-06	2.32E-10	2.75E-05	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements. Gulf of Mexico. May 29 - June 20, 2015
6.40E-06	1.70E-08	1.99E-03	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements, Gulf of Mexico, May 29 - June 20, 2015
6.51E-06	1.52E-10	1.75E-05	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements, Gulf of Mexico, May 29 - June 20, 2015
6.63E-06	9.62E-07	1.09E-01	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
6.65E-06	4.14E-09	4.66E-04	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements. Gulf of Mexico. May 29 - June 20, 2015
6.74E-06	1.54E-07	1.71E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
6.80E-06	1.13E-08	1.24E-03	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements, Gulf of Mexico, May 29 - June 20, 2015
7.03E-06	1.05E-08	1.12E-03	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
7.05E-06	1.54E-08	1.64E-03	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements, Gulf of Mexico, May 29 - June 20, 2015
7.22E-06	4.58E-07	4.75E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise

			EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
7.24E-06	1.21E-08	1.25E-03	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements, Gulf of Mexico, May 29 - June 20, 2015
7.37E-06	1.24E-08	1.26E-03	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements. Gulf of Mexico, May 29 - June 20, 2015
7.54E-06	1.58E-07	1.57E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
7.85E-06	3.86E-09	3.68E-04	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements, Gulf of Mexico, May 29 - June 20, 2015
7.88E-06	4.05E-10	3.85E-05	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements, Gulf of Mexico, May 29 - June 20, 2015
7.92E-06	8.71E-09	8.24E-04	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements, Gulf of Mexico, May 29 - June 20, 2015
7.93E-06	9.75E-07	9.20E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
8.06E-06	9.43E-09	8.76E-04	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements, Gulf of Mexico, May 29 - June 20, 2015
8.08E-06	1.80E-06	1.67E-01	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
8.33E-06	1.91E-08	1.72E-03	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
8.40E-06	1.85E-07	1.65E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
8.73E-06	4.57E-09	3.92E-04	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements, Gulf of Mexico, May 29 - June 20, 2015
8.99E-06	1.00E-07	8.33E-03	2010 Methane Oxidation in the Eastern Tropical North Pacific
9.44E-06	1.06E-09	8.42E-05	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
9.73E-06	4.89E-09	3.76E-04	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements, Gulf of Mexico, May 29 - June 20, 2015
9.89E-06	2.49E-08	1.88E-03	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
1.00E-05	2.04E-08	1.52E-03	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
1.00E-05	8.62E-09	6.44E-04	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements, Gulf of Mexico, May 29 - June 20, 2015
1.01E-05	3.40E-10	2.53E-05	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements, Gulf of Mexico, May 29 - June 20, 2015
1.06E-05	4.99E-10	3.53E-05	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements, Gulf of Mexico, May 29 - June 20, 2015
1.07E-05	1.99E-06	1.39E-01	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
1.10E-05	9.77E-08	6.66E-03	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
1.15E-05	4.90E-09	3.18E-04	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
1.18E-05	7.80E-09	4.95E-04	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements. Gulf of Mexico. May 29 - June 20, 2015
1.24E-05	3.57E-09	2.16E-04	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements. Gulf of Mexico. May 29 - June 20, 2015
1.24E-05	1.66E-06	9.97E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
1.25E-05	4.43E-09	2.66E-04	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
1.26E-05	2.45E-06	1.46E-01	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
1.27E-05	4.37E-10	2.58E-05	2017 R/V Endeavor: EN559 Water Column Chemistry and microbial process rate measurements, Gulf of Mexico, May 29 - June 20, 2015
1.27E-05	4.12E-08	2.42E-03	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20

1.28E-05	4.88E-08	2.85E-03	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-
1 31E 05	2.41E.06	1 38E 01	08-20 2010 Water column chemistry data collected on board the P/V Endeavor cruise
1.3112-03	2.4112-00	1.36E-01	EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
1.33E-05	1.22E-06	6.87E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
1.50E-05	1.20E-06	6.00E-02	1989 Methane oxidation in Saanich Inlet during summer stratification
1.56E-05	6.57E-09	3.16E-04	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
1.59E-05	1.10E-09	5.17E-05	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
1.59E-05	1.10E-03	5.17E+01	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
1.61E-05	5.22E-08	2.43E-03	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
1.63E-05	3.50E-10	1.61E-05	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
1.65E-05	2.58E-08	1.17E-03	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
1.72E-05	1.11E-07	4.84E-03	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
1.76E-05	7.19E-08	3.06E-03	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
1.79E-05	4.21E-08	1.76E-03	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
1.79E-05	1.44E-07	6.02E-03	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
1.85E-05	1.78E-07	7.18E-03	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
1.86E-05	1.34E-07	5.39E-03	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
1.89E-05	3.95E-06	1.56E-01	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
1.91E-05	1.44E-09	5.63E-05	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
1.97E-05	1.89E-07	7.18E-03	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
2.06E-05	1.88E-07	6.84E-03	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
2.09E-05	4.32E-07	1.55E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
2.24E-05	5.01E-08	1.67E-03	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
2.26E-05	4.19E-06	1.39E-01	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
2.27E-05	1.42E-06	4.69E-02	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2014
2.35E-05	6.44E-09	2.06E-04	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20

2.35E-05	1.38E-08	4.40E-04	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
2.36E-05	4.64E-07	1.47E-02	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
2.49E-05	2.51E-07	7.56E-03	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
2.56E-05	2.75E-07	8.06E-03	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
2.59E-05	7.97E-09	2.30E-04	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
2.63E-05	2.47E-08	7.02E-04	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
2.64E-05	2.08E-07	5.89E-03	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
2.69E-05	4.71E-08	1.31E-03	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
2.73E-05	5.49E-09	1.51E-04	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
2.75E-05	2.07E-07	5.63E-03	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
2.77E-05	1.14E-07	3.06E-03	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
2.95E-05	1.19E-08	3.03E-04	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
2.96E-05	2.04E-08	5.16E-04	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
3.29E-05	5.04E-07	1.15E-02	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
3.42E-05	2.97E-06	6.50E-02	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2014
3.53E-05	4.05E-07	8.60E-03	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017-08-20
3.64E-05	5.00E-06	1.03E-01	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
3.68E-05	6.23E-06	1.27E-01	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
3.83E-05	2.64E-07	5.17E-03	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017- 08-20
3.91E-05	4.81E-06	9.22E-02	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2014
3.94E-05	2.81E-06	5.34E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016 07 24 to 2016 08 14
4.05E-05	9.50E-06	1.76E-01	2010 Methane Oxidation Potential in the Water Column of Two Diverse
4.26E-05	4.48E-06	7.87E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the porthern Gulf of Mexico from 2016 07 24 to 2016 08 14
5.00E-05	5.80E-07	8.69E-03	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017- 08-20

5.37E-05	5.35E-07	7.45E-03	2019 Methane concentration and oxidation rates in water column data collected aboard the R/V Sikuliaq in the northern Chukchi Sea from 2017-08-11 to 2017- 08-20
5.63E-05	5.69E-05	7.58E-01	2003 Methane Oxidation Potential in the Water Column of Two Diverse Coastal Marine Sites
5.99E-05	2.50E-07	3.13E-03	1989 Methane oxidation in Saanich Inlet during summer stratification
6.02E-05	1.26E-06	1.57E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
6.02E-05	6.50E-06	8.08E-02	2003 Methane Oxidation Potential in the Water Column of Two Diverse Coastal Marine Sites
6.81E-05	1.33E-07	1.46E-03	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
6.95E-05	1.04E-05	1.13E-01	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2017
7.51E-05	3.24E-06	3.23E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
8.76E-05	7.67E-06	6.55E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
1.03E-04	1.08E-05	7.81E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
1.06E-04	6.00E-07	4.23E-03	2010 Distributions of putative aerobic methanotrophs in diverse pelagic marine environments
1.14E-04	9.38E-06	6.15E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
1.16E-04	1.74E-05	1.12E-01	2003 Methane Oxidation Potential in the Water Column of Two Diverse Coastal Marine Sites
1.17E-04	1.84E-05	1.18E-01	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
1.27E-04	1.42E-05	8.40E-02	2003 Methane Oxidation Potential in the Water Column of Two Diverse Coastal Marine Sites
1.34E-04	2.67E-05	1.49E-01	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
1.43E-04	5.06E-05	2.66E-01	2003 Methane Oxidation Potential in the Water Column of Two Diverse Coastal Marine Sites
1.92E-04	1.00E-05	3.89E-02	2003 Methane Oxidation Potential in the Water Column of Two Diverse Coastal Marine Sites
2.05E-04	7.00E-07	2.55E-03	2010 Distributions of putative aerobic methanotrophs in diverse pelagic marine environments
2.05E-04	7.00E-07	2.55E-03	2010 Distributions of putative aerobic methanotrophs in diverse pelagic marine environments
2.54E-04	2.05E-07	6.04E-04	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
2.54E-04	2.05E-07	6.04E-04	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
2.57E-04	2.81E-05	8.19E-02	2003 Methane Oxidation Potential in the Water Column of Two Diverse Coastal Marine Sites
2.62E-04	2.00E-06	5.71E-03	1989 Methane oxidation in Saanich Inlet during summer stratification
4.26E-04	9.33E-05	1.64E-01	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
4.26E-04	9.33E-05	1.64E-01	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
5.12E-04	3.60E-05	5.27E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
5.28E-04	3.16E-05	4.47E-02	2019 Water column chemistry data collected on board the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-24 to 2016-08-14
2.10E-03	2.00E-06	7.14E-04	2010 Propane Respiration Jump-Starts Microbial Response to a Deep Oil Spill
2.47E-03	4.36E-04	1.32E-01	2016 R/V Endeavor: EN528 Water and Sediment Chemistry, Gulf of Mexico, July 7-22, 2018
2.47E-03	4.20E-05	1.27E-02	2010 Propane Respiration Jump-Starts Microbial Response to a Deep Oil Spill
3.00E-03	3.40E-11	8.50E-09	2015 Methane oxidation in the eastern tropical North Pacific Ocean water column
3.00E-03	4.00E-06	1.00E-03	2015 Methane oxidation in the eastern tropical North Pacific Ocean water column
3.45E-03	1.00E-06	2.17E-04	2010 Propane Respiration Jump-Starts Microbial Response to a Deep Oil Spill

3.89E-03	1.00E-06	1.92E-04	2010 Propane Respiration Jump-Starts Microbial Response to a Deep Oil Spill
3.97E-03	1.00E-06	1.89E-04	2010 Propane Respiration Jump-Starts Microbial Response to a Deep Oil Spill
6.74E-03	1.00E-06	1.11E-04	2010 Propane Respiration Jump-Starts Microbial Response to a Deep Oil Spill
8.24E-03	7.00E-06	6.36E-04	2010 Propane Respiration Jump-Starts Microbial Response to a Deep Oil Spill
8.99E-03	4.40E-05	3.67E-03	2010 Propane Respiration Jump-Starts Microbial Response to a Deep Oil Spill
9.74E-03	8.20E-04	6.31E-02	2010 Propane Respiration Jump-Starts Microbial Response to a Deep Oil Spill
2.02E-02	1.50E-05	5.56E-04	2010 Propane Respiration Jump-Starts Microbial Response to a Deep Oil Spill
2.17E-02	1.00E-05	3.45E-04	2010 Propane Respiration Jump-Starts Microbial Response to a Deep Oil Spill
2.77E-02	9.00E-06	2.43E-04	2010 Propane Respiration Jump-Starts Microbial Response to a Deep Oil Spill
3.60E-02	9.00E-06	1.88E-04	2010 Propane Respiration Jump-Starts Microbial Response to a Deep Oil Spill
4.12E-02	1.90E-05	3.45E-04	2010 Propane Respiration Jump-Starts Microbial Response to a Deep Oil Spill
4.64E-02	1.40E-05	2.26E-04	2010 Propane Respiration Jump-Starts Microbial Response to a Deep Oil Spill
4.79E-02	2.10E-05	3.28E-04	2010 Propane Respiration Jump-Starts Microbial Response to a Deep Oil Spill
5.69E-02	1.80E-05	2.37E-04	2010 Propane Respiration Jump-Starts Microbial Response to a Deep Oil Spill
6.14E-02	2.50E-05	3.05E-04	2010 Propane Respiration Jump-Starts Microbial Response to a Deep Oil Spill
7.34E-02	1.20E-05	1.22E-04	2010 Propane Respiration Jump-Starts Microbial Response to a Deep Oil Spill
9.51E-02	1.10E-05	8.66E-05	2010 Propane Respiration Jump-Starts Microbial Response to a Deep Oil Spill
9.96E-02	2.30E-05	1.73E-04	2010 Propane Respiration Jump-Starts Microbial Response to a Deep Oil Spill
2.00E-01	4.00E-02	-	2005 Microbial methane turnover in different marine habitats
2.00E-01	3.00E-02	-	2005 Microbial methane turnover in different marine habitats
2.00E-01	1.00E-01	-	2005 Microbial methane turnover in different marine habitats
2.00E-01	1.60E-01	-	2005 Microbial methane turnover in different marine habitats
2.00E-01	4.00E-01	-	2005 Microbial methane turnover in different marine habitats
1.38E-01	5.90E-03	-	2014 The rise and fall of methanotrophy following a deepwater oil-well
			blowout

Table S8. The rates of anaerobic methane oxidation in freshwater systems.

Freshwaters	Freshwaters, Anaerobic					
CH ₄ (atm)	Rates	K (d ⁻¹)	Reference			
	(µmol/g/d or					
	µmol/cm ³ /d)					
9.50E-01	3.00E-06	2.43E-09	2016 Methane dependent denitrification- from ecosystem to laboratory-scale			
			enrichment for engineering applications			
9.50E-01	3.10E-05	2.51E-08	2017 Methane dependent denitrification- from ecosystem to laboratory-scale			
			enrichment for engineering applications			
9.50E-01	4.00E-05	3.24E-08	2018 Methane dependent denitrification- from ecosystem to laboratory-scale			
			enrichment for engineering applications			
9.50E-01	4.40E-05	3.56E-08	2019 Methane dependent denitrification- from ecosystem to laboratory-scale			
			enrichment for engineering applications			
1.00E-01	7.00E-05	5.38E-07	2020 Anaerobic oxidation of methane with denitrification in sediments of a			
			subtropical estuary: Rates, controlling factors and environmental implications			
9.50E-01	7.00E-05	5.67E-08	2018 Methane dependent denitrification- from ecosystem to laboratory-scale			
			enrichment for engineering applications			
9.50E-01	1.01E-04	8.18E-08	2018 Methane dependent denitrification- from ecosystem to laboratory-scale			
			enrichment for engineering applications			
1.00E-02	2.00E-04	1.54E-05	2019 Active pathways of anaerobic methane oxidation across contrasting riverbed			
1.00E-01	2.80E-04	2.15E-06	2020 Anaerobic oxidation of methane with denitrification in sediments of a			
			subtropical estuary: Rates, controlling factors and environmental implications			
1.00E-02	4.00E-04	3.08E-05	2019 Active pathways of anaerobic methane oxidation across contrasting riverbed			
1.00E-02	4.00E-04	3.08E-05	2019 Active pathways of anaerobic methane oxidation across contrasting riverbed			
1.00E-02	5.00E-04	3.85E-05	2019 Active pathways of anaerobic methane oxidation across contrasting riverbed			
1.00E-02	5.00E-04	3.85E-05	2019 Active pathways of anaerobic methane oxidation across contrasting riverbed			
1.00E-02	8.00E-04	6.15E-05	2019 Active pathways of anaerobic methane oxidation across contrasting riverbed			
1.00E-02	9.00E-04	6.92E-05	2019 Active pathways of anaerobic methane oxidation across contrasting riverbed			
1.00E-02	1.10E-03	8.46E-05	2019 Active pathways of anaerobic methane oxidation across contrasting riverbed			

1.00E-02	1.20E-03	9.23E-05	2019 Active pathways of anaerobic methane oxidation across contrasting riverbed
1.00E-02	1.40E-03	1.08E-04	2019 Active pathways of anaerobic methane oxidation across contrasting riverbed
1.00E-02	1.70E-03	1.31E-04	2019 Active pathways of anaerobic methane oxidation across contrasting riverbed
1.00E-02	2.00E-03	1.54E-04	2019 Active pathways of anaerobic methane oxidation across contrasting riverbed
1.00E-02	2.20E-03	1.69E-04	2019 Active pathways of anaerobic methane oxidation across contrasting riverbed
1.00E-02	2.90E-03	2.23E-04	2019 Active pathways of anaerobic methane oxidation across contrasting riverbed
1.00E-02	3.40E-03	2.62E-04	2019 Active pathways of anaerobic methane oxidation across contrasting riverbed
1.00E-02	3.50E-03	2.69E-04	2019 Active pathways of anaerobic methane oxidation across contrasting riverbed
1.00E-02	3.60E-03	2.77E-04	2019 Active pathways of anaerobic methane oxidation across contrasting riverbed
1.00E-02	4.10E-03	3.15E-04	2019 Active pathways of anaerobic methane oxidation across contrasting riverbeds
4.00E-02	4.90E-03	9.42E-05	2015 The short- and long-term effects of environmental conditions on anaerobic
			methane oxidation coupled to nitrite reduction
1.00E-02	5.00E-03	3.85E-04	2019 Active pathways of anaerobic methane oxidation across contrasting riverbeds
1.00E-02	5.00E-03	3.85E-04	2019 Active pathways of anaerobic methane oxidation across contrasting riverbeds
1.00E-02	5.50E-03	4.23E-04	2019 Active pathways of anaerobic methane oxidation across contrasting riverbeds
1.00E-02	7.00E-03	5.38E-04	2019 Active pathways of anaerobic methane oxidation across contrasting riverbeds
1.00E-02	1.09E-02	8.38E-04	2019 Active pathways of anaerobic methane oxidation across contrasting riverbeds
1.00E-02	1.20E-02	9.23E-04	2019 Active pathways of anaerobic methane oxidation across contrasting riverbeds
1.00E-01	1.24E-02	9.54E-05	2015 The short- and long-term effects of environmental conditions on anaerobic methane oxidation coupled to nitrite reduction
1.00E-02	1.30E-02	1.00E-03	2019 Active pathways of anaerobic methane oxidation across contrasting riverbeds
1.00E-02	1.50E-02	1.15E-03	2019 Active pathways of anaerobic methane oxidation across contrasting riverbeds
1.00E-02	2.10E-02	1.62E-03	2019 Active pathways of anaerobic methane oxidation across contrasting riverbeds
1.00E+00	1.10E-03	8.46E-07	2020 Anaerobic oxidation of methane and associated microbiome in anoxic water of Northwestern Siberian lakes
1.00E+00	1.07E-01	8.23E-05	2020 Comparison of Anaerobic Methane Oxidation in Different Sediment Habitats of Dianchi Lake
1.00E+00	3.17E-01	2.44E-04	2020 Comparison of Anaerobic Methane Oxidation in Different Sediment Habitats of Dianchi Lake
1.00E+00	5.78E-02	4.45E-05	2015 The short- and long-term effects of environmental conditions on anaerobic
			methane oxidation coupled to nitrite reduction
1.54E-02	1.40E-02	7.00E-04	2014 Nitrate-dependent anaerobic methane oxidation in a freshwater sediment
3.85E-01	4.00E-01	8.00E-04	2014 Nitrate-dependent anaerobic methane oxidation in a freshwater sediment
1.00E-01	7.20E-03	5.54E-05	2019 Denitrification-Dependent Anaerobic Oxidation of Methane in Freshwater Sediments of Reservoirs in SE Poland.
3.00E-01	2.50E-02	6.41E-05	2019 Denitrification-Dependent Anaerobic Oxidation of Methane in Freshwater Sediments of Reservoirs in SE Poland.
4.60E-03	6.00E-05	1.00E-05	2015 More evidence that anaerobic oxidation of methane is prevalent in soils: Is it time to upgrade our biogeochemical models
5.00E-02	2.00E-04	3.08E-06	2018 Anaerobic methane oxidation and aerobic methane production in an east African great lake (Lake Kiyu)
5.30E-01	1.60E-02	2.32E-05	2018 Anaerobic methane oxidation and aerobic methane production in an east African great lake (Lake Kiyu)
4.15E-02	1.10E-03	2.04E-05	2018 Anaerobic methane oxidation and aerobic methane production in an east African great lake (Lake Kiyu)
6.04E-01	4.00E-04	5.10E-07	2018 Anaerobic methane oxidation and aerobic methane production in an east
3 85F_02	6.00E-05	1 20F-06	AIrican great lake (Lake Kivu) 2018 Anaerobic methane oxidation and aerobic methane production in an east
J.0JL-02	0.001-05	1.2012-00	African great lake (Lake Kivu)
4.23E-02	2.20E-03	4.00E-05	2018 Anaerobic methane oxidation and aerobic methane production in an east African great lake (Lake Kivu)
7.69E-03	1.80E-03	1.80E-04	2018 Anaerobic methane oxidation and aerobic methane production in an east African great lake (Lake Kivu)
9.23E-03	4.20E-03	3.50E-04	2018 Anaerobic methane oxidation and aerobic methane production in an east African great lake (Lake Kiyu)
3.72E-01	1.17E-01	2.42E-04	2018 Anaerobic methane oxidation and aerobic methane production in an east African great lake (Lake Kiyu)
1.00E-01	1.55E-02	1.19E-04	2013 Impact of electron acceptor availability on the anaerobic oxidation of methane
			in coastal treshwater and brackish wetland sediments

5.00E-02	3.96E-01	6.09E-03	2019 Anaerobic Methane Oxidation in High-Arctic Alaskan Peatlands as a
			Significant Control on Net CH4 Flux
1.00E+00	5.14E-04	3.95E-07	2020 Microbial methane production and oxidation in the Holocene mud beneath the
			Kanto Plain of central Japan
7.69E-02	5.00E-03	5.00E-05	2017 Anaerobic Methanotrophic Archaea of the ANME-2d Cluster Are Active in a
0.4(E+00	2.425.02	1.075.06	Low-sulfate, Iron-rich Freshwater Sediment
2.46E+00	3.42E-03	1.07E-06	2018 A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III)
2.005.01	2 (05 02	0.005.05	
3.08E-01	3.60E-02	9.00E-05	2013 Anaerobic oxidation of methane in an iron-rich Danish freshwater lake
	0.505.01	2.005.02	sediment
5.00E-02	2.52E-01	3.88E-03	2019 Anaerobic Methane Oxidation in High-Arctic Alaskan Peatlands as a
1.025+00	2 105 02	0.405.07	Significant Control on Net CH4 Flux
1.92E+00	2.10E-03	8.40E-07	2020 Manganese/iron-supported sulfate-dependent anaerobic oxidation of methane
1.000	1.505.02		by archaea in lake sediments
1.92E+00	1.50E-02	6.00E-06	2020 Manganese/iron-supported sulfate-dependent anaerobic oxidation of methane
1.000	5.005.02	0.705.04	by archaea in lake sediments
1.38E+00	5.00E-03	2.78E-06	2020 Manganese/iron-supported sulfate-dependent anaerobic oxidation of methane
1.000 + 00	2.005.02	1.545.06	by archaea in lake sediments
1.00E+00	2.00E-03	1.54E-06	2017 Effects of alternative electron acceptors on the activity and community
			structure of methane-producing and consuming microbes in the sediments of two
1.000.00	6.005.04		shallow boreal lakes.
1.00E+00	6.00E-04	4.62E-07	2017 Effects of alternative electron acceptors on the activity and community
			structure of methane-producing and consuming microbes in the sediments of two
0.005.00	0.005.00		shallow boreal lakes.
9.09E-02	2.09E-02	1.77E-04	2018 Ubiquitous and significant anaerobic oxidation of methane in freshwater lake
1.545.06	1.015.01	0.055.01	sediments
1.54E-06	1.81E-01	9.05E+01	2019 Rates and pathways of CH4 oxidation in ferruginous Lake Matano, Indonesia
1.54E-06	4.70E-03	2.35E+00	2019 Rates and pathways of CH4 oxidation in ferruginous Lake Matano, Indonesia
2.71E-04	2.00E-04	5.68E-04	2011 Biogeochemical modelling of anaerobic vs. aerobic methane oxidation in a
			meromictic crater lake (Lake Pavin, France)
2.44E-02	4.70E-02	1.48E-03	2018 Anaerobic methane oxidation potential and bacteria in freshwater lakes:
			Seasonal changes and the influence of trophic status
2.44E-02	3.32E-01	1.05E-02	2018 Anaerobic methane oxidation potential and bacteria in freshwater lakes:
			Seasonal changes and the influence of trophic status
5.00E-01	4.80E-03	7.38E-06	2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance,
			an Oligotrophic Freshwater Lake
1.00E-02	4.40E-02	3.38E-03	2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance,
			an Oligotrophic Freshwater Lake
7.69E-03	3.60E-03	3.60E-04	2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance,
7.69E-03	3.60E-03	3.60E-04	2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake
7.69E-03 7.69E-03	3.60E-03 2.70E-03	3.60E-04 2.70E-04	2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance,
7.69E-03 7.69E-03	3.60E-03 2.70E-03	3.60E-04 2.70E-04	 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake
7.69E-03 7.69E-03 7.69E-03	3.60E-03 2.70E-03 1.80E-03	3.60E-04 2.70E-04 1.80E-04	2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake
7.69E-03 7.69E-03 7.69E-03	3.60E-03 2.70E-03 1.80E-03	3.60E-04 2.70E-04 1.80E-04	 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake
7.69E-03 7.69E-03 7.69E-03 7.69E-03	3.60E-03 2.70E-03 1.80E-03 6.00E-04	3.60E-04 2.70E-04 1.80E-04 6.00E-05	 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance,
7.69E-03 7.69E-03 7.69E-03 7.69E-03 7.69E-03	3.60E-03 2.70E-03 1.80E-03 6.00E-04	3.60E-04 2.70E-04 1.80E-04 6.00E-05	 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake
7.69E-03 7.69E-03 7.69E-03 7.69E-03 9.90E-03	3.60E-03 2.70E-03 1.80E-03 6.00E-04 9.60E-03	3.60E-04 2.70E-04 1.80E-04 6.00E-05 7.46E-04	 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów
7.69E-03 7.69E-03 7.69E-03 7.69E-03 9.90E-03	3.60E-03 2.70E-03 1.80E-03 6.00E-04 9.60E-03	3.60E-04 2.70E-04 1.80E-04 6.00E-05 7.46E-04	 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir
7.69E-03 7.69E-03 7.69E-03 7.69E-03 9.90E-03 9.90E-03	3.60E-03 2.70E-03 1.80E-03 6.00E-04 9.60E-03 3.36E-02	3.60E-04 2.70E-04 1.80E-04 6.00E-05 7.46E-04 2.61E-03	2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów
7.69E-03 7.69E-03 7.69E-03 7.69E-03 9.90E-03 9.90E-03	3.60E-03 2.70E-03 1.80E-03 6.00E-04 9.60E-03 3.36E-02	3.60E-04 2.70E-04 1.80E-04 6.00E-05 7.46E-04 2.61E-03	 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir
7.69E-03 7.69E-03 7.69E-03 7.69E-03 9.90E-03 9.90E-03 9.90E-03	3.60E-03 2.70E-03 1.80E-03 6.00E-04 9.60E-03 3.36E-02 2.16E-02	3.60E-04 2.70E-04 1.80E-04 6.00E-05 7.46E-04 2.61E-03 1.68E-03	2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów
7.69E-03 7.69E-03 7.69E-03 7.69E-03 9.90E-03 9.90E-03 9.90E-03	3.60E-03 2.70E-03 1.80E-03 6.00E-04 9.60E-03 3.36E-02 2.16E-02	3.60E-04 2.70E-04 1.80E-04 6.00E-05 7.46E-04 2.61E-03 1.68E-03	2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir
7.69E-03 7.69E-03 7.69E-03 7.69E-03 9.90E-03 9.90E-03 9.90E-03 9.90E-03 9.90E-03	3.60E-03 2.70E-03 1.80E-03 6.00E-04 9.60E-03 3.36E-02 2.16E-02 2.40E-02	3.60E-04 2.70E-04 1.80E-04 6.00E-05 7.46E-04 2.61E-03 1.68E-03 1.86E-03	2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir
7.69E-03 7.69E-03 7.69E-03 7.69E-03 9.90E-03 9.90E-03 9.90E-03 9.90E-03 9.90E-03	3.60E-03 2.70E-03 1.80E-03 6.00E-04 9.60E-03 3.36E-02 2.16E-02 2.40E-02	3.60E-04 2.70E-04 1.80E-04 6.00E-05 7.46E-04 2.61E-03 1.86E-03 1.86E-03	2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2020 Anaerobic Oxidation of Methane in Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir </td
7.69E-03 7.69E-03 7.69E-03 7.69E-03 9.90E-03 9.90E-03 9.90E-03 9.90E-03 9.90E-03 9.90E-03 9.90E-03 9.90E-03	3.60E-03 2.70E-03 1.80E-03 6.00E-04 9.60E-03 3.36E-02 2.16E-02 2.40E-02 1.10E-01	3.60E-04 2.70E-04 1.80E-04 6.00E-05 7.46E-04 2.61E-03 1.86E-03 1.78E-03	 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów
7.69E-03 7.69E-03 7.69E-03 7.69E-03 9.90E-03 9.90E-03 9.90E-03 9.90E-03 4.76E-02	3.60E-03 2.70E-03 1.80E-03 6.00E-04 9.60E-03 3.36E-02 2.16E-02 2.40E-02 1.10E-01	3.60E-04 2.70E-04 1.80E-04 6.00E-05 7.46E-04 2.61E-03 1.86E-03 1.78E-03	 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2017 Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments
7.69E-03 7.69E-03 7.69E-03 7.69E-03 9.90E-03 9.90E-03 9.90E-03 9.90E-03 4.76E-02 2.38E-02	3.60E-03 2.70E-03 1.80E-03 6.00E-04 9.60E-03 3.36E-02 2.16E-02 2.40E-02 1.10E-01 4.70E-02	3.60E-04 2.70E-04 1.80E-04 6.00E-05 7.46E-04 2.61E-03 1.86E-03 1.78E-03 1.52E-03	 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2017 Anaerobic Oxidation of Methane by aerobic methanotrophs in sub-Arctic lake sediments 2018 Anaerobic methane oxidation potential and bacteria in freshwater lakes:
7.69E-03 7.69E-03 7.69E-03 7.69E-03 9.90E-03 9.90E-03 9.90E-03 9.90E-03 4.76E-02 2.38E-02	3.60E-03 2.70E-03 1.80E-03 6.00E-04 9.60E-03 3.36E-02 2.16E-02 2.40E-02 1.10E-01 4.70E-02	3.60E-04 2.70E-04 1.80E-04 6.00E-05 7.46E-04 2.61E-03 1.68E-03 1.86E-03 1.78E-03 1.52E-03	 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2017 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2018 Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments 2018 Anaerobic methane oxidation potential and bacteria in freshwater lakes: Seasonal changes and the influence of trophic status
7.69E-03 7.69E-03 7.69E-03 7.69E-03 9.90E-03 9.90E-03 9.90E-03 9.90E-03 9.90E-03 2.38E-02 2.38E-02	3.60E-03 2.70E-03 1.80E-03 6.00E-04 9.60E-03 3.36E-02 2.16E-02 2.40E-02 1.10E-01 4.70E-02 5.20E-02	3.60E-04 2.70E-04 1.80E-04 6.00E-05 7.46E-04 2.61E-03 1.68E-03 1.78E-03 1.52E-03 1.68E-03	 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2017 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2018 Anaerobic methane oxidation potential and bacteria in freshwater lakes: Seasonal changes and the influence of trophic status 2018 Anaerobic methane oxidation potential and bacteria in freshwater lakes:
7.69E-03 7.69E-03 7.69E-03 7.69E-03 9.90E-03 9.90E-03 9.90E-03 9.90E-03 2.38E-02 2.38E-02	3.60E-03 2.70E-03 1.80E-03 6.00E-04 9.60E-03 3.36E-02 2.16E-02 2.40E-02 1.10E-01 4.70E-02 5.20E-02	3.60E-04 2.70E-04 1.80E-04 6.00E-05 7.46E-04 2.61E-03 1.68E-03 1.78E-03 1.52E-03 1.68E-03	 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2017 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2018 Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments 2018 Anaerobic methane oxidation potential and bacteria in freshwater lakes: Seasonal changes and the influence of trophic status 2018 Anaerobic methane oxidation potential and bacteria in freshwater lakes: Seasonal changes and the influence of trophic status
7.69E-03 7.69E-03 7.69E-03 7.69E-03 9.90E-03 9.90E-03 9.90E-03 9.90E-03 4.76E-02 2.38E-02 2.38E-02 2.38E-02	3.60E-03 2.70E-03 1.80E-03 6.00E-04 9.60E-03 3.36E-02 2.16E-02 2.40E-02 1.10E-01 4.70E-02 5.20E-02 7.50E-02	3.60E-04 2.70E-04 1.80E-04 6.00E-05 7.46E-04 2.61E-03 1.68E-03 1.78E-03 1.52E-03 1.68E-03 2.42E-03	 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2017 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2018 Anaerobic methane oxidation potential and bacteria in freshwater lakes: Seasonal changes and the influence of trophic status 2018 Anaerobic methane oxidation potential and bacteria in freshwater lakes: Seasonal changes and the influence of trophic status 2018 Anaerobic methane oxidation potential and bacteria in freshwater lakes: Seasonal changes and the influence of trophic status 2018 Anaerobic methane oxidation potential and bacteria in freshwater lakes: Seasonal changes and the influence of trophic status 2018 Anaerobic methane oxidation potential and bacteria in freshwater lakes:
7.69E-03 7.69E-03 7.69E-03 7.69E-03 9.90E-03 9.90E-03 9.90E-03 9.90E-03 2.38E-02 2.38E-02 2.38E-02	3.60E-03 2.70E-03 1.80E-03 6.00E-04 9.60E-03 3.36E-02 2.16E-02 2.40E-02 1.10E-01 4.70E-02 5.20E-02 7.50E-02	3.60E-04 2.70E-04 1.80E-04 6.00E-05 7.46E-04 2.61E-03 1.68E-03 1.78E-03 1.52E-03 1.68E-03 2.42E-03	 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2017 Anaerobic oxidation of Methane by aerobic methanotrophs in sub-Arctic lake sediments 2018 Anaerobic methane oxidation potential and bacteria in freshwater lakes: Seasonal changes and the influence of trophic status 2018 Anaerobic methane oxidation potential and bacteria in freshwater lakes: Seasonal changes and the influence of trophic status 2018 Anaerobic methane oxidation potential and bacteria in freshwater lakes: Seasonal changes and the influence of trophic status 2018 Anaerobic methane oxidation potential and bacteria in freshwater lakes: Seasonal changes and the influence of trophic status 2018 Anaerobic methane oxidation potential and bacteria in freshwater lakes: Seasonal changes and the influence of trophic status
7.69E-03 7.69E-03 7.69E-03 7.69E-03 9.90E-03 9.90E-03 9.90E-03 9.90E-03 4.76E-02 2.38E-02 2.38E-02 2.38E-02 2.38E-02	3.60E-03 2.70E-03 1.80E-03 6.00E-04 9.60E-03 3.36E-02 2.16E-02 2.40E-02 1.10E-01 4.70E-02 5.20E-02 7.50E-02 1.50E-01	3.60E-04 2.70E-04 1.80E-04 6.00E-05 7.46E-04 2.61E-03 1.68E-03 1.78E-03 1.52E-03 1.68E-03 2.42E-03 4.85E-03	 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2011 Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów 2020 Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów 2017 Anaerobic oxidation of Methane in Freshwater Sediments of Rzeszów 2018 Anaerobic methane oxidation potential and bacteria in freshwater lakes: Seasonal changes and the influence of trophic status 2018 Anaerobic methane oxidation potential and bacteria in freshwater lakes: Seasonal changes and the influence of trophic status 2018 Anaerobic methane oxidation potential and bacteria in freshwater lakes: Seasonal changes and the influence of trophic status 2018 Anaerobic methane oxidation potential and bacteria in freshwater lakes: Seasonal changes and the influence of trophic status 2018 Anaerobic methane oxidation potential and bacteria in freshwater lakes:

2.38E-02	2.50E-01	8.08E-03	2018 Anaerobic methane oxidation potential and bacteria in freshwater lakes:
			Seasonal changes and the influence of trophic status
2.38E-02	3.50E-01	1.13E-02	2018 Anaerobic methane oxidation potential and bacteria in freshwater lakes:
			Seasonal changes and the influence of trophic status
2.38E-02	1.80E-01	5.82E-03	2018 Anaerobic methane oxidation potential and bacteria in freshwater lakes:
			Seasonal changes and the influence of trophic status
2.38E-02	1.20E-01	3.88E-03	2018 Anaerobic methane oxidation potential and bacteria in freshwater lakes:
			Seasonal changes and the influence of trophic status
2.38E-02	3.00E-01	9.70E-03	2018 Anaerobic methane oxidation potential and bacteria in freshwater lakes:
			Seasonal changes and the influence of trophic status

Table S9. The rates of aerobic methane oxidation in freshwater systems.

Freshwaters	Freshwaters, Aerobic					
CH ₄ (atm)	Rates	K (d-1)	Reference			
,	(µmol/g/d or					
	µmol/cm3/d)					
2.31E-05	8.00E-07	2.67E-05	2007 Significance of pelagic aerobic methane oxidation in the methane and carbon			
			budget of a tropical reservoir			
3.85E-05	1.00E-06	2.00E-05	2007 Significance of pelagic aerobic methane oxidation in the methane and carbon			
			budget of a tropical reservoir			
3.85E-04	2.50E-06	5.00E-06	2018 Anaerobic methane oxidation and aerobic methane production in an east			
			African great lake (Lake Kivu)			
7.69E-05	2.90E-06	2.90E-05	2007 Significance of pelagic aerobic methane oxidation in the methane and carbon			
			budget of a tropical reservoir			
7.69E-04	5.00E-06	5.00E-06	2005 Aerobic methane oxidation and methanotroph community composition during			
			seasonal stratification in Mono Lake, California (USA)			
4.62E-05	6.00E-06	1.00E-04	2018 Anaerobic methane oxidation and aerobic methane production in an east			
			African great lake (Lake Kivu)			
6.15E-05	7.20E-06	9.00E-05	2007 Significance of pelagic aerobic methane oxidation in the methane and carbon			
			budget of a tropical reservoir			
2.31E-03	1.00E-05	3.33E-06	2005 Aerobic methane oxidation and methanotroph community composition during			
			seasonal stratification in Mono Lake, California (USA)			
2.35E-04	1.52E-05	4.98E-05	2007 Significance of pelagic aerobic methane oxidation in the methane and carbon			
			budget of a tropical reservoir			
1.54E-04	2.00E-05	1.00E-04	2018 Anaerobic methane oxidation and aerobic methane production in an east			
			African great lake (Lake Kivu)			
1.54E-03	2.10E-05	1.05E-05	2005 Aerobic methane oxidation and methanotroph community composition during			
			seasonal stratification in Mono Lake, California (USA)			
1.46E-02	4.30E-05	2.26E-06	2007 Significance of pelagic aerobic methane oxidation in the methane and carbon			
			budget of a tropical reservoir			
2.69E-04	4.60E-05	1.31E-04	2018 Anaerobic methane oxidation and aerobic methane production in an east			
0 (0E 00	0.005.05	0.005.05	African great lake (Lake Kivu)			
2.69E-03	8.00E-05	2.29E-05	2005 Aerobic methane oxidation and methanotroph community composition during			
2.005.02	1.005.04	2.005.05	seasonal stratification in Mono Lake, California (USA)			
3.08E-03	1.20E-04	3.00E-05	2005 Aerobic methane oxidation and methanotroph community composition during			
4 (25.05	1.245.04	0.000	seasonal stratification in Mono Lake, California (USA)			
4.62E-05	1.34E-04	2.23E-03	2007 Significance of pelagic aerobic methane oxidation in the methane and carbon			
7.22E.04	1.67E.04	1.77E.04	2007 Similar and a sector			
/.23E-04	1.0/E-04	1.//E-04	2007 Significance of peragic aerobic methane oxidation in the methane and carbon			
2 77E 02	6 20E 04	1 72E 04	2018 A magnetic methane exidetion and complia methane and duction in an east			
2.77E-03	0.20E-04	1./2E-04	A frigen great lake (Lake King)			
7.60E.02	8 00E 04	8 00E 05	2018 A nearable methane exidation and earable methane production in an east			
7.09E-03	8.00E-04	8.001-05	A frican great lake (Lake Kiyu)			
3.85E_02	8 90F-04	1 78E-05	2007 Significance of pelagic aerobic methane ovidation in the methane and carbon			
5.85E-02	0.90E-04	1.761-05	budget of a tropical reservoir			
1.92E_01	1.00E-03	4 00E-06	2007 Significance of nelagic aerobic methane oxidation in the methane and carbon			
1.92L-01	1.00L-05	4.001-00	budget of a tropical reservoir			
3 15F-04	1 10E-03	2 68E-03	2007 Significance of pelagic aerobic methane ovidation in the methane and carbon			
5.151 07	1.102 05	2.002.03	budget of a tropical reservoir			
1.00E+00	1.20E-03	-	2017 Effects of alternative electron acceptors on the activity and community			
1.002.00			structure of methane-producing and consuming microbes in the sediments of two			
			shallow boreal lakes.			

2.40E-03	1.88E-03	6.00E-04	2015 Geographic and seasonal variation of dissolved methane and aerobic methane
			oxidation in Alaskan lakes
6.15E-02	1.92E-03	2.40E-05	2007 Significance of pelagic aerobic methane oxidation in the methane and carbon
1.775.01	2.505.02	1.005.05	budget of a tropical reservoir
1.//E-01	2.50E-03	1.09E-05	2015 Geographic and seasonal variation of dissolved methane and aerobic methane ovidation in Alaskan lakes
1 44E-03	2 50E-03	1 33E-03	2015 Geographic and seasonal variation of dissolved methane and aerobic methane
1.112.05	2.501 05	1.552 05	oxidation in Alaskan lakes
1.44E-03	2.50E-03	1.33E-03	2015 Geographic and seasonal variation of dissolved methane and aerobic methane
			oxidation in Alaskan lakes
1.23E-01	3.00E-03	1.88E-05	2007 Significance of pelagic aerobic methane oxidation in the methane and carbon
0.705.00	2.125.02	0.625.05	budget of a tropical reservoir
2.79E-02	3.13E-03	8.62E-05	2015 Geographic and seasonal variation of dissolved methane and aerobic methane
4 68E-01	3 70E-03	6.08E-06	2007 Significance of pelagic aerobic methane oxidation in the methane and carbon
4.002 01	5.70E 05	0.001 00	budget of a tropical reservoir
1.00E+00	4.10E-03	-	2017 Effects of alternative electron acceptors on the activity and community
			structure of methane-producing and consuming microbes in the sediments of two
			shallow boreal lakes.
3.09E-01	5.00E-03	1.24E-05	2015 Geographic and seasonal variation of dissolved methane and aerobic methane
1.545.05		2 (05 01	oxidation in Alaskan lakes
1.54E-05	7.20E-03	3.60E-01	2007 Significance of pelagic aerobic methane oxidation in the methane and carbon
2 95E 02	7 50E 02	1 50E 02	budget of a tropical reservoir
5.85E-05	7.30E-03	1.50E-05	oxidation in Alaskan lakes
3.92E-04	8.00E-03	1.57E-02	2007 Significance of pelagic aerobic methane oxidation in the methane and carbon
0.022 01		1.0 / 2 02	budget of a tropical reservoir
4.33E-03	9.38E-03	1.67E-03	2015 Geographic and seasonal variation of dissolved methane and aerobic methane
			oxidation in Alaskan lakes
6.92E-04	1.20E-02	1.33E-02	2007 Significance of pelagic aerobic methane oxidation in the methane and carbon
4.605.01	1.505.00	2 505 05	budget of a tropical reservoir
4.68E-01	1.70E-02	2.79E-05	200/ Significance of pelagic aerobic methane oxidation in the methane and carbon
7.69E_03	1 80F-02	1 80F-03	2007 Significance of pelagic aerobic methane ovidation in the methane and carbon
7.07E 05	1.001 02	1.001 05	budget of a tropical reservoir
1.00E+00	1.80E-02	-	2017 Effects of alternative electron acceptors on the activity and community
			structure of methane-producing and consuming microbes in the sediments of two
			shallow boreal lakes.
3.23E-02	2.70E-02	6.43E-04	2018 Anaerobic methane oxidation and aerobic methane production in an east
2.095.02	2.005.02	7.25E.04	African great lake (Lake Kivu)
3.08E-02	2.90E-02	7.23E-04	budget of a tropical reservoir
1.00E+00	4 93E-02	-	2017 Effects of alternative electron acceptors on the activity and community
1.002 00			structure of methane-producing and consuming microbes in the sediments of two
			shallow boreal lakes.
1.54E-03	1.20E-01	6.00E-02	2015 Microbial methane cycling in the bed of a chalk river: oxidation has the
			potential to match methanogenesis enhanced by warming
3.08E-03	2.88E-01	7.20E-02	2015 Microbial methane cycling in the bed of a chalk river: oxidation has the
4.62E.03	3 60E 01	6 00E 02	2015 Microbial methane cycling in the hed of a shall river ovidation has the
4.02E-03	5.001-01	0.0012-02	notential to match methanogenesis enhanced by warming
5.38E-03	4.80E-01	6.86E-02	2015 Microbial methane cycling in the bed of a chalk river: oxidation has the
			potential to match methanogenesis enhanced by warming
4.62E-05	4.80E-02	8.00E-01	2015 Microbial methane cycling in the bed of a chalk river: oxidation has the
			potential to match methanogenesis enhanced by warming
6.92E-05	1.08E-01	1.20E+00	2015 Microbial methane cycling in the bed of a chalk river: oxidation has the
0.155.05	1 22E 01	1.11E+00	potential to match methanogenesis enhanced by warming
9.13E-03	1.32E-01	1.11E+00	2013 Microbial methanogenesis enhanced by warming
8.46E-05	7.10E-05	6.45E-04	2019 Methane dynamics in a large river: a case study of the Fibe River
3 08F_0/	4 30F-05	1.08F-04	2019 Methane dynamics in a large river: a case study of the Elbe River
2 00E 05	2 00E 00	5 00E 00	2010 Methane dynamics in a large river, a case study of the Elle Diver
3.00E-03	2.00E-09	5.00E-06	2019 Michael unit in a large river, a case study of the Elbe Kiver
2.69E-05	2.00E-07	5./1E-06	2019 Methane dynamics in a large river: a case study of the Elbe River
5.77E-05	1.30E-05	1.73E-04	2019 Methane dynamics in a large river: a case study of the Elbe River

3.85E-04	2.76E-04	5.52E-04	2019 Methane dynamics in a large river: a case study of the Elbe River
2.00E-04	3.00E-05	1.15E-04	2019 Methane dynamics in a large river: a case study of the Elbe River
3.69E-04	4.00E-05	8.33E-05	2019 Methane dynamics in a large river: a case study of the Elbe River
3.15E-04	5.00E-05	1.22E-04	2019 Methane dynamics in a large river: a case study of the Elbe River
1.54E-04	1.00E-05	5.00E-05	2019 Methane dynamics in a large river: a case study of the Elbe River
1.92E-04	1.50E-05	6.00E-05	2019 Methane dynamics in a large river: a case study of the Elbe River
9.23E-05	7.00E-06	5.83E-05	2019 Methane dynamics in a large river: a case study of the Elbe River
7.69E-05	3.00E-06	3.00E-05	2019 Methane dynamics in a large river: a case study of the Elbe River
2.00E-04	6.00E-06	2.31E-05	2019 Methane dynamics in a large river: a case study of the Elbe River

References (refer to the main text for most of the references for the tables):

- 1. C. Chen, CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature, *Journal of the American Society for Information Science and Technology*, 2006, **57**, 359-377.
- 2. S. Hu, R. J. Zeng, M. F. Haroon, J. Keller, P. A. Lant, G. W. Tyson and Z. Yuan, A laboratory investigation of interactions between denitrifying anaerobic methane oxidation (DAMO) and anammox processes in anoxic environments, *Scientific Reports*, 2015, **5**, 8706.
- 3. S. Joye, Sediment geochemistry and process rate measurements aboard the R/V Endeavor cruise EN586 in the northern Gulf of Mexico from 2016-07-26 to 2016-08-14. *Journal*, 2018, DOI: 10.7266/N7B56H4H.
- 4. C. Cassarini, Y. Zhang and P. N. L. Lens, Pressure Selects Dominant Anaerobic Methanotrophic Phylotype and Sulfate Reducing Bacteria in Coastal Marine Lake Grevelingen Sediment, *Frontiers in Environmental Science*, 2019, **6**.
- 5. S. D. Wankel, S. B. Joye, V. A. Samarkin, S. R. Shah, G. Friederich, J. Melas-Kyriazi and P. R. Girguis, New constraints on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico brine pool via in situ mass spectrometry, *Deep Sea Research Part II: Topical Studies in Oceanography*, 2010, **57**, 2022-2029.
- 6. M. W. Bowles, V. A. Samarkin, K. S. Hunter, N. Finke, A. P. Teske, P. R. Girguis and S. B. Joye, Remarkable Capacity for Anaerobic Oxidation of Methane at High Methane Concentration, *Geophysical Research Letters*, 2019, **46**, 12192-12201.
- 7. M. Krüger, T. Treude, H. Wolters, K. Nauhaus and A. Boetius, Microbial methane turnover in different marine habitats, *Palaeogeography, Palaeoclimatology, Palaeoecology*, 2005, **227**, 6-17.
- 8. S. Bhattarai, Y. Zhang and P. N. L. Lens, Effect of pressure and temperature on anaerobic methanotrophic activities of a highly enriched ANME-2a community, *Environmental Science and Pollution Research*, 2018, **25**, 30031-30043.
- 9. S. Scheller, H. Yu, G. L. Chadwick, S. E. McGlynn and V. J. Orphan, Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction, *Science*, 2016, **351**, 703-707.
- A. S. Savvichev, V. V. Kadnikov, M. D. Kravchishina, S. V. Galkin, A. N. Novigatskii, P. A. Sigalevich, A. Y. Merkel, N. V. Ravin, N. V. Pimenov and M. V. Flint, Methane as an Organic Matter Source and the Trophic Basis of a Laptev Sea Cold Seep Microbial Community, *Geomicrobiology Journal*, 2018, 35, 411-423.
- 11. J. J. Marlow, D. Hoer, S. P. Jungbluth, L. M. Reynard, A. Gartman, M. S. Chavez, M. Y. El-Naggar, N. Tuross, V. J. Orphan and P. R. Girguis, Carbonate-hosted microbial communities are prolific and pervasive methane oxidizers at geologically diverse marine methane seep sites, *Proceedings of the National Academy of Sciences*, 2021, **118**, e2006857118.
- 12. A. Boetius and F. Wenzhöfer, Seafloor oxygen consumption fuelled by methane from cold seeps, *Nature Geoscience*, 2013, **6**, 725-734.
- K. U. Hinrichs and A. Boetius, in *Ocean Margin Systems*, eds. G. Wefer, D. Billett, D. Hebbeln, B. B. Jørgensen, M. Schlüter and T. C. E. van Weering, Springer Berlin Heidelberg, Berlin, Heidelberg, 2003, DOI: 10.1007/978-3-662-05127-6 28, pp. 457-477.
- M. Saunois, A. R. Stavert, B. Poulter, P. Bousquet, J. G. Canadell, R. B. Jackson, P. A. Raymond, E. J. Dlugokencky, S. Houweling, P. K. Patra, P. Ciais, V. K. Arora, D. Bastviken, P. Bergamaschi, D. R. Blake, G. Brailsford, L. Bruhwiler, K. M. Carlson, M. Carrol, S. Castaldi, N. Chandra, C. Crevoisier, P. M. Crill, K. Covey, C. L. Curry, G. Etiope, C. Frankenberg, N. Gedney, M. I. Hegglin, L. Höglund-Isaksson, G. Hugelius, M. Ishizawa, A. Ito, G. Janssens-Maenhout, K. M. Jensen, F. Joos, T. Kleinen, P. B. Krummel, R. L. Langenfeld, G. G. Laruelle, L. Liu, T. Machida, S. Maksyutov, K. C. McDonald, J. McNorton, P. A. Miller, J. R. Melton, I. Morino, J. Müller, F. Murguia-Flores, V. Naik, Y. Niwa, S. Noce, S. O'Doherty, R. J. Parker, C. Peng, S. Peng, G. P. Peters, C. Prigent, R. Prinn, M. Ramonet, P. Regnier, W. J. Riley, J. A. Rosentreter, A. Seger, I. J. Simpson, H. Shi, S. J. Smith, L. P. Steel, B. F. Thornton, H. Tian, Y. Tohjima, F. N. Tubille, A. Tsuruta, N. Viovy, A. Voulgarakis, T. S. Weber, M. van Weele, G. R. van der Werf, R. F. Weiss, D. Worthy, D. Wunch, Y. Yin, Y. Yoshida, W. Zhang, Z. Zhang, Y. Zhao, B. Zheng, Q. Zhu, Q. Zhu and Q. Zhuang, The Global Methane Budget 2000–2017, *Earth System Science Data*, 2020, **12**, 1561-1623.
- 15. M. Egger, N. Riedinger, J. M. Mogollón and B. B. Jørgensen, Global diffusive fluxes of methane in marine sediments, *Nature Geoscience*, 2018, **11**, 421-425.
- 16. S. Bhattarai, C. Cassarini, G. Gonzalez-Gil, M. Egger, C. P. Slomp, Y. Zhang, G. Esposito and P. N. L. Lens, Anaerobic Methane-Oxidizing Microbial Community in a Coastal Marine Sediment: Anaerobic Methanotrophy Dominated by ANME-3, *Microbial Ecology*, 2017, **74**, 608-622.
- 17. M. Egger, O. Rasigraf, C. J. Sapart, T. Jilbert, M. S. M. Jetten, T. Röckmann, C. van der Veen, N. Bândă, B. Kartal, K. F. Ettwig and C. P. Slomp, Iron-Mediated Anaerobic Oxidation of Methane in Brackish Coastal Sediments, *Environmental*

Science & Technology, 2015, 49, 277-283.

- 18. O. SIVAN, D. P. SCHRAG and R. W. MURRAY, Rates of methanogenesis and methanotrophy in deep-sea sediments, *Geobiology*, 2007, **5**, 141-151.
- 19. N. J. Knab, A. W. Dale, K. Lettmann, H. Fossing and B. B. Jørgensen, Thermodynamic and kinetic control on anaerobic oxidation of methane in marine sediments, *Geochimica et Cosmochimica Acta*, 2008, **72**, 3746-3757.
- 20. C. Hensen, M. Zabel, K. Pfeifer, T. Schwenk, S. Kasten, N. Riedinger, H. D. Schulz and A. Boetius, Control of sulfate pore-water profiles by sedimentary events and the significance of anaerobic oxidation of methane for the burial of sulfur in marine sediments, *Geochimica et Cosmochimica Acta*, 2003, **67**, 2631-2647.
- 21. W. S. Borowski, T. M. Hoehler, M. J. Alperin, N. M. Rodriguez and C. K. Paull, 2000.
- 22. P. Regnier, A. W. Dale, S. Arndt, D. E. LaRowe, J. Mogollón and P. Van Cappellen, Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective, *Earth-Science Reviews*, 2011, **106**, 105-130.