## SUPPORTING INFORMATION for

#### Intermittent streamflow generation in a merokarst headwater catchment

Camden M. Hatley<sup>1</sup>, Brooklyn Armijo<sup>1</sup>, Katherine Andrews<sup>1</sup>, Christa Anhold<sup>1</sup>, Jesse Nippert<sup>2</sup>, Matthew F. Kirk<sup>1\*</sup>

<sup>1</sup>Department of Geology, Kansas State University, Manhattan, KS 66506, USA <sup>2</sup>Division of Biology, Kansas State University, Manhattan, KS 66506, USA \*Correspondence: mfkirk@ksu.edu

# SUPPORTING METHODS

## Uncertainty in chemical data

A summary of the precision and detection limits of our ion chromatography and carbon analyzer results for stream and groundwater samples is provided in Table SI1. We calculated the precision as twice the standard deviation (SD) of values obtained from replicate analysis of quality control samples<sup>1</sup>. We calculated method detection limits (MDLs) by U.S. EPA method 300.1:

$$MDL = t \times SD \tag{1}$$

Where t is Student's t value for a 99% confidence level and a standard deviation estimate with n-1 degrees of freedom.

## SUPPORTING FIGURES AND TABLES\*

\*Note that additional supporting data tables are provided as separate spreadsheet files.

Figure SI1. Average total precipitation (a) and average daily discharge (b) by month at watershed N04D over the 10-year period 2011-2020. These data are publicly from the online Konza data catalog (<u>http://lter.konza.ksu.edu/data</u>).





Figure SI2.  $Ca^{2+}/Mg^{2+}$  vs.  $SO_4^{2-}$  for all stream and groundwater samples. Groundwater samples from wells that were not used in the mixing analysis are marked with unfilled triangles. Note that samples from 3-5 and 4-6 MOR plot in the same space as stream samples, evidence that these wells are recharged directly by the stream.



| Analyte                              | Precision (mg/L) | <b>Detection Limit (mg/L)</b> |
|--------------------------------------|------------------|-------------------------------|
| F-                                   | 0.05             | 0.08                          |
| Cŀ                                   | 0.43             | 0.68                          |
| NO <sub>2</sub> -                    | 0.45             | 0.71                          |
| Br⁻                                  | 0.04             | 0.058                         |
| NO <sub>3</sub> -                    | 0.38             | 0.59                          |
| <b>SO</b> <sub>4</sub> <sup>2-</sup> | 0.52             | 0.81                          |
| Na <sup>+</sup>                      | 1.01             | 1.51                          |
| $NH_4^+$                             | 0.16             | 0.24                          |
| <b>K</b> <sup>+</sup>                | 0.29             | 0.44                          |
| Mg <sup>2+</sup>                     | 0.27             | 0.40                          |
| Ca <sup>2+</sup>                     | 0.27             | 0.41                          |
| Sr <sup>2+</sup>                     | 0.35             | 0.53                          |
| NPOC                                 | 0.15             | 0.20                          |
| TN                                   | 0.68             | 0.95                          |

Table SI1. Precision and detection limits for major ions in stream and groundwater samples

Table SI2. Endmember  $SO_4^{2-}$  and  $Ca^{2+}/Mg^{2+}$  compositions for mixing analysis, calculated as the mean value across all samples.

| Endmember                | $SO_4^{2-}$ (mg/L) | Ca <sup>2+</sup> /Mg <sup>2+</sup> (concentration ratio) |
|--------------------------|--------------------|----------------------------------------------------------|
| <b>Eiss Limestone</b>    | 11.1059            | 6.427251                                                 |
| <b>Morrill Limestone</b> | 41.87291           | 3.125705                                                 |
| Soil Water               | 907.1429           | 6.921927                                                 |