Cottonseed extract as a coagulant for water treatment

Mekayla DePaolis¹, Sophie De Respino¹, Laxmicharan Samineni², Scott Brighton¹, Manish Kumar^{1,*}

¹Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas, 78712, United States

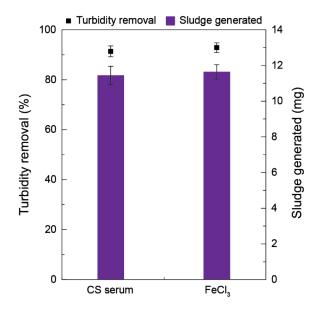
²Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States

*Corresponding author e-mail: manish.kumar@utexas.edu

Supporting Information

Characteristic	Concentration
Total Hardness (mg/L)	120
Total Chlorine (mg/L)	1
Free Chlorine (mg/L)	0.5
Bromine (mg/L)	1
Total Alkalinity (mg/L)	120
pН	8.125
TDS (mg/L)	259.5
DOC (mg/L)	3.0

Table S1: Characteristics of untreated water used in jar tests


Table S2: Characteristics of groundwater*

Characteristic	Concentration
Manganese (mg/L)	0.004
Iron (mg/L)	0.1
Magnesium (mg/L)	28
Calcium (mg/L)	66
pН	8.50
TOC (mg/L)	1.6

*Groundwater and characteristics provided by University of Illinois Urbana-Champaign.

Sludge generation. Jar tests were carried out at an initial turbidity of 94.4 ± 1.1 NTU to determine the amount of sludge generation for cottonseed serum and ferric. Following sedimentation, the supernatant was removed and the sludge was filtered through a 0.45 μ m

PVDF filter and dried at 60°C for 3 hours. The filter mass difference pre- and post-filtration was measured to determine the amount of sludge generated for each jar (200 mL), shown in Figure S1.

Figure S1: Cottonseed serum (CS serum) and $FeCl_3$ (5 mg/L dose) achieve 90% turbidity removal while generating the same amount of sludge

Experiment	Coagulant used	Cottonsee d volume (mL)	Protein dose (mg/L)	Carbohydrate dose (mg/L)	Initial Turbidity (NTU)	Reference Figure
Increasing serum volume/protein dose	Cottonseed	0-10	0-3.83		112±22	1A
Increasing initial turbidity	serum	3	1.238		62.5-717	1B
Varying initial pH	Cottonseed serum and FeCl ₃	3	1.238		86.5±21.9	1C
Increasing serum age	Cottonseed serum	3	0.7-1.34	Not measured	108±7.3	2A
Evaluating DOC	Cottonseed serum and FeCl ₃	3	1.06±0.23		112.3±23.3	2B
Carbohydrate isolate coagulation	Cottonseed serum carbohydrate	3	0.12±0.4		68.4±3.8	3A/B

Table S3: Overview of initial jar test parameters

	isolate					
Protein isolate coagulation	Cottonseed serum protein isolate	3	1.49±.51	8.97±.29	69.8±4.2	3A/B

Experiment	Coagulant used	Cottonseed volume (mL)	Protein dose (mg/L)	Initial Turbidity (NTU)	Final Turbidity (NTU)	Reference Figure
Increasing serum volume/protein dose		0 2 4 6 8 10	0 0.77 1.53 2.30 3.07 3.83	112±22	$\begin{array}{c} 94.9{\pm}11.2\\ 17.0{\pm}7.66\\ 12.1{\pm}4.55\\ 10.4{\pm}5.47\\ 8.4{\pm}2.59\\ 8.0{\pm}4.55 \end{array}$	1A
Increasing initial turbidity	Cottonseed serum	3	1.238	$\begin{array}{c} 62.5 \pm 0.8 \\ 133 \pm 1.0 \\ 193 \pm 6.3 \\ 302 \pm 9.4 \\ 405 \pm 14.4 \\ 516 \pm 4.9 \\ 591 \pm 6.9 \\ 717 \pm 20.0 \end{array}$	$\begin{array}{c} 4.2{\pm}1.52\\ 0.36{\pm}0.34\\ 16.13{\pm}0.43\\ 22.2{\pm}1.1\\ 23.73{\pm}1.58\\ 32.05{\pm}1.6\\ 38.2{\pm}2.0\\ 43.98{\pm}2.5\end{array}$	1B
Varying initial pH	Cottonseed serum	3	1.238	87.1±3.4 (pH 6) 60.7±2.4 (pH 7) 111.6±7.1 (pH	72.9±4.8 (pH 6) 21.1±4.6 (pH 7) 13.1±2.1 (pH 8) 8.51±0.7 (pH 8.5)	1C
рн	FeCl ₃	0	0	8) 98.6±1.4 (pH 8.5)	5.88±0.1 (pH 6) 4.78±0.3 (pH 7) 7.8±1.4 (pH 8) 6.8±1.8 (pH 8.5)	1C
Increasing serum age	Cottonseed serum	3	0.7-1.34	108±7.3	7.33 (2 d) 6.78 (35 d) 9.07 (118 d) 9.72 (218 d)	2A
Evaluating DOC	Cottonseed serum and	3	1.238	112.3±23.3	5.18±0.6 (CS) 3.59±0.06	2B

Table S4: Final jar test water quality

	FeCl ₃				(FeCl ₃)	
Carbohydrate isolate coagulation	Cottonseed serum carbohydrat e isolate	3	0.12±0. 4	69.8±4.2	64.23±3.9	3A/B
Protein isolate coagulation	Cottonseed serum protein isolate	3	1.49±.5 1	69.8±4.2	9.7±1.35	3A/B

Table S5: A review of bio-coagulants based on work done by Kurniawan et al.¹

Bio-coagulant	Destabilization mechanism	Performance	Reference
Crab shell	Cationic chitosan	16% turbidity removal at 1 mg/L dose (pH 8.1)	2
Crab shell	Cationic chitosan	94% turbidity removal at 2 mg/L dose (pH 7)	3
Shrimp shell	Cationic chitosan	96% oil removal (pH 4)	4
Achatinoidea shell	Unidentified protein(s)	99% turbidity removal with 4 g/L dose (pH 4)	5
Periwinkle shell	Chitin and unidentified protein(s)	84% at 100 mg/L dose (pH 4)	6
Snail shell	Cationic mineral surface	60% green dye removal at 100 mg/L (pH 4)	7
Alginate	Calcium alginate gel formation	98% turbidity removal with 80 mg/L Ca ²⁺ and 0.02 mg/L alginate	8
Achromobacter xylosoxidans strain TERI L1		75% turbidity removal with 10% (v/v) dose	9
Bacillus agaradhaerens C9	Exopolysaccharide	95% turbidity removal with 1.5 mg/L (pH 6.53)	10
Bacillus mucilaginosus,	production	99% turbidity removal with 0.01% (v/v) dose	11
Chromobacterium violaceum and Citrobacter koseri		42% turbidity removal with 1% (v/v) dose (LT-6, pH 6) and 40% turbidity removal with 1% (v/v) dose (LT-5, pH 3)	12
Bacillus licheniformis strain W7	Glycoprotein with high polysaccharide content	85% turbidity removal with 200 mg/L dose (pH 3)	13
Bacillus salmalaya	Protein-bound	83% turbidity with 2% dose	14

139SI-7	polysaccharide	(pH 7)	
Bacillus velezensis	Anionic polymer	35% turbidity removal with 100 mg/L (pH 4 and 8)	15
Paenibacillus polymyxa	Proteoglycan	94% turbidity removal with 0.1% (v/v) dose	16
Aspergillus niger	Polysaccharide	60% turbidity removal with 0.2% (v/v) dose	17
Penicillium sp. and Trichoderma sp.	Anionic fungi spores	51% (<i>Trichoderma</i>) and 55% (<i>Penicillium</i>) turbidity removal with 1% (v/v) dose	18
Abelmoschus esculentus	Anionic polysaccharide	97% turbidity removal with 3.2 mg/L (pH 6) and 88 mg/L Fe ³⁺	19
Dragon fruit foliage	Not reported	99.7% turbidity removal with 500 mg/L dose (pH 10)	20
Moringa oleifera	Cationic proteins (MO2.1 and MoCBP)	99.7% turbidity removal with 25 mg/L dose (pH 7.16)	21-23
Ocimum basilicum L.	Protonated groups on polysaccharide chains	58.8% turbidity removal with <i>O. basilicum</i> and alum (pH 7)	24
Rice starch	Polymers: amylase and amylopectin	84% TSS removal with 2 g/L dose (pH 3)	25

Table S6: Final pH of water after being treated with various doses of cottonseed serum

Volume serum added, mL	Average protein dose, mg/L	Final pH
0	0	8.03
2	0.766	7.92
4	1.533	8.14
6	2.299	8.19
8	3.065	8.32
10	3.831	8.6

Accession	Alternate	Molecular	
Number	ID	Weight	8527
X7	29052	149 kDa	765
A0A1U8LQ3	LOC1079		
4	28550	72 kDa	543
A0A1U8LLA	LOC1079		
0	28551	70 kDa	343
Q53WZ7	Lea4-D9	11 kDa	126
P04264		?	97
A0A1U8KAE	LOC1079		
1	14926	59 kDa	85
A0A1U8LZX	LOC1079		
8	31543	62 kDa	82
A0A1U8LW	LOC1079		
A0	30549	62 kDa	78
P35908		?	66
	Lea2A-A	12 kDa	65
	LOC1079		
		58 kDa	63
D12645		2	50
P13645	1001078	?	58
A0A1U8HY	LOC1078		
	LOC1078 90949	? 12 kDa	58 53
A0A1U8HY	90949		
A0A1U8HY H9	90949 LOC1078	12 kDa	53
A0A1U8HY	90949 LOC1078		
A0A1U8HY H9	90949 LOC1078 91257	12 kDa	53
A0A1U8HY H9 A0A1U8I5J0	90949 LOC1078 91257 LOC1078	12 kDa 17 kDa	53
A0A1U8HY H9	90949 LOC1078 91257 LOC1078	12 kDa	53
A0A1U8HY H9 A0A1U8I5J0	90949 LOC1078 91257 LOC1078	12 kDa 17 kDa	53
A0A1U8HY H9 A0A1U8I5J0	90949 LOC1078 91257 LOC1078 94345 LOC1079	12 kDa 17 kDa	53
A0A1U8HY H9 A0A1U8I5J0 A0A1U8IAI4	90949 LOC1078 91257 LOC1078 94345 LOC1079	12 kDa 17 kDa 38 kDa	53 52 50
A0A1U8HY H9 A0A1U8I5J0 A0A1U8IAI4	90949 LOC1078 91257 LOC1078 94345 LOC1079	12 kDa 17 kDa 38 kDa	53 52 50
	Number A0A1U8LM X7 A0A1U8LQ3 4 A0A1U8LLA 0 Q53WZ7 P04264 A0A1U8KAE 1 A0A1U8LZX 8 A0A1U8LW A0	Number ID A0A1U8LM LOC1079 X7 29052 A0A1U8LQ3 LOC1079 4 28550 A0A1U8LLA LOC1079 4 28550 A0A1U8LLA LOC1079 0 28551 Q53WZ7 Lea4-D9 P04264 LOC1079 A0A1U8KAE LOC1079 1 14926 A0A1U8LZX LOC1079 8 31543 A0A1U8LW LOC1079 8 30549 P35908 Lea2A-A Q03791 Lea2A-A A0A1U8KK LOC1079	Number ID Weight A0A1U8LM LOC1079 149 kDa X7 29052 149 kDa A0A1U8LQ3 LOC1079 28550 72 kDa A0A1U8LLA LOC1079 28551 70 kDa A0A1U8LM LOC1079 28551 70 kDa Q53WZ7 Lea4-D9 11 kDa 1 P04264 - ? 2 A0A1U8KAE LOC1079 ? 2 A0A1U8KAE LOC1079 70 kDa 1 A0A1U8KAE LOC1079 2 2 A0A1U8LZ LOC1079 2 2 A0A1U8LZ LOC1079 2 2 A0A1U8LM LOC1079 2 2 A0A1U8LW LOC1079 2 2 A0A108LW JOS49 62 kDa 2 P35908 ? 2 2 2 Q03791 Lea2A-A 12 kDa 2

 Table S7: Liquid Chromatography-Mass Spectroscopy results of cottonseed serum

late embryogenesis abundant protein D-29-like OS=Gossypium hirsutum OX=3635 GN=LOC107951546 PE=4 SV=1	A0A1U8NV X0	LOC1079 51546	35 kDa	41
P35527 SWISS-PROT:P35527 Tax_Id=9606 Gene_Symbol=KRT9 Keratin, type I cytoskeletal 9	P35527		?	37
OS=Gossypium hirsutum OX=3635 GN=LOC107927644 PE=3 SV=1	A0A1U8LI10	LOC1079 27644	27 kDa	37
late embryogenesis abundant protein D-34-like OS=Gossypium hirsutum OX=3635 GN=LOC107942670 PE=3 SV=1	A0A1U8MYI 9	LOC1079 42670	27 kDa	37
Phosphopyruvate hydratase OS=Gossypium hirsutum OX=3635 GN=LOC107905355 PE=3 SV=1	A0A1U8JAZ 9 (+1)	LOC1079 05355	48 kDa	34
uncharacterized protein ECU03_1610-like OS=Gossypium hirsutum OX=3635 GN=LOC107924971 PE=4 SV=1	A0A1U8LCZ 0 (+1)	LOC1079 24971	26 kDa	34
Late embryogenesis abundant protein D-29 OS=Gossypium hirsutum OX=3635 PE=3 SV=1	P13940		33 kDa	33
alcohol dehydrogenase 1-like OS=Gossypium hirsutum OX=3635 GN=LOC107911678 PE=3 SV=1	A0A1U8JXP 4	LOC1079 11678	41 kDa	32
Peroxiredoxin OS=Gossypium hirsutum OX=3635 GN=LOC107916248 PE=3 SV=1	A0A1U8KEE 0	LOC1079 16248	24 kDa	31
aldose reductase-like OS=Gossypium hirsutum OX=3635 GN=LOC107959341 PE=3 SV=1	A0A1U8PI35	LOC1079 59341	36 kDa	31
late embryogenesis abundant protein D-34-like OS=Gossypium hirsutum OX=3635 GN=LOC107923257 PE=3 SV=1	A0A1U8L2R 8	LOC1079 23257	26 kDa	31
leucine aminopeptidase 1-like OS=Gossypium hirsutum OX=3635 GN=LOC107888423 PE=3 SV=1	A0A1U8HPR 0	LOC1078 88423	54 kDa	28
uncharacterized protein LOC107908186 OS=Gossypium hirsutum OX=3635 GN=LOC107908186 PE=3 SV=1	A0A1U8JKV 7	08186	59 kDa	28
aldose reductase-like OS=Gossypium hirsutum OX=3635 GN=LOC107940476 PE=4 SV=1	Z9	40476	36 kDa	27
serpin-ZX-like OS=Gossypium hirsutum OX=3635 GN=LOC107940684 PE=3 SV=1	A0A1U8MV L0	40684	43 kDa	27
Malate dehydrogenase OS=Gossypium hirsutum OX=3635 GN=LOC107936241 PE=3 SV=1	A0A1U8MFT 2	LOC1079 36241	36 kDa	26
P13647 SWISS-PROT:P13647 Tax_Id=9606 Gene_Symbol=KRT5 Keratin, type II cytoskeletal 5	P13647		?	25
late embryogenesis abundant protein D-7 isoform X2 OS=Gossypium hirsutum OX=3635 GN=LOC107891681 PE=4 SV=1	A0A1U8I8C9 (+1)	LOC1078 91681	13 kDa	24

UTPglucose-1-phosphate uridylyltransferase OS=Gossypium hirsutum OX=3635 GN=LOC107895238 PE=3 SV=1	A0A1U8II21 (+1)	LOC1078 95238	49 kDa	23
Peptidyl-prolyl cis-trans isomerase OS=Gossypium	A0A1U8KZH	LOC1079		
hirsutum OX=3635 GN=LOC107922329 PE=3 SV=1	3 (+1)	22329	18 kDa	23
em protein H5-like OS=Gossypium hirsutum OX=3635 GN=LOC107948294 PE=3 SV=1	A0A1U8NG V9	LOC1079 48294	10 kDa	22
P08779 SWISS-PROT:P08779 Tax_Id=9606 Gene_Symbol=KRT16 Keratin, type I cytoskeletal 16	P08779		?	22
uncharacterized protein LOC107962160 OS=Gossypium hirsutum OX=3635 GN=LOC107962160 PE=3 SV=1	A0A1U8PS0 7	LOC1079 62160	28 kDa	22
Annexin OS=Gossypium hirsutum OX=3635 GN=Anx1 PE=2 SV=1	Q69DC2	Anx1	36 kDa	22
probable aldo-keto reductase 1 OS=Gossypium hirsutum OX=3635 GN=LOC107894809 PE=4 SV=1	A0A1U8IBN 4	LOC1078 94809	38 kDa	22
heat shock 70 kDa protein OS=Gossypium hirsutum OX=3635 GN=LOC107936049 PE=3 SV=1	A0A1U8MB N0	LOC1079 36049	71 kDa	22
vicilin-like seed storage protein At2g28490 OS=Gossypium hirsutum OX=3635 GN=LOC107953208 PE=4 SV=1	A0A1U8NYI 4	LOC1079 53208	55 kDa	22
uncharacterized protein LOC107938538 OS=Gossypium hirsutum OX=3635 GN=LOC107938538 PE=3 SV=1	A0A1U8MN N0	LOC1079 38538	28 kDa	21
serpin-ZX-like OS=Gossypium hirsutum OX=3635 GN=LOC107887018 PE=3 SV=1	A0A1U8HK R0	LOC1078 87018	43 kDa	21
probable aldo-keto reductase 1 OS=Gossypium hirsutum OX=3635 GN=LOC107894822 PE=4 SV=1	A0A1U8IBN 7	LOC1078 94822	37 kDa	21
Fructose-bisphosphate aldolase OS=Gossypium hirsutum OX=3635 GN=LOC107899428 PE=3 SV=1	A0A1U8IW5 5 (+1)	LOC1078 99428	39 kDa	21
P02533 SWISS-PROT:P02533 Tax_Id=9606 Gene_Symbol=KRT14 Keratin, type I cytoskeletal 14	P02533		?	20
P48668 SWISS-PROT:P48668 Tax_Id=9606 Gene_Symbol=KRT6C Keratin, type II cytoskeletal 6C	P48668		?	20
embryonic protein DC-8-like OS=Gossypium hirsutum OX=3635 GN=LOC107908729 PE=3 SV=1	A0A1U8JT74	LOC1079 08729	63 kDa	20
seed biotin-containing protein SBP65-like isoform X1 OS=Gossypium hirsutum OX=3635 GN=LOC107924313 PE=4 SV=1	A0A1U8L9Y 4	LOC1079 24313	68 kDa	20
Glyceraldehyde-3-phosphate dehydrogenase OS=Gossypium hirsutum OX=3635 GN=LOC107924606 PE=2 SV=1	D2D308	LOC1079 24606	37 kDa	19

Carbonic anhydrase OS=Gossypium hirsutum OX=3635		LOC1079		
GN=LOC107909667 PE=3 SV=1	A0A1U8JR79	09667	28 kDa	1
14-3-3 protein 6-like OS=Gossypium hirsutum OX=3635		LOC1078		
GN=LOC107898790 PE=2 SV=1	B6RF01	98790	29 kDa	1
P00761 SWISS-PROT:P00761 TRYP_PIG Trypsin - Sus				
scrofa (Pig).	P00761		?	1
Glyceraldehyde-3-phosphate dehydrogenase				
OS=Gossypium hirsutum OX=3635 GN=LOC107957019		LOC1079		
PE=2 SV=1	D2D332	57019	37 kDa	1
Peptidyl-prolyl cis-trans isomerase OS=Gossypium	A0A1U8N91	LOC1079		
hirsutum OX=3635 GN=LOC107945048 PE=3 SV=1	0	45048	18 kDa	1
basic 7S globulin-like OS=Gossypium hirsutum	A0A1U8IAU	LOC1078		
OX=3635 GN=LOC107894474 PE=4 SV=1	3	94474	47 kDa	1
embryonic protein DC-8-like OS=Gossypium hirsutum	A0A1U8HV0	LOC1078		
OX=3635 GN=LOC107889787 PE=3 SV=1	5	89787	63 kDa	1
vicilin-like seed storage protein At2g18540 isoform X1				
OS=Gossypium hirsutum OX=3635 GN=LOC107896407	A0A1U8IG12	LOC1078		
PE=4 SV=1	(+1)	96407	77 kDa	1
Malate dehydrogenase OS=Gossypium hirsutum		LOC1079		
OX=3635 GN=LOC107903665 PE=3 SV=1	A0A1U8J4P3	03665	35 kDa	1
uncharacterized protein LOC107905810 OS=Gossypium	A0A1U8JCM	LOC1079		
hirsutum OX=3635 GN=LOC107905810 PE=4 SV=1	6	05810	10 kDa	1
actin-7-like OS=Gossypium hirsutum OX=3635	A0A1U8ND	LOC1079		
GN=LOC107947058 PE=3 SV=1	N5	47058	42 kDa	1
ruBisCO large subunit-binding protein subunit alpha-like				
OS=Gossypium hirsutum OX=3635 GN=LOC107891664	A0A1U8I8B4	LOC1078		
PE=3 SV=1	(+2)	91664	62 kDa	1

Protein sequence alignment analyses

Protein sequence alignment was utilized to compare cottonseed serum proteins to more extensively studied coagulating proteins from *Moringa oleifera*. A pairwise sequence alignment program (EMBOSS NEEDLE) was used to compare two amino acid sequences²⁶. A multiple sequence alignment software, CLUSTAL OMEGA, was used to compare three or more amino acid sequences²⁷. Chimera software was used for protein structure alignment²⁸.

Figure S2. A) EMBOSS NEEDLE alignment of 2S albumin seed storage protein-like [*Gossypium hirsutum*] (NCBI Reference Sequence: XP_016751712.1) and chitin-binding 2S albumin precursor [Moringa oleifera] (GenBank: AHG99682.1)²² Conserved residues are highlighted in blue and denoted by a solid line. A colon indicates conservations between groups of strongly similar properties, and a period indicates conservation between groups of weakly similar properties. The solid red line shows the N-terminal signal peptide and the dotted red line denotes the large chain, both characteristic of 2S albumins. B) CHIMERA structural protein alignment of 2S albumin seed storage protein-like (red) and MO-CBP3 (blue)²⁸. The frequency of overlapping regions shows structural similarity between the two proteins.

References

- 1 Kurniawan, S. B. *et al.* Challenges and opportunities of biocoagulant/bioflocculant application for drinking water and wastewater treatment and its potential for sludge recovery. *International journal of environmental research and public health* **17**, 9312 (2020).
- 2 Zemmouri, H., Drouiche, M., Sayeh, A., Lounici, H. & Mameri, N. Coagulation Flocculation Test of Keddara's Water Dam Using Chitosan and Sulfate Aluminium. *Procedia Engineering* **33**, 254-260, doi:<u>https://doi.org/10.1016/j.proeng.2012.01.1202</u> (2012).
- 3 Jadhav, M. V. & Mahajan, Y. S. Investigation of the performance of chitosan as a coagulant for flocculation of local clay suspensions of different turbidities. *KSCE Journal of Civil Engineering* **17**, 328-334, doi:10.1007/s12205-013-2021-2 (2013).
- 4 Hosny, R. *et al.* Treatment of the oily produced water (OPW) using coagulant mixtures. *Egyptian Journal of Petroleum* **25**, 391-396, doi:<u>https://doi.org/10.1016/j.ejpe.2015.09.006</u> (2016).
- 5 Menkiti, M. C. & Ejimofor, M. I. Experimental and artificial neural network application on the optimization of paint effluent (PE) coagulation using novel Achatinoidea shell extract (ASE).

Journal of Water Process Engineering **10**, 172-187, doi:<u>https://doi.org/10.1016/j.jwpe.2015.09.010</u> (2016).

- 6 Menkiti, M. C., Ndaji, C. R., Ezemagu, I. G. & Uddameri, V. Application of Periwinkle Shell Coagulant (PSC) for the Remediation of Petroleum Produced Water (PPW) by Coag-Flocculation. *Journal of Dispersion Science and Technology* **37**, 760-774, doi:10.1080/01932691.2015.1060488 (2016).
- Oladoja, N. A. & Aliu, Y. D. Snail shell as coagulant aid in the alum precipitation of malachite green from aqua system. *Journal of Hazardous Materials* 164, 1496-1502, doi:<u>https://doi.org/10.1016/j.jhazmat.2008.09.114</u> (2009).
- 8 Devrimci, H. A., Yuksel, A. M. & Sanin, F. D. Algal alginate: A potential coagulant for drinking water treatment. *Desalination* **299**, 16-21, doi:<u>https://doi.org/10.1016/j.desal.2012.05.004</u> (2012).
- 9 Subudhi, S. *et al.* Purification and characterization of exopolysaccharide bioflocculant produced by heavy metal resistant Achromobacter xylosoxidans. *Carbohydrate Polymers* **137**, 441-451, doi:<u>https://doi.org/10.1016/j.carbpol.2015.10.066</u> (2016).
- 10 Liu, C., Wang, K., Jiang, J.-H., Liu, W.-J. & Wang, J.-Y. A novel bioflocculant produced by a salttolerant, alkaliphilic and biofilm-forming strain Bacillus agaradhaerens C9 and its application in harvesting Chlorella minutissima UTEX2341. *Biochemical Engineering Journal* **93**, 166-172, doi:<u>https://doi.org/10.1016/j.bej.2014.10.006</u> (2015).
- 11 Deng, S., Bai, R., Hu, X. & Luo, Q. Characteristics of a bioflocculant produced by Bacillus mucilaginosus and its use in starch wastewater treatment. *Applied Microbiology and Biotechnology* **60**, 588-593, doi:10.1007/s00253-002-1159-5 (2003).
- 12 Suryani, Ambarsari, L., Artika, I. M. & Susanti, H. E. Characterization of Bioflocculant Producing-Bacteria Isolated from Tapioca Waste Water. *HAYATI Journal of Biosciences* **18**, 193-196, doi:<u>https://doi.org/10.4308/hjb.18.4.193</u> (2011).
- 13 Okaiyeto, K., Nwodo, U. U., Mabinya, L. V., Okoli, A. S. & Okoh, A. I. Evaluation of flocculating performance of a thermostable bioflocculant produced by marine Bacillus sp. *Environmental Technology* **37**, 1829-1842, doi:10.1080/09593330.2015.1133717 (2016).
- 14 Abu Tawila, Z. M., Ismail, S., Dadrasnia, A. & Usman, M. M. Production and Characterization of a Bioflocculant Produced by Bacillus salmalaya 139SI-7 and Its Applications in Wastewater Treatment. *Molecules* **23**, 2689 (2018).
- 15 Hassimi, A. H., Ezril Hafiz, R., Muhamad, M. H. & Sheikh Abdullah, S. R. Bioflocculant production using palm oil mill and sago mill effluent as a fermentation feedstock: Characterization and mechanism of flocculation. *Journal of Environmental Management* **260**, 110046, doi:<u>https://doi.org/10.1016/j.jenvman.2019.110046</u> (2020).
- 16 Zhao, H. *et al.* Production of bioflocculants prepared from formaldehyde wastewater for the potential removal of arsenic. *Journal of Environmental Management* **172**, 71-76, doi:<u>https://doi.org/10.1016/j.jenvman.2016.02.024</u> (2016).
- 17 Pu, S. *et al.* Isolation, identification, and characterization of an Aspergillus niger bioflocculantproducing strain using potato starch wastewater as nutrilite and its application. *PLOS ONE* **13**, e0190236, doi:10.1371/journal.pone.0190236 (2018).
- 18 Hassan, K. F. O., Saba Hussein Efficiency of fungi suspension spores as Biocoagulants for suspended solid sedimentation in wastewater. *International Journal of Scientific & Engineering Research* **7**, 578-585 (2016).
- 19 Freitas, T. K. F. S. *et al.* Optimization of coagulation-flocculation process for treatment of industrial textile wastewater using okra (A. esculentus) mucilage as natural coagulant. *Industrial Crops and Products* **76**, 538-544, doi:<u>https://doi.org/10.1016/j.indcrop.2015.06.027</u> (2015).

- 20 Idris, J. *et al.* Dragon fruit foliage plant-based coagulant for treatment of concentrated latex effluent: Comparison of treatment with ferric sulfate. *Journal of Chemistry* **2013** (2013).
- 21 Gassenschmidt, U., Jany, K. D., Bernhard, T. & Niebergall, H. Isolation and characterization of a flocculating protein from Moringa oleifera Lam. *Biochimica et Biophysica Acta (BBA) General Subjects* **1243**, 477-481, doi:<u>https://doi.org/10.1016/0304-4165(94)00176-X</u> (1995).
- 22 Freire, J. E. *et al.* Mo-CBP3, an antifungal chitin-binding protein from Moringa oleifera seeds, is a member of the 2S albumin family. *PLoS One* **10**, e0119871 (2015).
- 23 Nkurunziza, T., Nduwayezu, J., Banadda, E. & Nhapi, I. The effect of turbidity levels and Moringa oleifera concentration on the effectiveness of coagulation in water treatment. *Water Science and Technology* **59**, 1551-1558 (2009).
- 24 Rasool, M. A., Tavakoli, B., Chaibakhsh, N., Pendashteh, A. R. & Mirroshandel, A. S. Use of a plant-based coagulant in coagulation–ozonation combined treatment of leachate from a waste dumping site. *Ecological Engineering* **90**, 431-437, doi:https://doi.org/10.1016/j.ecoleng.2016.01.057 (2016).
- 25 Teh, C. Y., Wu, T. Y. & Juan, J. C. Potential use of rice starch in coagulation–flocculation process of agro-industrial wastewater: Treatment performance and flocs characterization. *Ecological Engineering* **71**, 509-519, doi:<u>https://doi.org/10.1016/j.ecoleng.2014.07.005</u> (2014).
- 26 Needleman, S. B. & Wunsch, C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. *Journal of Molecular Biology* **48**, 443-453, doi:https://doi.org/10.1016/0022-2836(70)90057-4 (1970).
- 27 Sievers, F. *et al.* Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Mol Syst Biol* **7**, 539, doi:10.1038/msb.2011.75 (2011).
- 28 Pettersen, E. F. *et al.* UCSF Chimera—a visualization system for exploratory research and analysis. *Journal of computational chemistry* **25**, 1605-1612 (2004).