Electronic Supplementary Material (ESI) for Environmental Science: Advances. This journal is © The Royal Society of Chemistry 2022

1 **Electronic Supplementary Information** 2 Hemocompatibility of biogenic phosphorus nano-agromaterials at environmentally 3 relevant and supra-environmental concentrations for occupational exposure Ayushi Priyam a, b, Luis O.B. Afonso b, Aaron G. Schultz b, Amit Kumar Dinda c, Pushplata 4 5 Prasad Singh a, b * 6 ^a National Centre of Excellence for Advanced Research in Agricultural Nanotechnology, TERI - Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and 7 Resources Institute (TERI), DS Block, India Habitat Centre, Lodhi Road, New Delhi, 110003, 9 India 10 ^b School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, 3217, 11 Australia. ^c Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 12 13 110029, India 14 Correspondence: pushplata.singh@teri.res.in 15 16 17 18 19 20 21 22 23

- 24 1. Phosphorus based nanomaterials (P-Based NMs) used in the study:
- origin/synthesis, characterizations and properties.
- We used four different types of nanohydroxyapatites (nHAPs) and one nanophosphorus 26 (nP) variant derived from rock phosphate (RP). These nanomaterials (NMs) were thoroughly 27 characterized using different physicochemical techniques (ESI table 1). The NMs were 28 characterized in their pristine form. 1mg.mL⁻¹ of each of these NMs were prepared in de-29 30 ionized water and characterized for shape and size using Scanning Electron Microscope (EVO, MA10, Carl Zeiss, Oberkochen, Germany) and TEM (Tecnai G2 30-U twin 31 32 microscope, FEI, Thermo Fisher Scientific, Waltham, Massachusetts, USA) at voltage of 200 kV. To measure the hydrodynamic diameter and zeta potential, NMs were freshly prepared in 33 de-ionized water (1mg.mL⁻¹) and sonicated for 30 min before being measured by dynamic 34 light scattering (DLS) (Zetasizer Nano-ZS, Malvern, UK). The elemental composition for Ca 35 and P was determined from AAS (iCE 3000 AA05123903 v1.30, ThermoFisher Scientific, 36 USA) and ICP/MS (ICP-MS 7900 with UHMI, Agilent technologies, California, USA). For 37 functional group identification, sample analysis was performed on Thermofisher FTIR 38 spectrometer with FIR attachment at ATR mode (Nicolet iS50 FTIR Tri-detector, Thermo 39 Fisher Scientific, Waltham, Massachusetts, USA) at room temperature in the range of 4000-40 400 cm⁻¹ with 100 scans per sample. The synthesized particles were also characterized by X-41 ray diffraction (XRD). Powder XRD spectra were recorded at room temperature, using 42 Bruker, D8 discover high resolution X-ray diffractometer (Bruker, Billerica, Massachusetts, 43 USA) with Cu K α = 1.5406 Å, 3 kW as radiation source operating at 40 kV and 40 mA. The 44 diffraction patterns were collected over a 20 range from 20° to 90° with an incremental step 45 size of 0.02° using flat plane geometry. The acquisition time was set at 2 seconds for each 46 scan. The heat capacity and thermal stability of nP and nHAP (biologically synthesized and 47 commercially available) were assessed by differential scanning calorimetry (DSC-60,

- 49 Shimadzu, Kyoto, Japan) where 2 mg of dried sample was first crimped in the aluminum pan 50 and the sealed pan was then loaded to DSC analyzer for analysis from 25°C - 550°C.
- 51 ESI Table 1. Phosphorus based nanomaterials (P-Based NMs) used in the study:
- 52 origin/synthesis, characterizations and properties.

	nHAP_B1	nHAP_C	nHAP_Sigm	nHAP_SRL	nP	
Origin/Synthe sis	Biosynthes is	Chemical synthesis	Commercial (SigmaAldri ch)	Commercial (SRL Pvt. Ltd.)	Biosynthe sis	
Shape	Platelet	Rod	Sphere	Needle	Dots	
Size by	$35.74 \pm 11.$	$L = 83.92 \pm 17.$	33.9 ± 8.6	$L = 64.64 \pm 4.$	~5-10 nm	
electron	65	98		33		
microscope		$W = 26.85 \pm 3$.		$W = 14.01 \pm 1.$		
$[nm \pm S.D.]$		74		26		
Hydrodynami	$325.8 \pm 37.$	756.2 ± 28.8	874.3 ± 51.5	892.8 ± 21.1	798.5 \pm	
c size [nm ±	1				23.36	
S.D.]						
Zeta potential	-31.3 ± 3.5	-45.2 ± 1.7	-10.3 ± 0.3	-9.7 ± 0.9	-11.61 ±	
$[mV \pm S.D.]$					0.01	
Ca to P ratio	~1.6	~1.6	~1.6	~1.6	~3.8	
FTIR peaks	Stretching and bending peaks for PO_4^{3-} and CO_3^{2-} . Absorption peak for CO_3^{2-} .					
XRD peaks	apatite	apatite	apatite	apatite	Tri calcium phosphate and calcium penta- phosphate	
DSC peaks (25°C - 550°C)	No peak	No peak	No peak	No peak	451.66 with heat: - 49.4mJ	

2. Statistical analysis of blood contact properties: hemolysis, blood cell aggregation

assay and plasma coagulation time

53

The overall effect on hemolysis, blood cell aggregation and plasma coagulation time after exposure to biologically synthesized nHAP (nHAP_B), chemically synthesized nHAP (nHAP_C), SigmaAldrich nHAP (nHAP_Sigma), SRL nHAP (nHAP_SRL), nanophosporous (nP), rock phosphate bulk control (RP), and calcium phosphate bulk control (Ca₃PO₄), were subjected to ANOVA to check if the overall variance was significant. This would not

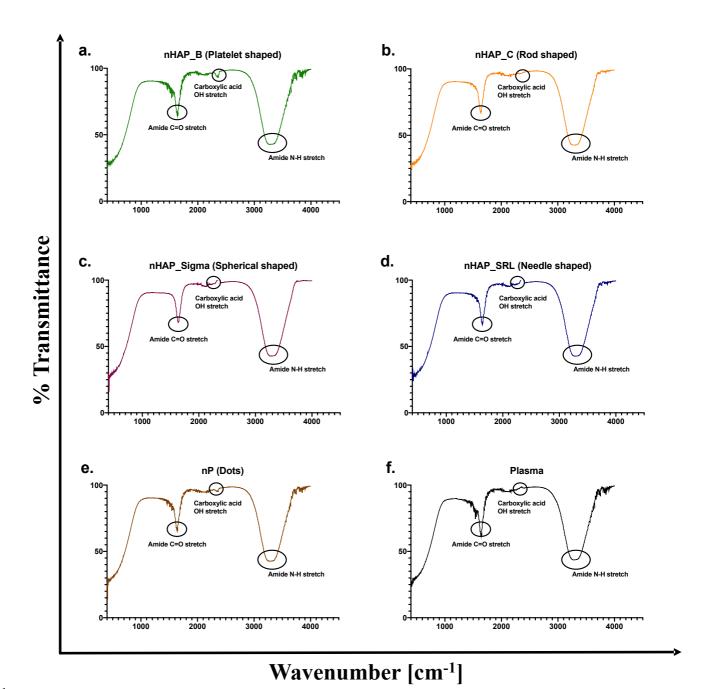
- 61 explicitly tell where the significant differences lie and was thus, then followed by a Tukey
- 62 post hoc multiple comparison test, to identify the treatment groups with significant difference
- 63 in mean values. A p-value less than 0.05 was considered as statistically significant.

	nHAP_B (Platelet)	nHAP_C (Rod)	nHAP_ Sigma (Spherical)	nHAP_SRL (Needle)	nP (Dots)	Ca ₃ PO ₄ (Bulk material)	RP (Bulk material)
nHAP_B (Platelet)	-						p>0.05 p<0.05
nHAP_C (Rod)	<0.0001	-					p<0.01 p<0.001 p<0.0001
nHAP_Sigma (Spherical)	0.0479	<0.0001	-				
nHAP_SRL (Needle)	<0.0001	<0.0001	<0.0001	-			
nP (Dots)	<0.0001	<0.0001	0.0002	<0.0001	-		
Ca ₃ PO ₄ (Bulk material)	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-	
RP (Bulk material)	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-

- 65 ESI Figure 1. P-value orthogonal matrix evaluated using Tukey's multiple comparisons test
- 66 between different NMs and bulk materials for the effects of their concentration on hemolysis.
- 67 The colour gradient (figure inset) denotes different levels of significance.

	nHAP_B (Platelet)	nHAP_C (Rod)	nHAP_ Sigma (Spherical)	nHAP_SRL (Needle)	nP (Dots)	Ca ₃ PO ₄ (Bulk material)	RP (Bulk material)
nHAP_B (Platelet)	-						p>0.05 p<0.05
nHAP_C (Rod)	>0.9999	1					p<0.01 p<0.001 p<0.0001
nHAP_Sigma (Spherical)	>0.9999	>0.9999	-				
nHAP_SRL (Needle)	>0.9999	>0.9999	>0.9999	-			
nP (Dots)	>0.9999	>0.9999	>0.9999	>0.9999	-		
Ca ₃ PO ₄ (Bulk material)	>0.9999	>0.9999	>0.9999	>0.9999	>0.9999	-	
RP (Bulk material)	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	-

	nHAP_B (Platelet)	nHAP_C (Rod)	nHAP_ Sigma (Spherical)	nHAP_SRL (Needle)	nP (Dots)	Ca ₃ PO ₄ (Bulk material)	RP (Bulk material)
nHAP_B (Platelet)	-						p>0.05 p<0.05
nHAP_C (Rod)	<0.0001	-					p<0.01 p<0.001 p<0.0001
nHAP_Sigma (Spherical)	<0.0001	<0.0001	-				
nHAP_SRL (Needle)	<0.0001	<0.0001	<0.0001	-			
nP (Dots)	<0.0001	<0.0001	>0.9999	<0.0001	-		
Ca ₃ PO ₄ (Bulk material)	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-	
RP (Bulk material)	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-


FSI Figure 3. P-value orthogonal matrix evaluated using Tukey's multiple comparisons test between different NMs and bulk materials for the effects of their concentration on plasma coagulation time. The colour gradient (figure inset) denotes different levels of significance.

77 **ESI Table 2.** Statistical significance values between protein content determined from different washes (W1, W2 and W3) and the hard corona (HC). The p values for each of the comparison was determined by Tukey's multiple comparison test.

76

Tukey's multiple comparisons test	Statistical significance summary	P value
nHAP_B		
W1 vs. W2	Not significant	0.0949
W1 vs. W3	****	< 0.0001
W1 vs. HC	****	< 0.0001
W2 vs. W3	***	0.0008
W2 vs. HC	****	< 0.0001
W3 vs. HC	Not significant	0.5530
nHAP_C		
W1 vs. W2	Not significant	0.0982
W1 vs. W3	***	0.0002
W1 vs. HC	****	< 0.0001
W2 vs. W3	Not significant	0.1290

W2 vs. HC	****	< 0.0001
W3 vs. HC	*	0.0329
nHAP_Sigma		
W1 vs. W2	Not significant	0.0517
W1 vs. W3	***	< 0.0001
W1 vs. HC	****	< 0.0001
W2 vs. W3	***	< 0.0001
W2 vs. HC	***	< 0.0001
W3 vs. HC	Not significant	0.9612
nHAP_SRL		
W1 vs. W2	***	< 0.0001
W1 vs. W3	****	< 0.0001
W1 vs. HC	****	< 0.0001
W2 vs. W3	***	0.0009
W2 vs. HC	***	< 0.0001
W3 vs. HC	Not significant	0.6044
nP		
W1 vs. W2	Not significant	0.0699
W1 vs. W3	***	< 0.0001
W1 vs. HC	****	< 0.0001
W2 vs. W3	*	0.0204
W2 vs. HC	**	0.0013
W3 vs. HC	Not significant	0.7586

ESI Figure 4. FTIR spectra for hard corona on a. biologically synthesized nHAP (nHAP B),

b. chemically synthesized nHAP (nHAP C), c. SigmaAldrich nHAP (nHAP Sigma), d. SRL

- 84 nHAP (nHAP SRL), e. nanophosporous (nP) and f. only plasma. Peaks at wavenumbers
- 85 1650, 2360 2370 and 3270 3380 cm⁻¹ denote presence of amide C=O stretch, carboxylic
- 86 acid OH stretch and amide N-H stretch respectively.

Reference:

87

- 88 1. Priyam, A.; Das, R. K.; Schultz, A.; Singh, P. P., A new method for biological
- 89 synthesis of agriculturally relevant nanohydroxyapatite with elucidated effects on soil
- 90 bacteria. Scientific reports **2019**, 9 (1), 1-14.