Electronic Supplementary Material (ESI) for Environmental Science: Advances. This journal is © The Royal Society of Chemistry 2022

Supporting information

Crystal phase engineering SiC nanosheet for enhancing photocatalytic

CO₂ reduction

Bing Wang, ^{‡,a} Xiaotong Shang, ^{‡,a} Jiangjie Zhang,^a Jinni Shen,^a Xuxu Wang,^a Zizhong Zhang^{*,a,b}

^aResearch Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China.

E-mail: <u>z.zhang@fzu.edu.cn</u>

^bQingyuan Innovation Laboratory, Quanzhou 362801, China

[‡]These authors contributed equally to this work.

Table S1. The Raman peak area ratio of SiC-0, SiC-0.2, SiC-P0.3, SiC-0.5, SiC-0.8.

PVP dosing quantity	0 g	0.2 g	0.3 g	0.5 g	0.8 g
Ratio*	0	0.2776	0.4674	0.3017	0.2628

* The ratio of the Raman peak area of the TA characteristic peak for 2H phase to the TO characteristic peak for 3C phase SiC.

Sample	Optical absorption band	Optical energy band	
	edge / nm	gap / eV	
SiC-0	507	2.45	
SiC-0.2	488	2.54	
SiC-0.3	470	2.64	
SiC-0.5	481	2.57	
SiC-0.8	492	2.52	

Table S2. The optical absorption band edge and energy band gap of SiC-0, SiC-0.2, SiC-P0.3, SiC-0.5, SiC-0.8.

Figure S1. The steady-state photoluminescence spectra for 3C SiC and 2H/3C SiC.

Figure S2. The band structure and density of states (DOS) for (a) 2H SiC and (b) 3C SiC.

The theoretical calculation is based on the generalized gradient approximation (GGA)¹ and the PBE² exchange correlation function, and the density functional calculation of the local configuration relaxation and electronic structure is performed by CASTEP³. The 2s²2p² of C and the 3s²3p² of Si

are the corresponding valence electrons. Since conventional DFT methods often underestimate the energy gap, the shielded exchange hybrid density functional (HSE06) method⁴ was used to correct the energy gap of PBE. The cutoff energy of the plane wave basis set is 500 eV. A suitable Monkhorst-Pack K-point grid was employed to keep the enthalpy convergence up to 10^{-6} eV. During configuration optimization, K-point grids of $5 \times 5 \times 5$ and $7 \times 7 \times 2$ were used for the 3C and 2H phases, respectively, and all atoms were allowed to relax until the atomic forces were less than 0.02 eV/Å.

Figure S3. CO product on the SiC samples with different ratio of 2H and 3C.

Figure S4. CH₄ and CO production rate on the bulk 3C-SiC and sheet 3C-SiC samples.

References

- 1. J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, *Physical review B*, 1992, **45**, 13244.
- J. P. Perdew, W. Yang, K. Burke, Z. Yang, E. K. U. Gross, M. Scheffler, G. E. Scuseria, T. M. Henderson, I. Y. Zhang and A. Ruzsinszky, Understanding band gaps of solids in generalized Kohn–Sham theory, *Proceedings* of the national academy of sciences, 2017, **114**, 2801-2806.
- 3. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson and M. C. Payne, First principles methods using CASTEP, *Zeitschrift für kristallographie-crystalline materials*, 2005, **220**, 567-570.
- 4. J. Heyd, G. E. Scuseria and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, *The Journal of chemical physics*, 2003, **118**, 8207-8215.