Electronic Supplementary Material (ESI) for Environmental Science: Advances. This journal is © The Royal Society of Chemistry 2023

1	
2	
3	
4	Photochemical Formation of Water-Soluble OxyPAHs, Naphthenic
5	Acids, and Other Hydrocarbon Oxidation Products from Cook Inlet,
6	Alaska Crude Oil and Diesel in Seawater
7	
8	Supporting Information for Publication
9	
10	Authors: Maxwell L. Harsha, Zachary C. Redman, Josh Wesolowski, David C. Podgorski,
11	Patrick L. Tomco
12	
13	
14	
15	
16	
17	

1 <u>LC-Orbitrap Instrument Parameters</u>

SPE- DOC extracts were analyzed using a Vanquish Flex Binary ultra-high performance liquid 2 3 chromatograph coupled to an Exploris 120 high resolution orbitrap mass spectrometer (Thermo 4 Scientific). Samples were injected (20 µL) onto a Kinetix C18 column (150 x 2.1mm; 1.7µ) with a UHPLC C18 2.1 mm Security Guard Column (Phenomenex) and eluted at 0.4 mL min⁻¹ using 5 6 with a gradient of water (A) and acetonitrile (B) each containing 0.1% formic acid (v/v). The 7 column was maintained at 60 °C while the mobile phase composition was ramped from 5 to 99% B over 15 min and held for 10 min before resetting to initial conditions; total run time was 32 8 9 min. Eluted compounds were ionized via negative mode electrospray ionization (3200V). The 10 nitrogen sheath gas, auxiliary gas, and sweep gas flows were 50, 5, and 5 (arbitrary units), 11 respectively. The vaporizer and ion transfer tube temperatures were 350 and 300 °C. Ionization 12 parameters were optimized by infusing the calibration solution (FlexMix, Thermo Scientific) into 13 0.4 mL/min 50% A post column at 5 μ L/min. Full scans were collected over the range 150-1500 14 m/z with a resolution of 120,000 and RF lens set to 70%. Automatic gain control was used to 15 accumulate 1e6 ions in the trap allowing a maximum injection time of 200 ms. Orbitrap mass 16 accuracy was externally calibrated prior to analysis via infusion of the calibration solution while 17 a mass lock was established during each scan using the fluoranthene (M⁻, 202.0788 m/z) internal calibrant discharge source (Easy-IC, Thermo Scientific). A standard solution containing 10 18 19 µg/mL each of metsulfuron methyl, chlorsulfuron, capsaicin, rotenone, usnic acid, and ibuprofen was analyzed after every ten samples for quality assurance. 20

21 <u>Targeted oxyPAH and PAH Instrument Paramters</u>

- 22 Oxy-PAHs and PAHs were analyzed separately using a 1260 Infinity series liquid
- chromatograph coupled to a 6410A triple quadrupole mass spectrometer controlled by Mass

1	Hunter v. B.06.00 (Agilent). 10 μ L injections were made onto a Zorbax Eclipse PAH (2.1x100
2	mm; 3.5 μ m) column with matching guard cartridge (2.1x12.5 mm; 5 μ) (Agilent) and eluted at
3	0.2 mL min ⁻¹ with a gradient of water (A) and methanol (B) each containing 0.1% formic acid,
4	the column compartment was maintained at 40 °C. Gradient parameters for Oxy-PAHs and
5	PAHs are available in the supporting information (Table S8 and S9). Oxy-PAHs were ionized
6	via negative mode atmospheric pressure photoionization (APPI) assisted with post column
7	addition of acetone (0.4 mL min ⁻¹ of 85:15 methanol: acetone v/v; final composition 10%
8	acetone) dopant. PAHs were ionized via postive mode APPI assisted with post column addition
9	of chlorobenzene and 2,4-difluoroanisole (0.4 mL min ⁻¹ of 84.25:15:0.75
10	methanol:chlorobenzene:2,4-difluoroanisole v/v; final composition 10% chlorobenzene and
11	0.5% 2,4-difluoroanisole) dopant. Analyte retention times and triple quadrupole acquisition
12	parameters are available in the supporting information (Table S10).
13	
14	
15	
16	
17	
18	
19	
20	
21	

S	ample Co	omposition	DOC	(mg/L)	SUVA ₂₅₄ (L mg ⁻¹ cm ⁻¹)
Fuel	Light Type	Irradiation Period (days)	Average	Std. Dev.	Average	Std. Dev.
		1	4.22	2.764	0.0100	0.005
	Light	4	10.61	2.028	0.0150	0.002
Dil	Light	7	18.84	4.931	0.0168	0.004
de (10	20.54	2.319	0.0169	0.001
Cru		1	0.84	0.067	0.0080	0.002
CI	Dark	4	1.59	0.408	0.0029	0.001
	Dark	7	1.67	0.158	0.0024	0.000
		10	1.47	0.291	0.0034	0.002
		1	6.27	0.521	0.0108	0.001
	Light	4	11.51	0.885	0.0139	0.001
	Light	7	13.49	1.294	0.0137	0.003
sel		10	14.76	0.993	0.0128	0.000
Dić		1	0.77	0.209	0.0056	0.002
	Dark	4	1.05	0.338	0.0058	0.005
	Dark	7	0.98	0.179	0.0045	0.001
		10	0.95	0.124	0.0046	0.000

Table S1. DOC and SUVA₂₅₄ values. (Averages N=3)

Table S2. Spectral Indices (RSU). (Averages N=3)

1	Sample Co	omposition	Т		A		М		С		Ν		Flu	[FrI		BIX	(НІХ	ζ
Fuel	Light Type	Irradiation Period (days)	Average	Std. Dev.																
		1	1.71	0.36	1.69	0.50	1.34	0.35	0.43	0.11	1.42	0.37	1.21	0.02	1.44	0.02	1.63	0.03	0.58	0.03
	Light	4	2.84	0.19	4.07	0.25	3.22	0.18	1.27	0.56	3.35	0.18	1.22	0.01	1.31	0.02	1.43	0.03	0.68	0.00
5	Light	7	1.68	0.34	2.42	0.28	2.05	0.30	0.62	0.06	2.12	0.31	1.20	0.02	1.22	0.03	1.29	0.04	0.69	0.01
de (10	1.16	0.28	1.50	0.30	1.33	0.29	0.42	0.10	1.39	0.29	1.18	0.01	1.15	0.04	1.21	0.05	0.66	0.01
CB		1	0.14	0.04	0.05	0.01	0.05	0.01	0.02	0.00	0.06	0.02	1.40	0.03	1.57	0.04	1.69	0.05	0.28	0.03
G	Dut	4	0.24	0.15	0.07	0.02	0.09	0.04	0.02	0.01	0.10	0.05	1.45	0.06	1.62	0.19	1.76	0.17	0.29	0.07
	Dark	7	0.14	0.00	0.06	0.00	0.06	0.00	0.02	0.00	0.07	0.01	1.40	0.06	1.69	0.04	1.89	0.07	0.31	0.01
		10	0.13	0.02	0.07	0.01	0.06	0.01	0.02	0.00	0.06	0.01	1.35	0.04	1.69	0.05	1.91	0.13	0.35	0.04
		1	4.99	0.22	0.66	0.07	1.40	0.07	0.26	0.03	1.43	0.08	1.19	0.02	1.35	0.04	1.37	0.03	0.36	0.02
	T :- 1.4	4	2.50	0.28	0.52	0.03	0.79	0.08	0.24	0.01	0.84	0.08	1.19	0.01	0.89	0.01	0.90	0.01	0.30	0.02
	Light	7	1.30	0.16	0.34	0.07	0.47	0.08	0.17	0.03	0.49	0.09	1.19	0.02	0.82	0.05	0.82	0.04	0.24	0.05
sel		10	0.90	0.11	0.25	0.04	0.34	0.05	0.12	0.02	0.36	0.05	1.14	0.02	0.81	0.01	0.83	0.02	0.20	0.01
Die		1	0.08	0.02	0.06	0.04	0.03	0.01	0.02	0.01	0.03	0.01	1.48	0.07	1.34	0.35	1.48	0.35	0.30	0.03
	Durl	4	0.08	0.02	0.04	0.02	0.02	0.01	0.01	0.00	0.03	0.01	1.35	0.06	1.39	0.20	1.58	0.25	0.24	0.07
	Dark	7	0.09	0.02	0.04	0.02	0.03	0.01	0.01	0.00	0.03	0.01	1.41	0.06	1.56	0.16	1.72	0.09	0.23	0.06
		10	0.04	0.04	0.02	0.01	0.01	0.01	0.01	0.00	0.01	0.01	1.40	0.08	1.14	0.36	1.28	0.29	0.34	0.11

Table S3. Relative contribution of PARAFAC components (%). (Averages N=3)

5	Sample Co	omposition	(C1	(22	(23	(74	(C 5		C 6
Fuel	Light Type	Irradiation Period (days)	Average	Std. Dev.	Average	Std. Dev.								
		1	42.03	0.89	23.03	1.18	5.03	0.38	16.87	1.27	9.52	0.36	3.52	0.53
	Light	4	48.15	0.16	25.29	0.75	4.51	0.10	9.77	0.22	9.95	0.77	2.33	0.17
5i	Light	7	49.32	0.49	23.31	0.39	5.10	0.33	7.70	1.12	10.52	0.83	4.06	0.23
lde (10	48.38	0.46	20.19	0.71	6.85	0.37	6.90	0.27	11.02	0.64	6.66	0.19
Cn		1	19.56	1.93	10.28	1.98	36.25	6.85	18.68	2.19	6.22	0.45	9.01	9.06
C	Dorle	4	19.36	2.64	10.37	4.20	28.29	7.88	20.16	1.72	5.81	0.83	16.02	14.64
	Dark	7	21.62	1.39	12.98	1.24	29.90	5.01	18.48	2.98	5.73	0.71	11.29	7.33
		10	27.03	5.11	11.93	1.57	24.52	1.74	14.25	3.44	6.91	1.06	15.36	2.92
		1	17.30	0.41	1.42	0.06	33.83	1.06	39.44	1.01	6.29	0.38	1.72	0.23
	Light	4	14.97	0.68	1.28	0.11	52.96	1.68	15.20	0.48	5.45	0.44	10.13	0.30
	Ligin	7	13.50	3.23	1.61	0.53	56.35	5.15	7.60	2.55	5.06	1.02	15.86	2.17
sel		10	11.01	1.03	1.64	0.20	58.86	1.84	3.39	0.71	4.15	0.39	20.96	0.95
Die		1	22.60	4.31	4.51	0.14	40.36	1.98	6.67	1.76	9.46	2.49	16.40	1.81
	Dark	4	18.17	4.66	5.11	0.53	36.06	4.35	9.66	2.24	8.00	1.56	23.00	4.94
	Dark	7	19.28	8.19	5.34	0.97	33.78	5.47	12.64	6.74	7.26	1.00	21.71	4.19
		10	19.45	4.92	1.72	2.98	48.72	9.66	10.37	3.70	8.68	2.42	11.07	11.06

Figure S1. Validated six-component PARAFAC model.

Table S4. Molecular classification (%), averages masses, and NOSC. (Averages N=3)

S	ample Co	omposition	CA		Aromatic		ULO		UHO		Aliphatic		Naphthenic Acids		NOSC		Average Mass	
Fuel	Light Type	Irradiation Period (days)	Average	Std. Dev.	Average	Std. Dev.	Average	Std. Dev.	Average	Std. Dev.	Average	Std. Dev.	Average	Std. Dev.	Average	Std. Dev.	Average	Std. Dev.
0		4	4.89	0.17	11.32	0.37	46.63	3.95	6.65	0.35	28.72	3.99	1.79	0.17	-0.75	0.06	395.26	8.96
hud	Light	7	4.31	0.82	10.79	0.92	47.23	2.05	6.90	0.87	28.83	1.98	1.93	0.38	-0.78	0.06	407.46	23.00
10		10	4.23	0.70	10.60	0.70	46.47	1.79	8.81	0.77	28.10	1.33	1.78	0.35	-0.72	0.04	426.22	10.97
U	Dark	10	2.93	0.10	6.03	0.91	30.11	0.94	19.18	1.48	39.80	0.75	1.95	0.10	-0.66	0.07	329.85	3.95
		4	3.07	0.30	9.46	0.96	46.73	1.22	7.00	1.04	31.77	3.30	1.96	0.10	-0.71	0.04	403.07	6.68
sel	Light	7	2.98	0.86	8.80	1.24	48.53	0.61	6.63	0.97	31.18	2.74	1.88	0.16	-0.72	0.00	413.17	20.49
Die		10	2.56	0.13	8.15	0.08	48.61	2.05	7.06	0.24	31.68	1.98	1.93	0.16	-0.73	0.01	436.11	9.35
	Dark	10	2.46	0.22	4.38	0.34	24.17	0.43	21.21	2.03	46.11	1.81	1.66	0.13	-0.63	0.07	341.66	7.96

	Sample Comp	osition	Unique Features	CA ((%)	Aromat	tic (%)	ULO	(%)	UHO	(%)	Alipha	tic (%)
Fuel	Light Type	Irradiation Period (days)	(#)	Average	Std. Dev.								
ii		4	2483	3.63	0.47	15.94	2.17	54.31	4.37	1.33	0.33	24.73	7.24
Ide C	Light	7	2492	3.08	0.76	11.90	4.30	48.01	15.10	1.75	0.40	35.26	20.38
I Cri		10	2484	3.25	0.29	12.22	0.41	52.77	5.58	3.54	0.88	28.25	5.90
C	Dark	10	1010	3.08	0.95	7.94	3.13	15.17	1.83	16.33	7.13	57.48	6.34
		4	1986	1.12	0.21	12.94	1.70	65.14	4.95	1.57	0.46	19.21	6.24
sel	Light	7	2090	0.97	0.66	10.39	0.76	60.93	13.81	1.86	0.42	25.94	12.64
Die		10	2293	0.67	0.05	9.93	0.49	64.69	4.07	2.42	0.17	22.33	4.81
	Dark	10	1722	2.07	0.15	2.82	1.00	16.30	1.55	26.85	5.48	51.96	4.69

Table S5. Molecular classifications of unique features in each treatment group. (Averages N=3)

- **Figure S2.** Compositional contour plot representing relationship between carbon number, z
- 5 family, and relative abundance (within naphthenic acid classification).

	Die	esel		(rud il	e	Fuel	s.	
	ngu	Links			ragur	Links		Light Type	ample Co	
10	7	4	1	10	7	4	1	Irradiation Period (days)	nposition	
Ŋ	GN	UN	dN	0.13	0.11	UN	UN	Avg.	Phenanthr	
I	I	I	I	0.11	0.10	I	I	Std. Dev.	requinone	Oxy-P
Ŋ	dN	UN	dN	0.19	0.21	0.14	dN	Avg.	1,4 Anthraq	H
I	I	I	I	0.16	0.01	0.12	I	Std. Dev.	∔ luinone	
417	28.62	8.58	15.49	Ŋ	ND	0.36	2.42	Avg.	Naphti	
156	44.45	0.97	19.01	ı	I	0.32	2.28	Std. Dev.	nalene	
0.09	0.14	0.18	60.44	0.33	1.07	7.39	17.12	Avg.	1 Methylnaj	
0.16	0.23	0.16	62.49	0.33	0.51	4.86	4.76	Sid. Dev.	- phthalene	
EE 0	0.40	0.70	125.15	0.61	1.24	6.74	16.14	Avg.	2 Methylna	
0.04	0.10	0.12	136.23	0.22	0.33	4.57	4.58	Std. Dev.	phthalene	
ND	dn	0.06	1.96	QN	UD	UD	UD	Avg.	Acenapht	
I	I	0.11	1.26	1	I	I	I	Sid. Dev.	hene	
Ŋ	dN	0.54	1.56	0.97	0.18	0.45	0.80	Avg.	Fluore	
I	I	0.27	0.97	0.04	0.16	0.09	0.03	Sid. Dev.	ne	
0.00	0.09	0.31	0.75	1.02	1.41	1.73	1.50	Avg.	Phenant	P/
0.00	0.08	0.18	0.41	0.31	0.03	0.14	0.09	Sid. Dev.	hrene	H
N	GIN	0.50	15.17	GN	CIN	0.54	0.70	Avg.	2,6- Dimethylnap	
I	ı	0.31	11.73	1	ı	0.29	0.24	Std. Dev.	hthalene	
Ŋ	IJ	Ŋ	ND	0.00	0.23	0.00	0.10	Avg.	Anthr	
I	I	I	I	0.00	0.40	0.00	0.18	Std. Dev.	acene	
Ŋ	UD	0.91	12.70	UN	ND	0.09	0.31	Avg.	2,3,t Trimethylna	
I	ı	0.62	6.86	1	ı	0.15	0.15	Std. Dev.	6- phthalene	
0.04	dN	0.04	0.07	dN	0.11	0.08	0.08	Avg.	Pyrei	
0.07	I	0.06	0.07	ı	0.05	0.02	0.01	Sid. Dev.	ae	
0.00	0.06	0.08	ND	ß	0.23	0.25	0.28	Avg.	1- Methylp	
000	0.11	0.13	I	I	0.02	0.00	0.04	Sid. Dev.	yrene	

Table S6. oxyPAH and PAH concentration (μ g/L). (Averages N=3) ND = Not Detected

1	Table S7.	Retention	time, recoveries,	and instrument	parameters for	oxyPAH method
---	-----------	-----------	-------------------	----------------	----------------	---------------

N	T	T		Recovery (%) (N=6)		
Name	Iransition	Гуре	KI (min)	Average	Std. Dev.	
1-Naphthol	143.1 -> 115.1	Target	19.8	73.8	12.4	
2-Naphthol	143.1 -> 115.1	Target	20.6	72.5	12.2	
Phenanthrenequinone	208.1 -> 208.1	Target	22.3	69.3	13.6	
Anthraquinone	208.1 -> 208.1	Target	26.9	24.8	7.7	
1,4-Anthraquinone	208.1 -> 208.1	Target	30.4	79.5	13.7	
1-Hydroxy-9,10-Anthraquinone	224.1 -> 224.1	Target	35.6	79.2	14.9	
1,4-Chrysenequinone	258.1 -> 258.1	Target	46.0	5.8	1.8	
5,12-Naphthacenequinone	258.1 -> 258.1	Target	47.4	88.4	15.2	
Benzanthraquinone	258.1 -> 258.1	Target	50.8	81.9	16.5	

Table S8. oxyPAH gradient parameters.

	Pun	np 1 (Colu	nn Mobile Pha	ise)	Pu	ımp 2 (Pos	t Column I	onization Ad	ditives)
Time (min)	A (%)	B (%)	Flow (mL/min)	Max Pressure Limit (bar)	Time (min)	A (%)	B (%)	Flow (mL/min)	Max Pressure Limit (bar)
0.00	20.0	80.0	0.200	400.00	0.00	100.0	0.0	0.000	400.00
1.00	20.0	80.0	0.200	400.00	18.99	100.0	0.0	0.000	400.00
20.00	60.0	40.0	0.200	400.00	19.00	100.0	0.0	0.400	400.00
33.00	71.0	29.0	0.200	400.00	59.99	100.0	0.0	0.400	400.00
36.00	75.0	25.0	0.200	400.00	60.00	100.0	0.0	0.000	400.00
46.00	75.0	25.0	0.200	400.00					
56.00	90.0	10.0	0.200	400.00					
60.00	90.0	10.0	0.200	400.00					
60.01	20.0	80.0	0.400	400.00					
65.00	20.0	80.0	0.400	400.00					
65.01	20.0	80.0	0.200	400.00					

Table S9. PAH gradient parameters.

	Pun	np 1 (Colu	mn Mobile Ph	iase)		Pump 2 (I	Post Colur	nn Ionization .	Additives)
Time (min)	A (%)	B (%)	Flow (mL/min)	Max Pressure Limit (bar)	Time (min)	A (%)	B (%)	Flow (mL/min)	Max Pressure Limit (bar)
0.00	40.0	60.0	0.200	400.00	0.00	0.0	100.0	0.000	400.00
1.00	40.0	60.0	0.200	400.00	9.99	0.0	100.0	0.000	400.00
5.00	60.0	40.0	0.200	400.00	10.00	0.0	100.0	0.400	400.00
65.00	100.0	0.0	0.200	400.00	70.00	0.0	100.0	0.400	400.00
70.00	100.0	0.0	0.200	400.00	70.10	0.0	100.0	0.400	400.00
70.10	40.0	60.0	0.400	400.00					

Compound Name	Transition	Туре	ISTD Compound Name	Surrogate Compound Name	RT (min)	Recovery (%) (N=6)	
						Average	Std. Dev.
Naphthalene d8	136.0 -> 108.0	Surrogate	Acenapthylene d8		15.8		
Naphthalene	128.0 -> 102.0	Target	Acenapthylene d8	Napthalene d8	16.2		
Acenapthylene d8	160.0 -> 132.0	ISTD			18.0		
Acenaphthylene	152.0 -> 126.0	Target	Acenapthylene d8	Napthalene d8	18.5		
1-Methyl Naphthalene d10	152.0 -> 122.0	ISTD			19.9		
1-Methyl Naphthalene	142.0 -> 115.0	Target	1-Methyl Naphthalene d10	Acenapthene d10	20.5	96.3	7.8
2-Methyl Naphthalene	142.0 -> 115.0	Target	1-Methyl Naphthalene d10	Acenapthene d10	21.2	125.4	26.0
Acenaphthene d10	164.0 -> 162.0	Surrogate	1-Methyl Naphthalene d10		22.1		
Acenaphthene	154.0 -> 153.0	Target	1-Methyl Naphthalene d10	Acenapthene d10	22.7	100.5	5.0
Fluorene d10	176.0 -> 174.0	ISTD			24.0		
Fluorene	166.0 -> 165.0	Target	Fluorene d10	Phenanthrene d10	24.6	95.8	4.8
Phenanthrene d10	188.0 -> 184.0	Surrogate	Fluorene d10		26.0		
9-methyl-9H-fluorene	180.1 -> 165.2	Target	Fluorene d10	Phenanthrene d10	26.6	89.7	6.9
Phenanthrene	178.0 -> 176.0	Target	Fluorene d10	Phenanthrene d10	27.0	97.3	14.9
2,6-Dimethylnaphthalene	156.0 -> 115.0	Target	Fluorene d10	Phenanthrene d10	28.2		
Anthracene	178.0 -> 176.0	Target	Fluorene d10	Phenanthrene d10	30.0	94.2	5.3
Fluoranthene	202.0 -> 200.0	Target	Chrysene d12	Pyrene d10	33.1		
2,3,6- Trimethylnaphthalene	170.2 -> 155.1	Target	Chrysene d12	Pyrene d10	33.4		
Pyrene d10	212.0 -> 208.0	Surrogate	Chrysene d12		33.9		
9-methylanthracene	192.2 -> 191.1	Target	Chrysene d12	Pyrene d10	34.2	89.8	3.3
Pyrene	202.0 -> 200.0	Target	Chrysene d12	Pyrene d10	34.9	115.7	10.5
9,10-Dimethylanthracene	206.2 -> 191.1	Target	Chrysene d12	Benz(a)anthracene d10	38.8		
1-Methylpyrene	216.2 -> 215.2	Target	Chrysene d12	Benz(a)anthracene d10	42.3		
Benz(a)anthracene d10	240.0 -> 236.0	Surrogate	Chrysene d12		43.3		
Benz(a)anthracene	228.0 -> 226.0	Target	Chrysene d12	Benz(a)anthracene d10	44.5	95.5	5.0
Chrysene d12	240.0 -> 236.0	ISTD			44.9		
Chrysene	228.0 -> 226.0	Target	Chrysene d12	Benz(a)anthracene d10	46.3	99.3	6.0
Perylene d12	264.0 -> 260.0	Surrogate	Chrysene d12		50.1		
Benzo(a)pyrene	252.0 -> 250.0	Target	Benzo(a)pyrene d12	Perylene d12	52.0		
Benzo(a)pyrene d12	264.0 -> 260.0	ISTD			55.1		
Benzo(b)fluoranthene	252.0 -> 250.0	Target	Benzo(a)pyrene d12	Perylene d12	56.3	96.2	3.0
Benzo(k)fluoranthene	252.0 -> 250.0	Target	Benzo(a)pyrene d12	Perylene d12	56.4	96.7	4.6
Benzo(ghi)perylene	276.0 -> 274.0	Target	Benzo(a)pyrene d12	Perylene d12	61.3	93.7	5.8
Dibenzo(ah)anthracene	278.0 -> 276.0	Target	Benzo(a)pyrene d12	Perylene d12	64.0	96.1	7.9
Indenopyrene	276.0 -> 274.0	Target	Benzo(a)pyrene d12	Perylene d12	64.2	96.2	7.0

Table S10. Retention time and instrument parameters for PAH method.