Supplementary materials

Type-II BiVO₄/Ni₃(hexahydroxytriphenylene)₂ heterojunction photoanodes for effective photoelectrochemical reaction

Ji Won Yoon, Young-Moo Jo, Jong-Heun Lee*

Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea

*Corresponding author. *E-mail address: jongheun@korea.ac.kr* (Jong-Heun Lee)

Material characterization

Morphological and structural characterizations of the BiVO₄ film and BiVO₄/M₃(HHTP)₂ (M = Ni, Co, Cu) were conducted using a field-emission scanning electron microscope (FE-SEM, SU-70) with an acceleration voltage of 5–10 kV and TEM (JEM-F200, JEOL Ltd, Japan). The phase and crystal structure of the BiVO₄ film and BiVO₄/M₃(HHTP)₂ (M = Ni, Co, Cu) were investigated via XRD (D/MAX-2500V/PC, Rigaku, Japan; Cu*K* α , λ =1.5418 Å). The atomic compositions of the BiVO₄/M₃(HHTP)₂ (M = Ni, Co, Cu) were analyzed by XPS (X-TOOL, ULVAC-PHI, monochromatic Al-K α = 1486.6 eV, Ag 3d5/2 < 0.48 eV). The reflection (R) and transmission (T) of the photoanodes were obtained using UV-vis spectroscopy (UV-vis, Jasco V-650). The band-bending diagrams of the BiVO₄/M₃(HHTP)₂ (M = Ni, Co, Cu) were investigated using ultraviolet photoelectron spectroscopy (UPS, AXIS-Nova; monochromatic He 1 = 21.2 eV, Ag 3d_{5/2} < 100 meV) and UV-vis spectroscopy.

PEC measurements

PEC water splitting was conducted in a 0.1 M Na₂SO₃ and 0.1 M Na₂SO₄ solution using a threeelectrode electrochemical system (Ivium Technologies) equipped with BiVO₄/M₃(HHTP)₂ (M = Ni, Co, Cu) as the working electrode, a Pt mesh as the counter electrode, and Ag/AgCl/saturated NaCl as the reference electrode. A filter with the standard solar radiation of air mass (AM) 1.5 G was installed in the solar simulator, which was calibrated to 1 sun (100 mW/cm²). The photoanodic performance was measured in the dark and under illumination using linear sweep voltammetry (LSV) at a scan rate of 20 mVs⁻¹. The measured potential vs. Ag/AgCl was converted to RHE using the Nernst equation:

$$E_{RHE} = E_{Ag/AgCl} + E_{Ag/AgCl} + 0.059 * pH,$$
(1)

where E_{RHE} is the converted potential vs. RHE, $E_{Ag/AgCl}^{o} = 0.1976$ V, and $E_{Ag/AgCl}$ is the measured potential vs. RHE and the Ag/AgCl reference. The IPCE was measured at an applied voltage of 1.23 V

vs. RHE under the irradiation source and monochromator (MonoRa150). The intensity at each wavelength was measured using a calibrated Si photodiode. The IPCE was calculated using the following equation:

$$IPCE (\%) = \frac{I_{ph}(mA \ cm^{-2}) \times 1239.8 \ (V \ nm)}{P_{mono} \ (mW \ cm^{-2}) \times \lambda \ (nm)} \times 100,$$
(2)

where I_{ph} is the measured photocurrent density, λ is the wavelength of the incident light, and P_{mono} is the power intensity of the incident light at each wavelength. The IPCE considers three main factors: the light absorption efficiency (η_{abs}), charge separation efficiency (η_{sep}), and charge transfer efficiency (η_{trans}).

$$IPCE(\lambda) = \eta_{abs} \times \eta_{sep} \times \eta_{trans}$$
(3)

Electrochemical impedance spectroscopy (EIS) was performed in the frequency range of 100 kHz to 1 Hz with an applied voltage of 1.23 V vs. RHE. The EIS curves were fitted and analyzed to obtain the series resistance (R_s , Ω cm²) and charge transfer resistance at the interface between the electrode and the electrolyte (R_{ct} , Ω cm²). The product of the light-absorption and charge separation efficiencies ($\eta_{abs} \times \eta_{sep}$) and value of η_{trans} were obtained in 0.1 M Na₂SO₃ solution as a fast hole scavenger.

Fig. S1. (a) Photograph of $BiVO_4/FTO/glass$ substrate. (b) XRD patterns of electrodeposited $BiVO_4$ on FTO/glass substrate.

Fig. S2. (a) Top-view and (b) cross-sectional view SEM image of $BiVO_4$ thin film. (c) HR-TEM image of $BiVO_4$ (inset: SAED patterns). Elemental mappings of (d1) $BiVO_4$, (d2) Bi, (d3) V, and (d4) O.

Fig. S3. (a) XRD patterns of BiVO₄ and BiVO₄/Ni₃(HHTP)₂ heterostructure (solvothermal 3.5 h and 6 h). (b) Close examination of XRD peaks at 2θ =5~20° of BiVO₄/Ni₃(HHTP)₂ (solvothermal 6 h).

Fig. S4. XPS of (a) Bi 4f, (b) V 2p, (c) O 1s, and (d) Ni 2p in $BiVO_4/Ni_3(HHTP)_2$ heterostructure.

Fig. S5. XPS of (a) Bi 4f, (b) V 2p, (c) O 1s, and (d) Cu 2p in $BiVO_4/Cu_3(HHTP)_2$ heterostructure.

Fig. S6. XPS of (a) Bi 4f, (b) V 2p, (c) O 1s, and (d) Cu 2p in $BiVO_4/Co_3(HHTP)_2$ heterostructure.

Fig. S7. (a) Top-view and (b) cross-sectional view SEM image of $BiVO_4/Ni_3(HHTP)_2$ heterostructure (solvothermal 1 h). (c) Top-view and (d) cross-sectional view SEM image of $BiVO_4/Ni_3(HHTP)_2$ heterostructure (solvothermal 6 h).

Fig. S8. *J*-V curves of $BiVO_4/Ni_3(HHTP)_2$ (solvothermal 1 h and 6 h) heterostructure in a 0.1 M Na_2SO_3 .

Fig. S9. (a) J-V curves of BiVO₄ and BiVO₄/Ni₃(HHTP)₂ in a 1 M Na₂SO₄ electrolyte (without hole scavenging Na₂SO₃). (b) Mott-Schottky plots of BiVO₄ and BiVO₄/Ni₃(HHTP)₂ at 100 Hz.

Fig. S10. (a) J-V curves of $BiVO_4$, $Ni_3(HHTP)_2$ and $BiVO_4/Ni_3(HHTP)_2$ in dark (0.1 M Na_2SO_4 electrolyte). (b) J-V curves of $BiVO_4$, $Ni_3(HHTP)_2$ and $BiVO_4/Ni_3(HHTP)_2$ in dark (0.1 M Na_2SO_3 electrolyte).

Photoanode	$J_{sulfite}$	J_{water}	Ref
	$@1.23 V (mA/cm^2)$	$@ 1.23 V (mA/cm^2)$	
BiVO ₄ /Ni ₃ (HHTP) ₂	4.66	3.10	This work
BiVO ₄ /Bi-MOF	3.21	2.35	[S1]
Fe-doped BiVO ₄ /MIL-53(Fe)	-	1.15	[S2]
BiVO ₄ /MIL-101(Fe)	-	2.59	[S3]
BiVO ₄ /Co-Ni-MOF	-	3.20	[S4]
BiVO ₄ @Co-MIm		3.16	[S5]
BiVO ₄ /Co-MOF	-	3.10	[S6]
Fe/W-doped BiVO ₄ /MIL-100(Fe)	-	2.76	[S7]

Table S1. Photocurrent densities of $BiVO_4/MOF$ heterostructures at 1.23 V in the literatures and the present work. [S1-S7]

Fig. S11. (a) EIS analysis for $BiVO_4$ and $BiVO_4/Ni_3(HHTP)_2$ at 0V in dark. (b) Mott-Schottky plots of $BiVO_4$ and $BiVO_4/Ni_3(HHTP)_2$ at 100 Hz.

Fig. S12. (a) J-V curves of $BiVO_4/Co_3(HHTP)_2$ and $BiVO_4/Cu_3(HHTP)_2$ (front and back illumination) in a 0.1 M Na₂SO₃ electrolyte. (b) IPCE of $BiVO_4/Co_3(HHTP)_2$ and $BiVO_4/Cu_3(HHTP)_2$. EIS analysis of (c) $BiVO_4/Co_3(HHTP)_2$ and (d) $BiVO_4/Cu_3(HHTP)_2$ (front and back illumination).

Photoanode	$R_s(W \cdot cm^2)$	$R_{ct}(W \cdot cm^2)$
BiVO ₄ /Co ₃ (HHTP) ₂ (front)	11.9	1124.8
BiVO ₄ /Co ₃ (HHTP) ₂ (back)	9.8	743.6
BiVO ₄ /Cu ₃ (HHTP) ₂ (front)	10.5	1408.3
BiVO ₄ /Cu ₃ (HHTP) ₂ (back)	11.4	803.2

 Table S2. Fitted charge transfer resistance.

Fig. S13. (a) Pellets of Ni₃(HHTP)₂ ,Co₃(HHTP)₂, and Cu₃(HHTP)₂. (b) I-V curves of Ni₃(HHTP)₂,Co₃(HHTP)₂, and Cu₃(HHTP)₂ pellets. Electrical measurements of HHTP-based MOFs are performed using two-electrode in air at a constant temperature of 297 K and in the absence of light. The electrical conductivity is calculated to be σ =4.45×10⁻⁶ S cm⁻¹, σ =1.59×10⁻⁷ S cm⁻¹, σ =4.29x10⁻⁸ S cm⁻¹ for Ni₃(HHTP)₂,Co₃(HHTP)₂, and Cu₃(HHTP)₂, respectively. (σ = L/(R× π (d/2)²), L = 2.0 mm, d = 3.0 mm, R_{Ni3(HHTP)2}= 6.35×10⁵ Ω, R_{Co3(HHTP)2}= 1.78×10⁷ Ω, R_{Cu3(HHTP)2}= 6.59×10⁷ Ω)

Fig. S14. UPS spectra of BiVO₄ and BiVO₄/Co₃(HHTP)₂ for obtaining (a) work function (*f*) and valence band maximum. (c) UV-vis spectra of BiVO₄ and BiVO₄/Co₃(HHTP)₂. Schematic energy band diagram of BiVO₄ and BiVO₄/Co₃(HHTP)₂(d) before contact and (e) after contact.

Fig. S15. UPS spectra of BiVO₄ and BiVO₄/Cu₃(HHTP)₂ for obtaining (a) work function (*f*) and valence band maximum. (c) UV-vis spectra of BiVO₄ and BiVO₄/Cu₃(HHTP)₂. Schematic energy band diagram of BiVO₄ and BiVO₄/Cu₃(HHTP)₂(d) before contact and (e) after contact.

Fig. S16. (a) Electron flux of AM 1.5 G solar spectrum. (b) Electron flux of BiVO₄ and BiVO₄/Ni₃(HHTP)₂. The electron flux of the photoanode is the product of AM 1.5 G electron flux and LHE (%). (c) $\eta_{abs} \times \eta_{sep}$ of BiVO₄ and BiVO₄/Ni₃(HHTP)₂.

Photoanode	Light absorption wavelength (nm)	J _{max} (mA/cm ²)	J _{abs} (mA/cm ²)	η_{abs} (%)
BiVO ₄	496	6.44	4.42	68.6
BiVO ₄ /Ni ₃ (HHTP) ₂	504	6.95	4.89	70.4

Table S3. Light absorption wavelength, J_{max} , J_{abs} , and η_{abs} of BiVO₄ and BiVO₄/Ni₃(HHTP)₂.

Fig. S17. The chronopotentiometry curve of $BiVO_4/Ni_3(HHTP)_2$ in a 0.1 M Na₂SO₃ electrolyte at 1.23 V vs. RHE under front and back illumination.

Fig. S18. (a) TEM image and (b-g) elemental mappings of $BiVO_4/Ni_3(HHTP)_2$ heterostructure after photoelectrochemical reaction.

Reference

[S1] S. Kim, T.A.D. Pena, S. Seo, H. Choi, J. Park, J.H. Lee, J. Woo, C.H. Choi, S. Lee, *Appl. Surf. Sci.*, 2021, **563**, 150357.

[S2] G.X. Liu, Y.P. Li, Y. Xiao, D.M. Jia, C.H. Li, J.J. Zheng, X.W. Liu, *Catal. Lett.*, 2019, **149**, 870-875.

[S3] C.H. Liu, H. Luo, Y. Xu, Z.H. Zhang, Q. Liang, W.C. Wang, Z.D. Chen, *Chem. Eng. J.*, 2020, **384**, 123333.

[S4] S.Q. Zhou, K.Y. Chen, J.W. Huang, L. Wang, M.Y. Zhang, B. Bai, H. Liu, Q.Z. Wang, *Appl. Catal. B*, 2020, **266**, 118513.

[S5] S.Q. Zhou, P.F. Yue, J.W. Huang, L. Wang, H.D. She, Q.Z. Wang, *Chem. Eng. J.*, 2019, **371**, 885-892.

[S6] W. Zhang, R. Li, X. Zhao, Z. Chen, A.W.K. Law, K. Zhou, *Chemsuschem*, 2018, **11**, 2710-2716.
[S7] Z.B. Jiao, J.J. Zheng, C.C. Feng, Z.L. Wang, X.S. Wang, G.X. Lu, Y.P. Bi, *Chemsuschem*, 2016, **9**, 2824-2831.