Electronic Supplementary Material (ESI) for Energy Advances. This journal is © The Royal Society of Chemistry 2022

Electronic Supporting Information (ESI)

CIS QDs Nucleated on Oxygen Vacancy rich BOI Microplates: A Hybrid Photocatalyst

with Enhanced Green Energy Production via Mediator free Z-scheme Dynamic

Deeptimayee Prusty, Sriram Mansingh and K.M. Parida*

Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusandhan (Deemed to be

University), Bhubaneswar-751030, Odisha (India)

*Corresponding author

E-mail: paridakulamani@yahoo.com &

kulamaniparida@soa.ac.in

Experimental section

Chemicals Requirement

Copper chloride dihydrate (CuCl₂·2H₂O, 99%), Thioglycolic acid (TGA, 79%), Potassium iodide (KI, >99.5%), sodium hydroxide (NaOH, 97%), NBT (nitro blue tetrazolium chloride), Methanol, Nafion, Na₂SO₄, TA (Terepthalic Acid) were purchased from Merck and Bismuth nitrate pentahydrate (Bi(NO₃)₃·5H₂O, 98%), Indium chloride (InCl₃, 98%), sodium sulfide nonahydrate (Na₂S·9H₂O, 58%), AgNO₃, FeCl₃.6H₂O from Himedia chemical company. All reagents are in analytical grade and are used in reaction without further purification.

Synthetic Method

Synthesis of Bismuth Oxyiodide Micro-Plate (BOI MP)

2D BOI MPs were fabricated via hydrolysis method at ambient temperature. Herewith, 0.0028 mol of Bi(NO₃)₃·5H₂O was added into 20.0 mL (0.140 mol/L) of aqueous KI solution with stirring. After 2 min of sonication, the suspension undergoes 5h of constant stirring. A brick-red colorization was attained, which was filtered along with washing frequently by ethanol and water. Afterward, it was dried for 8 h at 60°C to obtain BOI MPs. The overall synthetic method is represented schematically in scheme 1.

Synthesis of CuInS₂ Quantum dot (CIS QD)

The CuInS₂ ternary QD was synthesized in a single pot reflux method. In a two-necked roundbottom-flask, appropriate amount of CuCl₂·2H₂O, InCl₃·4H₂O as copper, indium precursors respectively and TGA as capping ligand were taken and dissolved into water. The pH of the above solution was accustomed to 8.5 by adding 1M NaOH solution. Aqueous solution of Na₂S·9H₂O as a sulfur source was introduced into the round-bottom-flask and the entire solution was refluxed for 4 h at 100°C. Then after 4 h, the solution was precipitated by adding ethanol and was dehydrated at 40°C under vacuum to obtain ternary CIS QD.

Synthesis of CuInS₂-BiOI (CIS-BOI) Composite

The CuInS₂-BOI hybrid was synthesized *via*. reflux strategy by in-situ insertion of the as-prepared BOI MP. In a two-necked round-bottom-flask, appropriate amount of CuCl₂·2H₂O, InCl₃·4H₂O as copper, indium precursors respectively and TGA as capping ligand were taken and dissolved into water. The pH of the above solution was accustomed to 8.5 by adding 1M NaOH solution. Aqueous solution of Na₂S·9H₂O as a sulfur source was introduced into the round-bottom-flask. A certain amount of as-prepared BOI was inserted with constant stirring and the entire solution was refluxed for 4 h at 100°C. Then after 4 h, the solution was precipitated by adding ethanol and was dehydrated at 40°C under vacuum to obtain CIS-BOI binary hybrid. Likewise, CIS-BOI composites at various weight percentages were synthesized by following the same procedure. The overall synthesis process is represented in Scheme. S1.

Scheme. S1: Overall in-situ synthesis scheme for CIS-BOI composite.

Characterization techniques

Structural characterization of the as-prepared samples was analyzed by XRD (X-Ray Diffraction), **FESEM** (Field-Emission-Scanning-Electron-Microscopy), HRTEM (High-Resolution-Transmission-Electron-Microscopy), XPS (X-ray photoelectron-spectroscopy) and Raman analysis. The crystalinity nature and phase purity of the photocatalysts were anticipated by powder XRD technique with a RigakuUltima-IV X-ray diffractometer (40 KV/40 mA), outfitted with Cu K α radiation ($\lambda = 1.54$ Å) at a 2 θ range of 10-60°. XPS was executed with VG Microtech Multilab ESCA 3000 spectrometer via non-monochromatic K α Mg X-ray supply to analyze surface elemental states and chemical composition of the sample. C 1s with binding energy 284.8 eV is taken reference for spectral calibration. The morphology of CIS QD on BOI MP surface was studied by FESEM analysis (FEI Quanta 400FEG SEM). The internal structure and particle size of the as synthesized materials were analyzed by 200 kV HRTEM (analyzer JEOL-2100 JEOL). Raman spectrometer is used to know the composite formation and oxygen vacancy of the material. Here we used a laser of 332 nm RENISHAW via Raman spectrometer. The optical property of the as-prepared samples was carried out by UV-Vis DRS (UV- visible diffuse reflectance spectroscopy) and PL (Photoluminescence) spectroscopy. The UV-Vis DRS spectra of the prepared samples were deliberated by JASCO-V-750 UV-Vis spectrophotometer in a wavelength range of 200-800 nm (BaSO₄ as reference), to study the absorbance and bandgap energy of the pristine and composite materials. The Photoluminescence (PL) excitation and emission spectra were analyzed with a JASCO-FP-8300 fluorescence spectrometer where Xe- lamp is used as excitation source. The excitation and emission spectra were recorded in a range of 500- 640 nm and 420- 500 nm respectively. The electrochemical measurement were carried out via multichannel-Iviumpotentiostat analyzer with a three electrode system which consists of Ag/AgCl as reference electrode, platinum as counter electrode and the as-prepared sample as a working

electrode. A solution of $0.1 \text{ M Na}_2\text{SO}_4$ with a pH of 6.8 was used as electrolyte for electrochemical measurements. Light illumination can be carried out by taking 300 W Xenon lamps fitted with 400 nm cut-off filter.

Photocatalytic H₂ Evolution

Furthermore, the photocatalytic activity of the as-synthesized samples was deliberated for hydrogen generation. The photocatalytic reaction was executed in a 100 mL quartz-set reactor. Typically, 20mg of catalyst was put into the reactor containing 20 mL of 10 volume percent aqueous methanol solution (as hole scavenger). 125W Xe-lamp of wavelength larger than 420nm was used as a source of visible-light in photo-reactor and was placed at 1.5 cm distance away from the catalyst. Then, the solution was constantly stirred throughout the reaction to avoid settling of catalyst. Before the light-irradiation, the catalytic mixed suspension undergoes nitrogen gas purging for 30mins to eliminate all the dissolved-oxygen and then for another 30mins in dark condition for the establishment of adsorption-desorption equilibrium. After light irradiation for 1h, the evolved gas was collected by water displacement technique. Afterward, the gas was identified by using GC-7890B coupled with TCD (thermal conductivity detector) and 5 Å molecular sieves. As blank experiment, no hydrogen gas evolution was observed in absence of light and catalyst; authenticate the significance of catalyst and light in a photo-catalytic reaction.

Photocatalytic O₂ Evolution

More to the point, the photocatalytic O₂ evolution ability of pristine BOI, CIS QD and the best composite material (15% CIS-BOI) was studied by using the same light source with different electron scavengers. Here, 20 mg of photocatalyst was taken in the photo-reactor containing 20 mL of 0.05M aqueous AgNO₃ and FeCl₃ solution differently. After light illumination of 1 h, the generated gas was accumulated by water displacement method. Subsequently the gas was collected

by using GC-7890B coupled with TCD (thermal conductivity detector) and 5 Å molecular sieves. As blank experiment, no oxygen gas evolution was observed in absence of light illumination and catalyst; validate the importance of light and catalyst in photo-catalytic reaction.

Fabrication of working electrodes:

Working electrodes were fabricated through dropcast technique by taking 0.5 mg of the asprepared materials. The synthesized material was dispersed into 0.7 mL ethanol with 40 μ L nafion solution. Then the suspension was sonicated for 7min to obtain a homogeneous mixture. After that the solution was dropcasted on the conducting side of a FTO (Fluorine Doped Tin Oxide) of area 1 cm². Then the catalyst loaded FTO was dried in a vacuum-oven overnight at room temperature for electrochemical study.

Fig. S1: EDX pattern of (a) CIS, (b) BOI; Elemental color-mapping image of (c) 15%CIS-BOI composite, (d) Cu, (e) In, (f) S, (g) Bi, (h) O, and (i) I elements.

Fig. S2: XPS Survey of 15%CIS-BOI Composite.

Table: S1 comparison in binding energy of the elements in (a) neat BOI and 15%CIS-BOI, (b) neat CIS and 15%CIS-BOI

(b)

(a)	

Binding	Binding energy
energy	In 15%CIS-
in BOI	BOI
159.2 eV	159.4 eV
164.0 eV	164.6 eV
528.9 eV	529.1 eV
531.4 eV	531.6 eV
532.6 eV	532.8 eV
618.7 eV	618.9 eV
630.2 eV	630.4 eV
	Binding energy in BOI 159.2 eV 164.0 eV 528.9 eV 531.4 eV 532.6 eV 618.7 eV 630.2 eV

Elements	Binding energy in CIS	Binding energy in 15%CIS-BOI
Cu	932.7 eV	932.3 eV
	952.6 eV	952.2 eV
In	445.1 eV	444.6 eV
	452.8 Ev	452.6 eV
S	158.6 eV	158.1 eV
	164.0 eV	163.6 eV

Fig. S3: PL emission spectra of pristine BOI.

<u>H₂ Evolution</u>

Calculation of Apparent Conversion Efficiency (ACE) of 15%CIS-BOI composite¹

 $_{
m ACE} \,=\, rac{Stored\ chemical\ energy}{Incident\ light\ intensity} imes 100$

 \Rightarrow Stored chemical energy = moles of H₂ produced × Δ Hc

=
$$0.1709 \times 10^{-6} \,\mu\text{mols}^{-1} \times 285.8 \,\text{KJmol}^{-1} = 0.0487 \,\text{Js}^{-1} \text{ or W}$$

 \Rightarrow Incident light intensity = 70 mW cm⁻²

 \times (Area of the spherical surface where light falls)

= 70 mW cm⁻² × 3.141 × 1.5 cm × 1.5 cm = 0.4947 W

$$\Rightarrow ACE = \frac{0.0487 W}{0.4947 W} \times 100 = 9.84\%$$

Where, Δ Hc = Heat of combustion of hydrogen = 285.8 kJ/mol.

Calculation of ACE of pristine CIS QD

 $_{
m ACE} \,=\, rac{Stored\ chemical\ energy}{Incident\ light\ intensity} imes 100$

 \Rightarrow Stored chemical energy = moles of H₂ produced × Δ Hc

= $0.0644 \ \mu mols^{-1} \times 285.8 \ kJmol^{-1} = 0.0184 \ Js^{-1}$ or W

 \Rightarrow Incident light intensity = 70 mW cm⁻²

 \times (Area of the spherical surface where light falls)

= 70 mW cm⁻² × 3.141 × 1.5 cm × 1.5 cm = 0.4947 W $\Rightarrow ACE = \frac{0.0184 W}{0.4947 W} \times 100 = 3.72\%$

Where, $\Delta Hc = Enthalpy$ of combustion of $H_2 = 285.8$ kJmol⁻¹.

Calculation of number of H₂ molecule of CIS-BOI composite ¹

Volume of H_2 gas liberated in reaction = 13.2 mL = 0.013 L

Standard gas equation is PV= nRT

(Where n= no. of moles, P= pressure at standard condition= 1 atm, V= volume of gas, R= gas

constant= 0.082 L.atm mol⁻¹ K⁻¹, T= standard temperature= 298 K)

 \Rightarrow n = (0.0138 L \times 1 atm) / (0.082 L.atm mol-1 K⁻¹ \times 298 K)

 \Rightarrow n = 0.0005647 moles h⁻¹

1 mole H₂ gas = 6.023×10^{23} molecules

 $0.0005647 \text{ moles H}_2 \text{ gas} = 6.023 \times 10^{23} \times 0.0005647$

Number of H₂ molecule (*per s*) = $(6.023 \times 10^{23} \times 0.0005647) / (60 \text{ min} \times 60 \text{ s})$

 $= 9.44 \times 10^{16} \text{ per sec}$

Calculation of number of H₂ molecule of pristine CIS QD

Volume of H_2 gas liberated in reaction = 5.2 mL = 0.00521 L

Standard gas equation is PV= nRT

 \Rightarrow n = (0.00521 L \times 1 atm) / (0.082 L.atm mol⁻¹ K⁻¹ \times 298 K)

 \Rightarrow n = 0.0002132 moles h⁻¹

1 mole H₂ gas = 6.023×10^{23} molecules

 $0.0002132 \text{ moles H}_2 \text{ gas} = 6.023 \times 10^{23} \times 0.0002132$

Number of H₂ molecule (*per s*) = $(6.023 \times 10^{23} \times 0.0001686) / (60 \text{ min} \times 60 \text{ s})$

 $= 3.56 \times 10^{16}$ per sec

O₂ Evolution

Calculation of ACE of 15%CIS-BOI composite

 $_{
m ACE} = rac{Stored\ chemical\ energy}{Incident\ light\ intensity} imes 100$

 \Rightarrow Stored chemical energy = moles of O₂ produced × Δ Hc

= $0.1585 \times 10^{-6} \,\mu mols^{-1} \times 285.8 \, KJmol^{-1} = 0.0453 \, Js^{-1} \text{ or } W$

 \Rightarrow Incident light intensity = 70 mW cm⁻²

 \times (Area of the spherical surface where light falls)

= 70 mW cm⁻² \times 3.141 \times 1.5 cm \times 1.5 cm = 0.4947 W

$$\Rightarrow ACE = \frac{0.0453 W}{0.4947 W} \times 100 = 9.16\%$$

Where, Δ Hc = Heat of combustion of H₂ = 285.8 kJ/mol.

Calculation of ACE of pristine BOI MP

 $ACE = \frac{Stored \ chemical \ energy}{Incident \ light \ intensity} \times 100$

 \Rightarrow Stored chemical energy = moles of O₂ produced × Δ Hc

= $0.0531 \,\mu\text{mols}^{-1} \times 285.8 \,\text{kJmol}^{-1} = 0.0151 \,\text{Js}^{-1} \text{ or W}$

 \Rightarrow Incident light intensity = 70 mW cm⁻²

 \times (Area of the spherical surface where light falls)

= 70 mW cm⁻²
$$\times$$
 3.141 \times 1.5 cm \times 1.5 cm = 0.4947 W

$$\Rightarrow ACE = \frac{0.0151 W}{0.4947 W} \times 100 = 3.06\%$$

Where, $\Delta Hc = Enthalpy$ of combustion of $H_2 = 285.8 \text{ kJmol}^{-1}$.

Calculation of number of O₂ molecule of 15%CIS-BOI composite

Volume of O_2 gas liberated in reaction = 12.8 mL = 0.0128 L

Standard gas equation is PV= nRT

(Where n= no. of moles, P= pressure at standard condition= 1 atm, V= volume of gas, R= gas

constant= 0.082 L.atm mol⁻¹ K⁻¹, T= standard temperature= 298 K)

 \Rightarrow n = (0.0128 L \times 1 atm) / (0.082 L.atm mol-1 K⁻¹ \times 298 K)

 \Rightarrow n = 0.0005238 moles h⁻¹

1 mole O₂ gas = 6.023×10^{23} molecules

0.0005238 moles O_2 gas = $6.023 \times 10^{23} \times 0.0005238$

Number of O₂ molecule (*per s*) = $(6.023 \times 10^{23} \times 0.0005647) / (60 \text{ min} \times 60 \text{ s})$

 $= 8.76 \times 10^{16}$ per sec

Calculation of number of O₂ molecule of pristine BOI MP

Volume of O_2 gas liberated in reaction = 4.28 mL = 0.00428 L

Standard gas equation is PV = nRT

 \Rightarrow n = (0.00428 L \times 1 atm) / (0.082 L.atm mol⁻¹ K⁻¹ \times 298 K)

 \Rightarrow n = 0.0001751 moles h⁻¹

1 mole O_2 gas = 6.023 \times 10²³ molecules

0.0001751 moles O_2 gas = 6.023 \times 10²³ \times 0.0001751

Number of O₂ molecule (*per s*) = $(6.023 \times 10^{23} \times 0.0001751) / (60 \text{ min} \times 60 \text{ s})$

$= 2.93 \times 10^{16}$ per sec

Table: S2 Comparison table for photocatalytic H_2 generation of CIS based composites and photocatalytic O_2 evolution of BOI based composites.

Sl.	Type of	Photocatalysts	Light Source/ Scavenger	Hydrogen	Reference
No	catalytic			Evolution	
	reaction			$(\mu molg^{-1}h^{-1})$	
1		CuInS ₂ -CN		192	2
2			300 W Xenon lamp	292	3
		CuInS ₂ - ZnIn ₂ S ₄	$(\lambda \ge 420 \text{ nm})$ 0.25 mol/L		
			Na_2S and 0.35 mol/L Na_2SO_3		
3	uo	ZnIn ₂ S ₄ -rGO-	150 W Xenon lamp	506.2	4
	volut	CuInS ₂	$(\lambda \ge 420 \text{ nm})$ 50 mL		
	s H ₂ Ev		Na_2S/Na_2SO_3 (10 volume %)		
4	vard	CuInS ₂ /TiO ₂ /Mo	300 W Xenon lamp ($\lambda > 420$	$10.34*10^2$	5
	s To	S ₂	nm), 250 mL of 0.1 M Na2S/		
	atalyst		Na2SO3		
5	lotoc	ZnIn ₂ S ₄ /CuInS ₂	1000 W Xenon lamp ($\lambda > 420$	411.17	6
	ed Pl	–QD-Pt	nm), 80 mL of 0.35 M		
	IS-Bas		Na2S/0.25 M Na2SO3		
6		CuInS ₂ QD/ZnS	3 mW LED (λ =405 nm), 1	16.45*10 ²	7

			mL of 0.2M ascorbic acid		
			solution $(pH = 5)$		
7	-	CuInS ₂ /TiO ₂	300 W Xe lamp, 100 mL of	785.4	8
			0.55 M Na ₂ S /0.25 M		
			Na ₂ SO ₃		
8	-	CuInS ₂ QD/ZnS	150 W xenon lamp (λ=400-	15.90*10 ²	9
			700 nm), 5 mL of 0.5 M		
			sodium ascorbate/ascorbic		
			acid		
9	-	Zn dopped-	300 W Xe-lamp (λ=400–780	14.4*10 ³	10
		CuInS ₂ QD	nm),		
			0.2 M Ascorbic Acid at		
			pH=5		
10	-	Ni-catalyzed	3 W LED light ($\lambda = 470$ nm),	11.6 *10 ³	11
		Cu _x In _y S	0.5 M H ₂ A/NaHA		
11	-	Cu _{0.75} In _{0.25} S-BOI	125 W Xe-lamp ($\lambda > 420$	29.436*10 ³	12
		MF	nm), Methanol (10 volume		
			%)		
12		CuInS ₂ QD-BOI	125 W Xe-lamp ($\lambda > 420$	30.774*10 ³	This work
			nm), Methanol (10 volume		
			%)		

13	ls O ₂ Evolution	BiOI-CeO ₂	125 W Hg-lamp (λ>420 nm), 20mL of 0.05M AgNO ₃	8075	13
14	otocatalysts Towarc	RuO ₂ -loaded BiOI	300 W Xenon lamp (λ>420 nm), 0.05M AgNO ₃	2730	14
15	BOI-Based Ph	CuInS ₂ QD/BOI MP	125 W Xe-lamp ($\lambda > 420$ nm), Methanol (10 volume %)	28.544*10 ³	This work

Fig. S4: XRD of 15%CIS-BOI before and after used.

Reference

- S. Mansingh, S. Subudhi, S. Sultana, G. Swain, and K. Parida, ACS Appl. Nano., 2021, 4, 9635-9652.
- 2. Y. Zheng, Y. Chen, B. Gao, J. Chen, Z. Du, and B. Lin, Mater. Lett., 2019, 254, 81-84.
- X. Guo, Y. Peng, G. Liu, G. Xie, Y. Guo, Y. Zhang, and J. Yu, J. Phys. Chem. C, 2020, 124, 5934–5943.
- A. Raja, N. Son, M. Swaminathan and M. Kang, *J. Colloid Interface Sci.*, 2021, 602, 669– 679.
- 5. Y.-J. Yuan, G. Fang, D. Chen, Y. Huang, L.-X. Yang, et al. Dalton Trans., 2018, 47, 5652-5659.
- 6. O. Cavdar, A. Malankowska, D. Amgar, P. Mazierski, J. Luczak, et al. Int. J. Hydrog. Energ., 2021,46, 486-498
- 7. W. Hu, S. Yang, and J. Huang, J. Chem. Phys., 2019, 151, 214705.
- Y. Yana, M. Yanga, H. Shia, C. Wanga, J. Fanb, E. Liua, and X. Hu, *Ceram. Int.* 2019, 45, 6093-6101.
- M. Sandroni, R. Gueret, K. D. Wegner, P. Reiss, J. Fortage, D. Aldakov, and M.-N. Collomb, *Energy Environ. Sci.* 2018,11, 1752-1761.
- 10. X.-Y. Liu, G. Zhang, H. Chen, Haowen. Li, J. Jiang, Y.-T. Long, and Z. Ning, *Nano Research*, 2018, **11**, 1379–1388.
- 11. X.-B. Fan, S. Yu, F. Zhan, Z.-J. Li, and Y.-J. Gao, Chem. Sus. Chem., 2017, 10, 1–7.
- D. Prusty, S. Mansingh, L. Acharya, and L. Paramanik, K. M. Parida, *RSC Adv.* 2022, 12, 1265.
- 13. S. Sultana, S. Mansingh, and K. M. Parida, J. Phys. Chem. C, 2018, 122, 808-819.
- 14. T.-H. Chen, M. Yoshida, S. Tsunekawa, J.-H. Wu, K. L. Andrew, and Hu, C. Catal. Sci. Technol. 2020, 10, 3223-3231.