# High Voltage and Superior Cyclability of Indium Hexacyanoferrate Cathodes for Aqueous Na-ion Batteries Enabled by Superconcentrated NaClO<sub>4</sub> Electrolytes

Xaver Lamprecht,<sup>*a,b,(1)*</sup> Philipp Marzak,<sup>*a,b,(1)*</sup> Alexander Wieczorek,<sup>*a*</sup> Nina Thomsen,<sup>*a*</sup> Jongho Kim,<sup>*a*</sup> Batyr Garlyyev,<sup>*a*</sup> Yunchang Liang,<sup>*c,d*</sup> Aliaksandr S. Bandarenka,<sup>*a,b,\**</sup> Jeongsik Yun,<sup>*a,b,\**</sup>

<sup>*a*</sup> Department of Physics (ECS), Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany

<sup>b</sup> E-Conversion, Schellingstraße 4, 80799 Munich, Germany

<sup>c</sup> Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

<sup>d</sup> Institute of Physics (IPHYS), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

**Contact Information** 

Xaver Lamprecht: <u>xaver.lamprecht@tum.de</u>

Philipp Marzak: <a href="mailto:philipp.marzak@ph.tum.de">philipp.marzak@ph.tum.de</a>

Alexander Wieczorek: <u>alexander.wieczorek@tum.de</u>

Nina Thomsen: <u>nina.thomsen@tum.de</u>

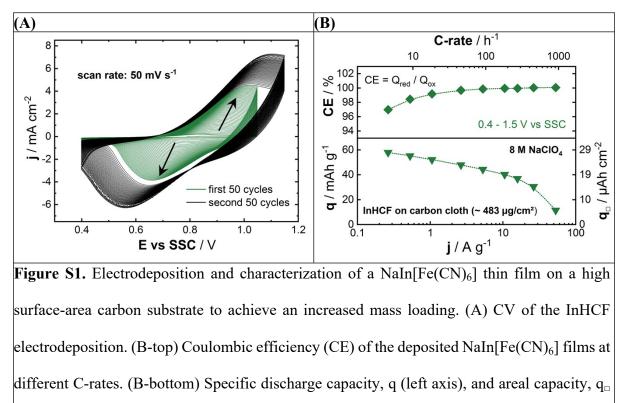
Jongho Kim: jongho.kim@tum.de

Batyr Garlyyev: <u>batyr.garlyyev@tum.de</u>

Yunchang Liang: yunchang.liang@epfl.ch

\* Corresponding Authors

E-Mails: jeongsik.yun@rist.re.kr (J. Yun), bandarenka@ph.tum.de (A. S. Bandarenka). Tel.:


+49 (0) 89 289 12531

#### **Experimental**

#### Electrodeposited NaIn[Fe(CN)<sub>6</sub>] films with high mass loading:

The electrochemical deposition of NaIn[Fe(CN)<sub>6</sub>] thin film on a circular piece ( $\Phi$ = 12 mm) of conductive carbon cloth was performed similar to the method for Au quartz crystals in an electrochemical glass cell in three-electrode configuration under inert argon atmosphere. In short, the substrate was submerged in an aqueous solution containing 2 mM K<sub>3</sub>[Fe(CN)<sub>6</sub>] (99%, Sigma-Aldrich), 2 mM In(III)Cl<sub>3</sub> ( $\geq$  99.9%, Carl Roth) and 0.25 M Na<sub>2</sub>SO<sub>4</sub> ( $\geq$  99%, Sigma-Aldrich). The deposition was performed by means of cyclic voltammetry with a scan rate of 50 mV/s in two different potential ranges (see **Figure** S1; first 50 cycles: 0.4 – 1.05 V *vs* SSC; followed by 50 cycles: 0.4 – 1.15 V *vs* SSC). After the synthesis, the sample was dried in the cell for 1 hour in argon atmosphere. The performance of the InHCF electrode, as shown in **Figure S1B**, was investigated by galvanostatic cycling in 8 M NaClO<sub>4</sub> within the potential range from 0.4 V to 1.5 V *vs* SSC.

An approximate mass loading of 483  $\mu$ g cm<sup>-2</sup> was calculated for the electrode using its measured maximum capacity (28  $\mu$ Ah cm<sup>-2</sup>, see **Figure S1B**) and the experimentally determined specific capacity for InHCF of 58 mAh g<sup>-1</sup>.



(right axis), of the NaIn[Fe(CN)<sub>6</sub>] films at different current densities. An approximate mass loading of 483  $\mu$ g cm<sup>-2</sup> was calculated assuming a specific capacity of 58 mAh g<sup>-1</sup>. The dotted lines in (B) serve as a guide to the eye.