Supporting Information

A metal-free reduced graphene oxide coupled covalent imine network as anode material for lithium ion batteries

Sujan Mondal^a, Santu Ruidas^a, Kruti K. Halankar^b, Balaji P Mandal^b, Sasanka Dalapati^c, Asim Bhaumik^a*

^aSchool of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India

^bChemistry Division, Bhabha Atomic Research Centre, Mumbai - 400085, India

^cDepartment of Materials Science, School of Technology, Central University of Tamil Nadu (CUTN), Thiruvarur-610005, Tamil Nadu, India

Entry	Contents	Page no.
1	Materials and Instruments	S2
2	¹ H and ¹³ C NMR of 1,3,5-triformylphloroglucinol	S3
3	¹³ C NMR of 2,4,6-trihydrazinyl-1,3,5-triazine	S4
4	Thermogravimetric analysis plot of TP-THzT-CIN	S5
5	Pawley refined PXRD profile	S6
6	Comparative experimental PXRD pattern of the Tp-THzT-CIN	S 7
	with its simulated AA and AB packing model	
5	Unit cell parameters and fractional atomistic coordinates of TP-	S 8
	THzT-CIN.	
6	FT-IR spectra of Tp, THzT, rGO, TP-THzT-CIN and CIN-rGO	S9
7	The Raman spectra of rGO and Pristine CIN and CIN-rGO	S10
	composite	
8	Energy dispersive X-ray spectrum of the Tp-THzT-CIN and CN-	S11
	rGO composite	
9	Specific capacities of Tp-THzT-CIN (a) and CIN-rGO composite	S12
	(b) at different current densities.	

Materials and Instruments

Phloroglucinol, mesitylene, benzene-1, 4-dicarboxaldehyde, cyanuric chloride and hydrazine hydrate were purchased from Sigma-aldrich. Dioxane and Acetic acid were obtained from Merck, India. All the chemicals were used without any further purification. Distilled water was used throughout the experiments.

Powder x-ray diffraction patterns were recorded on Bruker AXS D8 Advanced SWAX diffractometer using Ni-filtered Cu Ka (λ = 0.15406 nm) radiation. Fourier transform infrared spectra (FTIR) were measured with a Perkin-Elmer Spectrum 100 spectrophotometer. Solid state magic angle spinning NMR spectra were recorded in a 500 MHz Bruker Advanced II spectrometer at a sample spinning rate of 8 kHz. Nitrogen adsorption and desorption isotherms were measured at 77 K using a Quantachrome Instruments iSorb HP1, surface area analyser. All the samples were degassed at 150 °C for 10 h before the measurement. Thermogravimetric analysis was performed in TGA instrument thermal analyser TA-SDT Q-600, over the temperature range 30 to 800 °C with heating rate of 10 °C min⁻¹ under N₂ flow. Scanning electron microscopy (SEM) images were collected in JEOL JEM 6700F with an electron diffraction spectroscopy (EDS) detector. On a JEOL JEM 2010 transmission electron microscope, HRTEM images of the samples were collected. On an Omicron Nanotechnology XPS 0571 spectrometer, X-ray photoelectron spectroscopy (XPS) was performed. Perkin-Elmer 2400 series-II CHN analyser was used for elemental analysis. Trivista 555 spectrograph (Princeton Instruments) was used to record resonance Raman data with 532 nm excitation from a Kr⁺ laser (Coherent, Sabre Innova SBRC-DBWK).

Figure S1. ¹H NMR of 1,3,5-triformylphloroglucinol in CDCl₃.

Figure S2. ¹³C spectra of 1,3,5-triformylphloroglucinol in CDCl₃.

Figure S3. ¹³C spectra of 2,4,6-trihydrazinyl-1,3,5-triazine in DMSO-d6.

Figure S4. Thermogravimetric analysis plot of TP-THzT-CIN.

Figure S5. Pawley refined (red) powder X-ray profile with experimental (cyan) data of Tp-THzT-CIN.

Figure S6. Experimental PXRD pattern of the Tp-THzT-CIN with simulated PXRD patterns for AA stacking and AB stacking model.

a = b = 12.7288 Å; $c = 3.334$ Å			
$\alpha = \beta = 90^{\circ}; \ \gamma = 120^{\circ}$			
y z			
7 0			
5 0			
7 0			
4 0			
3 0			

Table S1. Unit cell parameters and fractional atomistic coordinates of TP-THzT-CIN.

Figure S7. FT-IR spectra of Tp, THzT, rGO, TP-THzT-CIN and CIN-rGO.

Figure S8. The Raman spectra of rGO and Pristine CIN and CIN-rGO composite.

Figure S9. Energy dispersive X-ray spectrum of the Tp-THzT-CIN and CN-rGO composite.

Figure S10. Specific capacities of Tp-THzT-CIN (a) and CIN-rGO composite (b) at different current densities.