
S1. Supplementary Parameters, Data Sources, and Methodologies 
 

Capacity Expansion and Dispatch Modeling 

GenX is a linear optimization model configured to make system-wide generator investment and 

hourly dispatch decisions for least cost system value (fixed and variable) subject to operational, 

resource availability, and emissions policy, among other, constraints [source] over the course of a 

future planning year. Inherent to the CEM approach are the conditions of perfect operator foresight 

and access to load, operability, and cost information for the period being simulated. The CEM 

framework also assumes perfect competition among competing technology groups and ignorance 

to future market conditions, such as tax incentives and renewable portfolio standards beyond the 

study period (i.e. a rolling horizon). Despite these deviations from actual market conditions and 

outcomes, the strengths of the CEM lie in its ability to approximate the power market operations 

with a high temporal resolution, which is valuable in studying the dynamic behavior of 

decentralized V2G resources and their sensitivities to varying market conditions. 

 

On a regional level, we enable system-wide constraints that govern carbon emissions limits, 

primary and secondary reserve and regulation requirements, and the maximum ancillary service 

contribution that each generation technology can make. In configuring the energy resources, 

thermal generators are subject to ramping, up/down time, and stability constraints; while VRE and 

storage technologies are typically constrained by varying resource availability and intertemporal 

state-of-charge and charge/discharge capacity limits, respectively. To reduce computational 

burden, we use linearized clustering to represent thermal unit commitment decisions.  

 

The optimization problem is solved using Gurobi Optimizer (v0.7.6) on a Linux-based server with 

Intel Xeon Gold 6248 and Intel Xeon Platinum 8260 processors. Additional explanation and 

mathematical formulations of the native GenX model objective function and constraints are 

publicly available in its documentation 9. 

 

Vehicle-to-Building Constraint Formulation (Sensitivity) 

A destination-based topology is used to study locational V2B dispatch behavior and value. This 

includes constraining vehicle servicing by where they are parked (i.e. power injected by cars at 

homes can only service residential loads), limiting V2B service connections to homes and 

workplaces, and disabling ancillary service contributions to the grid. As for the spatial distribution 

of EVs, participating EVs are represented as a single aggregate within each node and link the SOCs 

of EVs parked at homes and workplaces to reflect mobility between locations. 

 

In these cases, we use intermediate auxiliary variables to track and constrain aggregate V2B 

services at the separate residential and commercial load zones. This means that the aforementioned 

aggregate power and energy requirements hold, but are further constrained by location-specific 

parameters. Specifically, the participating EV fleet is still modeled as a single aggregate, using the 

original energy balance and adhering to aggregate-level SOC constraints. Now, however, we 

implement specific V2B energy and charge and discharge availabilities for servicing each load 

center (i.e. the maximum service that can be provide is strictly limited to vehicles at those 

locations, as opposed to the entire connected fleet, which would be characteristic of an unrestricted 

distribution grid). Further, to compute associated energy availabilities as well as account for 

vehicle mobility between destinations, we link the residential and commercial SOCs (state-of-
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charge) such that total fleet energy is distributed equally among all vehicles and proportionally 

across locations. This modified formulation is as follows: 

 

Indices and Sets 
Notation Description 

𝑡 ∈ 𝑇 𝑡 is a time step and 𝑇 is the set of time steps over which grid operations are modeled 

𝑇𝑠𝑡𝑎𝑟𝑡 ∈ 𝑇 1  

𝑇𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 ∈ 𝑇 𝑇𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟  is the set of interior series time steps 

 

Decision Variables 
Notation Description 

Γ𝐸𝑉,𝑡 ∈ ℝ+ Stored energy level of the EV aggregate at time step 𝑡  

Γ𝑙,𝑡
𝑔𝑟𝑖𝑑

∈ ℝ+ Stored energy level of gridded vehicles at time step 𝑡, derived from Γ𝐸𝑉,𝑡 and fraction of grid-

connected vehicles available for V2B 
𝛱𝐸𝑉,𝑙,𝑡 ∈ ℝ+ Energy withdrawn from grid by EV aggregate at location l at time step 𝑡 
Θ𝐸𝑉,𝑙,𝑡 ∈ ℝ+ Energy withdrawn from grid by EV aggregate at location l at time step 𝑡 

 

Parameters 
Notation Description 
𝐷𝑤ℎ𝑒𝑒𝑙,𝑡 Energy consumed by EV aggregate for driving purposes at time step 𝑡 

𝜏𝑝𝑒𝑟𝑖𝑜𝑑  Number of time steps being modeled 

𝑓𝑙,𝑡 Fraction of vehicles at location l at time step 𝑡  

Γ𝑡
𝑚𝑖𝑛 Minimum energy level constraint for EV aggregate at time step 𝑡 

Γ𝑚𝑎𝑥 Maximum energy level constraint for EV aggregate 
∆𝐸𝑉,𝑙,𝑡

𝑝𝑜𝑤𝑒𝑟
 Total grid-connected power capacity of EV aggregate at location l at time step 𝑡 

∆𝐸𝑉,𝑙,𝑡
𝑒𝑛𝑒𝑟𝑔𝑦

 Total grid-connected energy capacity of EV aggregate at location l at time step 𝑡 

𝜂𝐸𝑉
𝑐ℎ𝑎𝑟𝑔𝑒

 Single-trip efficiency of EV charging 

𝜂𝐸𝑉
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

 Single-trip efficiency of EV discharging 

𝜂𝐸𝑉
𝑙𝑜𝑠𝑠 Self-discharge rate per time step per unit of installed capacity, 0 

 

To reflect vehicle mobility, total fleet energy level is approximated as proportionally dispersed 

among vehicle locations as function of fleet fraction at said location. Likewise, for model 

tractability, charging is proportionally distributed amongst vehicles across locations. 

 

Γ𝑙,𝑡
𝑔𝑟𝑖𝑑 =  Γ𝐸𝑉,𝑡 ∗ 𝑓𝑙,𝑡,     𝑡 ∈ 𝑇               (S.1) 

 

First, because the EV aggregate represents a large population of decentralized vehicles and vehicle 

clusters, we permit it to simultaneously charge and discharge. For a given time step, t, the total EV 

state-of-charge (sun of all locational SOC) must remain between a prescribed minimum and the 

physical maximum. Similarly, the net change in aggregate state of charge must not exceed the 

uncharged/available gridded energy capacity at the start of t.  

 

Γ𝑡
𝑚𝑖𝑛 ≤  ∑ Γ𝐸𝑉,𝑙,𝑡𝑙 ≤ Γ𝑚𝑎𝑥, 𝑡 ∈ 𝑇             (S.2) 

 

 ∑ 𝛱𝐸𝑉,𝑙,𝑡𝑙 − ∑ Θ𝐸𝑉,𝑙,𝑡𝑙 ≤  ∑ ∆𝐸𝑉,𝑙,𝑡
𝑒𝑛𝑒𝑟𝑔𝑦

𝑙 − ∑ Γ𝑙,𝑡
𝑔𝑟𝑖𝑑

𝑙 , 𝑡 ∈ 𝑇          (S.3) 

 



The inter-temporal constraints (S.4) and (S.5) relate EV aggregate state-of-charge at the beginning 

and end of time step t to charge/discharge decisions and driving and self-discharge processes. 

Modeling operations over a single contiguous period, the constraint links the storage inventories 

of the first time step and the last time step.   

 

 Γ𝐸𝑉,𝑡 =   Γ𝐸𝑉,𝑙,𝑡−1 −
1

𝜂𝐸𝑉
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒  ∑ Θ𝐸𝑉,𝑙,𝑡𝑙 + 𝜂𝐸𝑉

𝑐ℎ𝑎𝑟𝑔𝑒 ∑ 𝛱𝐸𝑉,𝑙,𝑡𝑙 − 𝐷𝑤ℎ𝑒𝑒𝑙,𝑡 − 𝜂𝐸𝑉
𝑙𝑜𝑠𝑠Γ𝐸𝑉,𝑡−1,       𝑡 ∈ 𝑇𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟         (S.4) 

 

 Γ𝐸𝑉,𝑡 =   Γ𝐸𝑉,𝑙,𝑡+𝜏𝑝𝑒𝑟𝑖𝑜𝑑−1 −
1

𝜂𝐸𝑉
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒  ∑ Θ𝐸𝑉,𝑙,𝑡𝑙 + 𝜂𝐸𝑉

𝑐ℎ𝑎𝑟𝑔𝑒 ∑ 𝛱𝐸𝑉,𝑙,𝑡𝑙 − 𝐷𝑤ℎ𝑒𝑒𝑙,𝑡 − 𝜂𝐸𝑉
𝑙𝑜𝑠𝑠Γ𝐸𝑉,𝑡𝜏𝑝𝑒𝑟𝑖𝑜𝑑−1,       𝑡 ∈ 𝑇𝑠𝑡𝑎𝑟𝑡      (S.5) 

 

For V2B at destination l, without ancillary service, maximum total charge and/or discharging 

rate must be less than power rating OR available stored energy in prior period, whichever is less 

 

𝛱𝐸𝑉,𝑙,𝑡  ≤ ∆𝐸𝑉,𝑙,𝑡
𝑝𝑜𝑤𝑒𝑟

, 𝑡 ∈ 𝑇              (S.6) 

 

𝛱𝐸𝑉,𝑙,𝑡 +  Θ𝐸𝑉,𝑙,𝑡  ≤ ∆𝐸𝑉,𝑙,𝑡
𝑝𝑜𝑤𝑒𝑟, 𝑡 ∈ 𝑇             (S.7) 

 

𝛱𝐸𝑉,𝑙,𝑡  ≤  ∆𝐸𝑉,𝑙,𝑡
𝑒𝑛𝑒𝑟𝑔𝑦

− Γ𝑙,𝑡
𝑔𝑟𝑖𝑑

, 𝑡 ∈ 𝑇             (S.8) 

 

Θ𝐸𝑉,𝑙,𝑡 ≤ Γ𝑙,𝑡
𝑔𝑟𝑖𝑑

, 𝑡 ∈ 𝑇              (S.9) 

 

When modeling cases no ancillary reserved AND only VDR (vehicle demand response), the 

SOC balances (S.2)-(S.5) are unchanged and constraints (S.6)-(S.9) reduce to: 

 

𝛱𝐸𝑉,𝑙,𝑡  ≤ ∆𝐸𝑉,𝑙,𝑡
𝑝𝑜𝑤𝑒𝑟, 𝑡 ∈ 𝑇            (S.10) 

 
Θ𝐸𝑉,𝑙,𝑡  ≤ 0, 𝑡 ∈ 𝑇             (S.11) 

 

Assigning EV Degradation Cost 

For both stationary and V2G storage, we do not model real-time capacity degradation within the 

CEM, as it introduces increased computational complexity. Furthermore, we assume that ISO 

CEM decisions are blind to the choices of how the V2G aggregator utilizes individual vehicles and 

clusters, and so optimizing such decisions are beyond the scope of this work. Rather, to calculate 

a degradation VOM cost for storage and V2G utilization, we combine 3 elements: (1) real world 

EV battery degradation data indicating ~10% EV battery capacity fade per 200,000 miles10, (2) 

LIB capacity costs of ~$119/kWh (see Table S3), and (3) the assumption that V2G participants 

must be compensated at least for the pro-rated cost of capacity lost to degradation from V2G 

cycling. We quantify the magnitude of the fleet-wide degradation cost and its sensitivity to 

different degradation rates per cycle, and resulting differences in degradation costs per cycle and 

per distance. 

 

Low-Carbon Emissions Constraints 

Massachusetts, with roughly half of New England's population and power, has the highest targets 

for emission reduction, with a goal of net zero power emissions by 2050. The remaining states' 

targets are mostly 80% reductions from 1990 levels. Taking the average of net zero and an 80% 



region-wide reduction from 1990 electric power emissions (~100 g/kWh), our main case assumes 

an emissions cap of 50 g/kWh. In addition, our analysis explores a near net zero case (10 g/kWh) 

and an unconstrained case.  

 

 



Table S1. 2050 generator cost and performance assumptions, reported in 2019$. Cost data sourced from the 2021 NREL Annual Technology Baseline 11. 

Performance data sourced across several manufacturer 12,13 and academic 14–17 literature sources . CCFT = Combined Cycle Gas Turbine. CCFT-CCS =  

Combined Cycle Gas Turbine with Carbon Capture and Storage. 

Generator Parameters CCGT CCGT-CCS PV ONSHORE WIND UTILITY BATTERY EV BATTERY 

ATB Classification Natural Gas_FE Natural Gas_FE Solar - Utility PV Land-Based Wind 
Utility-Scale 
Battery Storage - 

ATB Sub-Type Gas-CC-AvgCF 
Gas-CC-CCS-
AvgCF - - 

6Hr Battery 
Storage - 

ATB Technology Innovation Scenario Advanced Advanced Advanced Advanced Advanced - 

Individual plant nameplate capacity (MW) 573 377 - - - - 

Overnight CAPEX ($/MW-ac) 55,700 83,100 29,500 32,200 5,000 - 

Fixed O&M costs ($/MW/year)  27,300 55,800 12,451 24,066 12,150 - 

Variable O&M costs ($/MWh) 2 5 0 0 0 9.48 

Heat Rate  (MMBtu/MWh) 6.36 7.16 - - - - 

Startup fuel use (MMBtu/MW/start) 0.20 0.20 - - - - 

Startup cost ($/MW/start) 62.70 97.44 - - - - 

Ramp up rate (% Nameplate Capacity/hour) 1 1 - - - - 

Ramp down rate (% Nameplate Capacity/hour) 1 1 - - - - 

Minimum stable output (% Nameplate capacity) 0.30 0.50 - - - - 

Minimum up time (hour) 4 4 - - - - 

Minimum down time (hour) 4 4 - - - - 

Maximum capacity contribution to frequency 
regulation up requirements (%) 

67% 67% 0% 0% 100% 100% 

Maximum capacity contribution to frequency 
regulation down requirements (%) 

67% 67% 0% 0% 100% 100% 

Maximum capacity contribution to spinning 
reserves up (%) 

67% 67% 0% 0% 100% 100% 

Maximum capacity contribution to spinning 
reserves down (%) 

67% 67% 0% 0% 100% 100% 

Duration (hour) - - - - 6 - 

Roundtrip Efficiency (%)* - - - - 0.85 0.85 

Self-discharge rate (% / hour) - - - - 0 0 



Table S2. Economic parameters used to annualize investment costs 

Economic Parameters CCGT CCGT-CCS PV WIND STATIONARY_BATTERY EV_BATTERY 

Capital recovery period (years) 30 30 30 30 20 - 

WACC (%) 4.5% 4.5% 4.5% 4.5% 4.5% - 

Capital Recovery Factor (%) 6.1% 6.1% 6.1% 6.1% 7.7% - 

 

Table S3. EV and V2G Parameters 

Parameter Value 

EV share of LDV stock (%) 60 18 

Daily vehicle miles traveled per vehicle 30 19 

Minimum state of charge (%)1 20 

Minimum start of day travel range (miles) 70 

EV fuel economy (miles/kWh)2 2.7 

EV battery capacity (kWh)3 80 

EV battery pack cost (2019$/kWh)4 118.45 

EV cycling degradation rate (%/MWh) 0.1 

V2G VOM (2019$/MWh) 9.5 

Level 1 charge capacity (kW) 1.9 20,21 

Level 2 charge capacity (kW) 10 21–23  

Homes with charger access (%) 90 

Workplaces with charger access (%) 20 
1. Minimum buffer chosen on basis of good charging heuristics 24. 

2. Given uncertainty of future fuel economy, approximated as average of current Tesla Model 3 (~0.25 kWh/mi) and Ford 

F150 lightning (~0.48 kWh/mi) fuel economies 25. 

3. Approximated as average of current average EV battery size (~60 kWh) 26 and Ford F150 lightning standard range (~100 

kWh) 27 battery size. 

4. To avoid overestimation of future price reduction through 2050, and also considering that the degradation/VOM calculation 

does not separately include a discharge or labor fees, a contemporary pack price is used.  

 

 

Table S4. Miscellaneous Optimization Parameters and Constraints 

Parameter   Value 

Gas price (2019$ /MMBtu)   3.85 28  

CCGT Emissions Factor (tons CO2/MMBtu)   0.0593 11 

CCGT-CCS Emissions Factor (tons CO2/MMBtu)   0.0059 11  

Non-served energy cost ($/MW)   9000 17 

Non-served operating reserve cost ($/MW)   1000 17 

Regulation reserve requirement (% of hourly load or 
available VRE generation) 

Load 1 17 

VRE 0.32 17 

Spinning reserve requirement (% of hourly load or 
available VRE generation) 

Load 3.3 (up and down) 17 

VRE 7.95 (up), 2 (down) 17 
 

 

 



Synthetic Demand Profiles 

Synthetic load profiles for the segmented demand centers (residential, commercial, and other) were 

derived using a combination of ISONE, EIA, and ResStock and ComStock datasets. 

 

The shape of the total ISONE base load is characteristic of the region’s 2018 hourly demand profile 
29 and is scaled by a factor of 1.27 to track with anticipated population growth 30. The load share 

of each demand center is based on aggregated state-level consumption data from the EIA. 

Residential, commercial, and ‘other’ loads comprise approximately 44.5%, 40.7%, and 14.7% of 

annual base load demand, respectively 31. The annual load shares are mapped to New England 

electricity hourly load projections derived from NREL’s ResStock and ComStock 2018 simulation 

datasets, which use bottom-up approaches to model fuel-specific energy consumption for state-

level residential and commercial building fleets 32,33. In the absence of additional data, the ‘other’ 

load shape (which includes industrials) is assumed to mirror that of commercial consumption. The 

final synthetic base load profiles are shown in Figure S1. Non-participating EV load data 

(uncontrolled load) is added to the bases loads as a function of fleet size and participation.  

 

 
Figure S1: Hourly base load (no EV demand) profiles in residential, commercial, and ‘other’ demand centers for the 

2018 year data.  

 

Solar and Wind Availability Profiles 

Hourly wind and solar capacity factors for the 2013 weather year were generated using the 

ZEPHYR (Zero-emissions Electricity system Planning with HourlY operational Resolution) 

repository 34. The tool leverages historical data from the Wind Integration National Dataset 

(WIND) 35 Toolkit and the National Solar Radiation Database (NSRDB) 36 to generate hourly 

capacity profiles as a function of geographic position (latitude and longitude). The model assumes 

that all PV generators employ horizontal single-axis tracking with a north-south axis of rotation 

and uses a PV DC-to-AC ratio of 1.3. Wind CF data is derived using power curve data from a 

commercial wind (Gamesa:G126/2500) with a 100 m hub height (Gamesa:G126/2500).  

 

Segmenting the New England region into a mesh of 100 equiangular nodes, individual wind and 

solar capacity profiles were generated then averaged together for a region-wide profile. Source 



code and additional methodological details are available in the ZEPHYR repository and 

accompanying publication supplement 37. 
 

Travel, Storage, and Travel Model Methodology 

Weekday and weekend driving statistics for the New England regions were constructed based on 

the raw trip data and trip weightings from the 2017 National Household Travel Survey (NHTS) 38. 

 

The raw trip data was filtered to include only household LDVs that are driven by the survey 

respondent (to avoid double counting and apply appropriate weightings) as well as discard mis-

entered data. Using the unique household and vehicle identifiers, vehicle trips are chained together 

and mapped to track the state (driving or parked), location, and mileage of every vehicle over a 

24-hour survey period, beginning at 4 AM. When parked, a vehicle can be parked at home, work, 

or some other location. In this case, we consider the V2G participation is only possible at home 

and work locations.  

 

Since we are approximate the participating EV fleet as an aggregate rather than individual EVs, 

we apply statistical household weightings to our results to generate average, aggregate-level 

statistics of vehicle location and energy consumption as a function of time. This process was 

repeated for both weekday and weekend survey periods and the results linked to generate profiles 

for a weeklong period (repeated over the course of the model year). Location data, the fractional 

share of EVs driving or at different locations, is used to model grid-connected power and energy 

capacity, and travel the distribution profile informs when and at what rate energy is consumed via 

driving, as is described in the methods section. 

 

 

 

Figure S2: Fleet statistics showing share of vehicles at different locations and travel demand as a function of time 

(top row). Paired with EV and charger parameters in fleet travel and charger model to generate hourly constraint 

parameters and travel demand profiles (bottom row). 

 



Basis of Minimum Morning EV Charged Range 

For an average gas car: 

Gas tank ~13.5 gal. 39 

Gas pumped per gas station visit ~11.7 gal 40. 

Fuel level at refueling ~ 13.5 - 11.7 ~ 1.8 gal. 

Range ~410 miles 41. 

MPG ~ 410 miles/ 13.5 gal ~ 30 mi/gal. 

Daily VMT ~30 miles 42. 

 

Derived as follows: 

 

- Assume gas station trip occurs in middle of daily VMT, i.e. at 15 mi. 

- Minimum morning fuel level ~ 1.8 gal + 15 mi / 30 mi/gal ~ 2.3 gal 

- Minimum morning range ~ 2.3 gal * 30 mi/gal ~ 70 mi. 

- Assume that EV drivers in this high-EV 2050 behave similarly to car drivers in 2020, i.e. 

are comfortable leaving home for their average 30 miles of daily driving with 70 miles of 

range.  

- Assume that in this future, with ~60% of cars = EVs, home chargers are widely available. 

And thus, that EV range anxiety is much smaller than today. 

- Thus, our minimum morning SOC ~ 70 mi of range. 

 

While our calculation follows empirically-based logic, it is far from a definitive prediction of EV 

driver behavior in 2050. It is plausible that the average EV’s required minimum morning range 

could be significantly lower or higher than 70 miles, because (1) current driver behavior occurs 

without any payment and V2G payments could make drivers more comfortable with lower ranges, 

(2) having many more home chargers than home gas stations could make drivers more comfortable 

with lower ranges, and (3) having many fewer public chargers than public gas stations could make 

drivers demand higher ranges. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



S2. General Supplementary Results 
 

 

 
 
Figure S3: System emissions as a function of V2G participation rate under different emissions constraints. The 2050 

Goal and Low Carbon emissions constraints correspond to caps of 50 gCO2/kWh load and 10 gCO2/kWh load, 

respectively. At high participation rates, the base case’s (2050 goal) cost-optimal solution is no longer constrained by 

the emissions cap. 

 

 
 
Figure S4: Power generation shares of technologies as a function of V2G participation rate and emissions constraints. 

The 2050 Goal and Low Carbon emissions constraints correspond to caps of 50 gCO2/kWh load and 10 gCO2/kWh 

load, respectively. 
 



 
Figure S5: Sensitivity analysis EV battery degradation VOM relative to base case (1x), 9.5 2019$/MWh. As 

anticipated, the higher cost (or penalty) associated with increased V2G power injection/cycling decreases marginal 

value and slows the displacement of storage, but not by a prohibitive amount.   

 

 
 
Figure S6: Day-averaged state of charge profiles for V2G aggregate at different participation levels, compared against 

that of stationary storage in the 2050 emissions base case.  
 

      
Figure S7: Binding Constraints of V2G services at different charger levels and participation rates. EV power capacity 

utilization as a function of participation and charger level (left) and breakdown of fraction of hours V2G is constrained 

(within 5% of binding constraint) by power or energy limitations at different participation rates (right). 



Table S5. Key V2G Utilization Statistics Under Different Participation Rates and Scenarios 

 

 

 
Figure S8: Sensitivity of net savings (left) and installed stationary storage energy capacity (right) as a function of EV 

fleet participation rate and V2G access level. All cases assume a 100% Level 2 charger share. The base case assumes 

90% and 20% home (H) and workplace (W) charger availability, respectively. “Parity” indicates a 90% charger 

accessibility for both home and workplace charging, with all other elements identical to the base case.  
 

S3. Vehicle-to-Building Supplementary Results 
We also formulate a case to evaluate Vehicle-to-Building technology, in which vehicles only serve 

local loads and not the grid. This is because significant shares of stationary charging infrastructure 

are anticipated to be located at residential and commercial real-estate, and we are curious to probe 

bidirectional charging impact in cases where only demand response and injection are available 

(ancillary service capabilities will require specialized equipment for each vehicle as well as 

overcoming regulatory challenges). Serving the spatial load profiles (Figure 1), we again assume 

that adequate distribution infrastructure is installed within the region and do not model line losses. 

As for the spatial distribution of EVs, participating EVs are represented as a single aggregate 

within each node and link the SOCs of EVs parked at homes and workplaces to reflect mobility 

between locations.  



 

Figure S9: installed stationary storage energy capacity (left), marginal vehicle service value (center), V2B net savings 

(right) as a function of EV fleet participation rate and charging infrastructure. L1, L1/L2, and L2 indicate 100:0, 

50:50,and 0:100 Level 1/Level 2 charger shares, respectively. VDR (L2) indicates demand response only with all 

Level 2 charging. 

Figure S9 shows V2B net savings (left), marginal vehicle service value (center), and installed 

stationary storage energy capacity (right) as a function of EV fleet participation rate and charging 

infrastructure. In the base V2B scenario (100% Level 2 chargers), despite the reductions in 

available power capacities and load accessibility and no ancillary servicing, V2B still realizes net 

savings and storage displacements exceeding 20% and 90%, respectively (Figure 10). As V2B 

participation increases, the remaining stationary storage increasingly derives value via the 

ancillary service markets, satisfying as much as half of regulation and reserve requirements. 

 

Figure S10: Daily averaged net service profiles of the participating V2B EV aggregate at residential (top row) and 

commercial (middle row) areas, as well as all areas in the VDR-only case. Positive values indicate net charging and 

negative values indicate net injection to the grid. The shaded region is the middle 90th percentile of service values. 

When restricted to VDR only, similar daytime charging patterns are observed, but with less overall energy throughput 

since the charged energy only serves EV travel demand. 



In Figure S10, we examine utilization patterns to understand optimal V2B dispatch as a function 

of location and service type. In residential areas, the vehicle aggregate strictly charges during 

midday hours, coinciding with solar generation profiles and net charging on the order of 10 GW 

at high participation levels. Evening charging is not entirely eliminated, however, due to daytime 

charging constraints (gridded capacity peaks in the evenings) and variation among daily load 

profiles. Power is injected back to the grid when base and uncontrolled EV loads peak in the 

evening. EVs in commercial areas offer less injection to the local load. Peak commercial demand, 

on average, coincides with midday VRE solar generation and there is less connected EV capacity 

in the evenings. Yet, midday commercial charging is still valuable because it indirectly shapes 

evening residential loads. Vehicle mobility effectively shuttles stored energy between locations 

and results indicate that it is most valuable to shave evening peaks, if at all. Restricted to VDR 

alone, similar daytime charging patterns are observed, but with less overall energy throughput 

since the charged energy only serves EV travel demand.  

Given the relatively small amount of V2B power serviced to commercial loads (Table S6), we 

assess the impact of confining V2B infrastructure to only residential areas while still allowing 

charging/demand response at commercial load centers. We observe that given sufficient residential 

charging infrastructure, there is minimal impact on stationary storage displacement and overall 

system value, which suggests that the system is not necessarily constrained against maximum 

natural gas capacity (i.e. can utilize available wind and stationary storage) when servicing 

commercial loads with V2B. Only when residential charge capacity is significantly lower are the 

effects significant. Of course, much of this is a function of relatively flat demand profiles and little 

charge capacity to begin with, so we anticipate the infrastructure implications to change in cases 

of high work charging access and/or if commercial sectors exhibit more regular load peaks with 

increased electrification.  

 

Table S6. Key V2B Utilization Statistics at Different Participation Rates. 

 

Table S6 also shows that power injection value for V2B is primarily derived from shaving 

residential loads, where evening load peaks are most prevalent and are complementary to high 

daytime VRE generation. At low participation rates unsupervised charging dominates evening 

residential loads while commercial loads typically fluctuate less hour-to-hour and have virtually 



zero evening EV charging. The power service share becomes more equitable at higher participation 

when charging demand is distributed. For these cases, during hours when not operating against a 

marginal increase in natural gas dispatch, the values of V2B servicing a base load in different zones 

are equal from the system operator’s perspective. Likewise, we also demonstrate that commercial 

area V2B capabilities (as opposed to VDR) have minimal impact on stationary storage 

displacement and overall system value (breakdown provided in Figure S11). Thus, one should 

closely evaluate the ROI of bidirectional infrastructure in these areas. Note that like the main cases, 

this result is a function of case study assumptions and parameters, with relatively flat commercial 

load profiles and low charger access to begin with (20% access). We anticipate the infrastructure 

implications to change in cases of high work charging access and/or if commercial sectors exhibit 

more dramatic load peaks with increased electrification 

 
 
Figure S11: Total storage displacement (left) and overall system value savings (right) as a function of residential 

and workplace charging infrastructure across different participation rates. 
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