Modulating oxygen vacancies of CeO_2 nanospheres by Zn-doping: an efficient electrocatalyst for N_2 reduction under ambient conditions Yuyao Ji,^{a§} MIngyu Yang,^{a§} Wendong Cheng,^a Chengbo Li^b and Xingquan Liu^{a*} ^aSchool of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China. ^bCollege of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China. ## **Content:** | Supplementary Experimental Section | S2 | |------------------------------------|-----| | Supplementary Figures | S5 | | Supplementary Tables. | S12 | | References | S13 | ## **Experimental section** Materials: Cerous(III) nitrate hexahydrate, cerium oxide, and cobalt (II) nitrate hexahydrate were purchased from Beijing Chemical Corporation. Nickel (II) nitrate hexahydrate, copper (II) nitrate trihydrate zinc nitrate hexahydrate, and sodium hydroxide pellets were procured from Beijing Chemical Corporation. Absolute ethanol was procured from Changshu Hongsheng Fine Chemical Co. Ltd. China. Distilled water was produced in our laboratory through a distillation unit. **Preparation of Zn-CeO₂:** The preparation process of the Zn-CeO₂ composite is as follows: 2 mmol Ce(NO₃)₃·6H₂O and 0.2 mmol metal precursor Zn were dissolved in 5 mL of distilled H₂O in a 50 mL Teflon-lined stainless-steel autoclave. Then, 9 g of NaOH was dissolved in 30 mL of distilled H₂O and added dropwise to the above solution under constant stirring and continued agitation for 20 min. Then, Teflon lined stainless-steel high-pressure reactor was fully tightened and kept at 95 °C for 24 h in an oven (for the synthesis of cube morphology, the autoclave was kept at 180 °C for 24 h). The reactor was allowed to cool to room temperature and the catalyst was washed numerous times with H₂O and then ethanol until the pH reached 7. The resulting catalyst was dried at 80 °C for 10 h and then calcined at 600 °C @ 5 °C min⁻¹ for 5 h under static air. Pure CeO₂ and ZnO catalysts were prepared by a similar procedure. **Preparation of Zn-CeO₂ electrode**: 10 mg Zn-CeO₂ powders and 40 μ L of Nafion solution (5 wt%) were dispersed in 960 μ L mixed solution containing 720 μ L ethanol and 240 μ L H₂O by 2 h sonication to form a homogeneous ink. Then, 10 μ L Zn-CeO₂ was loaded on a CP with area of 1 x 1 cm² and dried under ambient condition. Characterizations: XRD patterns were obtained from a Shimazu XRD-6100 diffractometer with Cu Kα radiation (40 kV, 30 mA) of wavelength 0.154 nm (Japan). SEM images were collected from the tungsten lamp-equipped SU3500 scanning electron microscope at an accelerating voltage of 20 kV (HITACHI, Japan). TEM images were obtained from a Zeiss Libra 200FE transmission electron microscope operated at 200 kV. XPS measurements were performed on an ESCALABMK II X-ray photoelectron spectrometer using Mg as the exciting source. The UV-Vis absorbance spectra were measured on a SHIMADZU UV-1800 UV-Vis spectrophotometer. energy dispersive X-ray analysis (EDX), and the Brunner–Emmet–Teller method (BET, ASAP 2020, Micromeritics). Electrochemical measurements: Before NRR measures, the Nafion proton exchange film was pretreated by heating in 3% H₂O₂ solution, 0.5 M H₂SO₄ and ultrapure water at 80 °C for 1.5 h, respectively. Electrochemical measurements were carried out on a CHI 660E electrochemical analyzer (CHI Instruments, Inc., Shanghai) in a three-electrode system using Zn-CeO₂/CP or CP as working electrode, Ag/AgCl as reference electrode, and graphite rod as counter electrode. All experiments were performed at ambient conditions. For N₂ reduction reaction experiments, the HCl electrolyte (0.1 M) was bubbled with high-purity N₂ (99.999%) for 30 min before measurement. All potentials reported in this work were calibrated to RHE, using the following equation: $$E (RHE) = E (Ag/AgC1) + (0.197 + 0.059 pH) V$$ **Determination of NH₃:** NH₃ concentration was determined by the indophenol blue method. The method contains the following details: 2 mL HCl post-NRR electrolyte was collected from the cathodic chamber. Then, 2 mL of 1 M NaOH solution containing 5% salicylic acid and 5% sodium citrate was added into this solution. After mixing and standing at room temperature for 2 h, the UV-Vis absorption absorption spectrum was measured at a wavelength of 655 nm. The concentration-absorbance curves were calibrated using standard NH₄Cl solution (0.1 HCl solution as mother solution) with a serious of concentrations. The fitting curve (y = 0.475x + 0.066, $R^2 = 0.999$) shows good linear relation of absorbance value with NH₃ concentration by three times independent calibrations. **Determination of N₂H₄:** Concentration of N₂H₄ in the electrolyte was estimated by the method of Watt and Chrisp.² Typically, a mixture solution containing p-C₉H₁₁NO (5.99 g), concentrated HCl (30 mL) and ethanol (300 mL) was used as a color reagent. In detail, 2 mL electrolyte removed from the cathodic chamber was added into 2 mL above prepared color reagent. After standing the mixture solution at room temperature for 20 min, UV-Vis absorption spectra were measured at a wavelength of 455 nm. The concentration-absorbance curves were calibrated using standard N₂H₄ solutions with a series of concentrations for three independent calibrations. Calculations of NH₃ yield and FE: NH₃ yield was calculated using the following equations: $$R_{NH3} \left(\mu g \; h^{-1} \; m g_{cat.}^{-1}\right) = \left(c_{NH3} \times V\right) / \left(17 \times t \times m\right)$$ Where c_{NH3} (µg mL⁻¹) is the measured NH₃ concentration; V (mL) is the volume of electrolyte (in our work 35 mL); t (s or h) is the reaction time; A (cm²) is the geometric area of the cathode; m (mg) is the mass loading of catalyst on CP. FE was calculated according to following equation: $$FE = 3 \times F \times c_{NH^3} \times V \: / \: (17 \times Q) \times 100\%$$ Where F is Faraday constant (96500 C mol⁻¹); Q (C) is the quantity of applied electricity. Computational details: The spin polarization DFT is calculated by using photonic crystals. The plane wave based Vienna ab initio simulation software package (VASP) is extended Perdew Burke ernzerhof (PBE) functional gradient approximation method is used to describe the exchange related interactions between electrons.³ Zn 2p and Ce 3d states are 3.5 eV and 2.0 eV, respectively. Van Der Waals (VDW) correction uses Grime method (DFT-D3) to analyze the interaction molecules/atoms and matrix among single factors.⁴ The energy cutoff of the plane wave basis sets the expansion to 500 eV, and the atomic relaxation continues until the energy of the force acting on the atom is less than 0.01 eV Å-1. The surface of CeO₂ (101) was simulated using a 2×2 slab, there are four triple layers (O-Ce-O) on the top, and the triple layers at the bottom are fixed, with a vacuum interval of 15 Å. The Brillouin area has a sampling volume of 3×3×1. The central k-point grid, the width of the coating scheme in the electronic state using the Fermi model is 0.1 eV. Fig. S1. Raman shift spectra of Zn-CeO₂ and pure CeO₂. **Fig. S2.** Room-temperature ESR spectra of Zn-CeO₂ and pure CeO₂. **Fig. S3.** (a) Chronoamperometry curves of Zn-CeO₂ in a 0.1 M Na₂SO₄ solution at different potentials. (b) UV-Vis absorption spectra of the electrolytes stained with indophenol indicator after NRR electrolysis at different potentials for 2 h. **Fig. S4.** (a) UV-Vis absorption spectra of indophenol assays with NH⁴⁺ concentrations after incubated for 2 h at room temperature. (b) Calibration curve used for calculation of NH⁴⁺ concentrations. Fig. S5. (a) UV-Vis absorption spectra of various N_2H_4 concentrations after incubated for 15 min at room temperature. (b) Calibration curve used for calculation of N_2H_4 concentrations. Fig. S6. UV-Vis absorption spectra of the electrolytes estimated by the method of Watt and Chrisp before and after 2 h electrolysis in N_2 atmosphere at -0.2 V. Fig. S7. The amount of NH₃ detected in the Ar-saturated electrolyte at each potential. Fig. S8. Spin magnetic moment (M in $\mu\,B$) of atomic sites before and after Zn doping. Fig. S9. DOS of Zn active site before and after N_2 adsorption in CeO_2 (111) surface. **Fig. S10.** Selected bond lengths (Å) are given. Red and blue isosurfaces (0.001 a.u.) represent charge accumulation and depletion, respectively. **Table S1.** Comparison of electrocatalytic N_2 reduction performance for Zn-CeO $_2$ with other aqueous-based electrocatalysts under ambient conditions. | Catalyst | Electrolyte | NH ₃ yield rate
(μg h ⁻¹ mg _{cat.} ⁻¹) | FE (%) | Ref. | |--|---------------------------------------|--|----------|-----------| | Zn-CeO ₂ | 0.1 M Na ₂ SO ₄ | 29.01 | 10.3 | This work | | α-Au/CeO _x -RGO | - | 8.3 | 10.1 | 5 | | TA-reduced Au/TiO ₂ | - | 21.4 | 8.11 | 6 | | MoN NA/CC | - | 18.42 | 1.15 | 7 | | MoO ₃ | - | 29.43 | 1.9 | 8 | | VN/TM | - | 5.14 | 2.25 | 9 | | Bi ₄ V ₂ O ₁₁ /CeO ₂ | - | 23.21 | 1.16 | 10 | | Mo ₂ N | - | 78.4 | 4.5 | 11 | | NPC | 0.05 M H ₂ SO ₄ | 23.8 | 1.42 | 12 | | CuO/RGO | 0.1 M Na ₂ SO ₄ | 11.02 | 3.9 | 13 | | TiO ₂ -rGO | 0.1 M Na ₂ SO ₄ | 15.13 | 3.3 | 14 | | γ-Fe ₂ O ₃ | 0.1 M KOH | 0.212 | 1.9 | 15 | | Fe ₂ O ₃ nanorods | 0.1 M Na ₂ SO ₄ | 15.9 | 0.94 | 16 | | Co-PCN | 0.1 M Na ₂ SO ₄ | 49.69 | 32.2 | 17 | | Ce-Bi ₂ WO ₆ | 0.1 M HCI | 22.5 | 15.9 | 18 | | Mo-W ₁₈ O ₄₉ | 0.1 M Na ₂ SO ₄ | 5.3 | 12.1 | 19 | | FeSC | 0.1 M KOH | 8.8±1.3 | 6.1± 0.9 | 20 | | h-BNNS | 0.1 M HCI | 22.4 | 4.7 | 21 | | Au NPs/CoOx | 0.05 M H ₂ SO ₄ | 15 | 19 | 22 | | Fe-MoS ₂ | 0.05 M K ₂ SO ₄ | 8.63 | 18.5 | 23 | ## References - D. Zhu, L. Zhang, R. E. Ruther and R. J. Hamers, Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. *Nat. Mater.*, 2013, **12**, 836–841. - G. W. Watt and J. D. Chrisp, Spectrophotometric method for determination of hydrazine. *Anal. Chem.*, 1952, **24**, 2006–2008. - G. Kresse and J. Furthmüller, Efficient iterative schemes for Ab initio total-energy calculations using a plane-wave basis set. *Phys. Rev. B.*, 1996, **54**, 11169. - S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate *ab initio* parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.*, 2010, **132**, 154104. - S. Li, D. Bao, M. Shi, B. Wulan, J. Yan and Q. Jiang, Amorphizing of Au nanoparticles by CeOx–RGO hybrid support towards highly efficient electrocatalyst for N₂ reduction under ambient conditions *Adv. Mater.*, 2017, **29**, 1700001. - M. Shi, D. Bao, B. Wulan, Y. Li, Y. Zhang, J. Yan and Q. Jiang, Au sub-nanoclusters on TiO₂ toward highly efficient and selective electrocatalyst for N₂ conversion to NH₃ at ambient conditions. *Adv. Mater.*, 2017, **29**, 1606550. - L. Zhang, X. Ji, X. Ren, Y. Luo, X. Shi, A. M. Asiri, B. Zheng and X. Sun, A novel strategy to synthesize Au nanoplates and their application for enzymeless H₂O₂ detection. *ACS Sustainable Chem. Eng.*, 2018, **6**, 9550–9554. - J. Han, X. Ji, X. Ren, G. Cui, L. Li, F. Xie, H. Wang, B. Li and X. Sun, MoO₃ nanosheets for efficient electrocatalytic N₂ fixation to NH₃. *J. Mater. Chem. A*, 2018, **6**, 12974–12977. - 9 R. Zhang, Y. Zhang, X. Ren, G. Cui, A. M. Asiri, B. Zheng and X. Sun, High-efficiency electrosynthesis of ammonia with high selectivity under ambient conditions enabled by VN nanosheet array. *ACS Sustainable Chem. Eng.*, 2018, **6**, 9545–9549. - 10 C. Lv, C. Yan, G. Chen, Y. Ding, J. Sun, Y. Zhou and G. Yu, An Amorphous Noble Metal-free electrocatalyst that enables nitrogen fixation under ambient conditions *Angew. Chem.*, *Int. Ed.*, 2018, **57**, 6073–6076. - 11 X. Ren, G. Cui, L. Chen, F. Xie, Q. Wei, Z. Tian and X. Sun, Electrochemical N₂ fixation to NH₃ under ambient conditions: Mo₂N nanorod as a highly efficient and selective catalyst. *Chem. Commun.*, 2018, **54**, 8474–8477. - Y. Liu, Y. Su, X. Quan, X. Fan, S. Chen, H. Yu, H. Zhao, Y. Zhang and J. Zhao, Facile ammonia synthesis from electrocatalytic N₂ reduction under ambient conditions on N-doped porous carbon. ACS Catal., 2018, 8, 1186–1191. - F. Wang, Y. Liu, H. Zhang and K. Chu, CuO/Graphene nanocomposite for nitrogen reduction reaction. *ChemCatChem*, 2019, **11**, 1441–1447. - 14 X. Zhang, Q. Liu, X. Shi, A. M. Asiri, Y. Luo, X. Sun and T. Li, Zhang, TiO₂ nanoparticles-reduced graphene oxide hybrid: an efficient and durable electrocatalyst toward artificial N₂ fixation to NH₃ under ambient conditions. *J. Mater. Chem. A*, 2018, **6**, 17303–17306. - J. Kong, A. Lim, C. Yoon, J. Jang, H. Ham, J. Han, S. Nam, D. Kim, Y.-E. Sung, J. Choi and H. S. Park, Electrochemical synthesis of NH₃ at low temperature and atmospheric pressure using a Fe₂O₃ catalyst. ACS Sustainable Chem. Eng., 2017, 5, 10986–10995. - 16 X. Xiang, Z. Wang, X. Shi, M. Fan and X. Sun, Ammonia synthesis from electrocatalytic N₂ reduction under ambient conditions by Fe₂O₃ nanorods. *ChemCatChem*, 2018, **10**, 4530–4535. - J. Yu, X. Ren, J. Lu, H. Bai, X. Wang, J. Hu and H. Huang, Cobalt doping of porous graphitic carbon nitride with Co-N bonds promotes electrocatalytic N₂ fixation under ambient conditions. J. Alloys Compd., 2022, 902, 163862. - 18 X. Yang, Y. Ma, Y. Liu, K. Wang, Y. Wang, M. Liu, X. Qiu, W. Li and J. Li, Defect-induced Ce-doped Bi₂WO₆ for efficient electrocatalytic N₂ reduction. ACS Appl. Mater. Interfaces, 2021, 13, 19864–19872. - M. Yang, R. Huo, H. Shen, Q. Xia, J. Qiu, A. W. Robertson, X. Li and Z. Sun, Multiphasic 1T@2H MoSe₂ as a highly efficient catalyst for the N₂ reduction to NH₃. ACS Sustain. Chem. Eng., 2020, 8, 2957–2963 - M. I. Ahmed, L. J. Arachchige, Z. Su, D. B. Hibbert, C. Sun and C. Zhao, Nitrogenase-inspired atomically dispersed Fe-S-C linkages for improved electrochemical reduction of dinitrogen to ammonia. *ACS Catal.*, 2022, **12**, 1443–1451. - Y. Zhang, H. Du, Y. Ma, L. Ji, H. Guo, Z. Tian, H. Chen, H. Huang, G. Cui, A. M. Asiri, F. Qu, L. Chen and X. Sun, Hexagonal boron nitride nanosheet for effective ambient N₂ fixation to NH₃. Nano Res., 2019, **12**, 919–924. - J. Zheng, Y. Lyu, M. Qiao, J. P. Veder, R. D. Marco, J. Bradley, R. Wang, Y. Li, A. Huang, S. Jiang and S. Wang, Tuning the electron localization of gold enables the control of nitrogen-to-ammonia fixation. Angew. Chem. Int. Ed., 2019, 58, 18604–18609. - H. Su, L. Chen, Y. Chen, R. Si, Y. Wu, X. Wu, Z. Geng, W. Zhang, and J. Zeng, Single atoms of iron on MoS₂ nanosheets for N₂ electroreduction into ammonia. Angew. Chem., Int. Ed., 2020, **59**, 20411–20416.