## **Supporting Information:**

Alkaline hydrogel electrolyte from biosourced chitosan to enhance the rate capability and energy density of carbon-based supercapacitors

Sirine Zallouz<sup>1,2</sup>, Jean-Marc Le Meins<sup>1,2</sup>, Camélia Matei Ghimbeu<sup>1,2,3,\*</sup>

<sup>1</sup> Université de Haute-Alsace, CNRS, Institut de Science des Matériaux de Mulhouse (IS2M)

UMR 7361, F-68100 Mulhouse, France

<sup>2</sup> Université de Strasbourg, F-67081 Strasbourg, France

<sup>3</sup> Réseau sur le stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039

Amiens Cedex, France

\*Corresponding author:

E-mail address: camelia.ghimbeu@uha.fr (C. Matei Ghimbeu).

Tel: + 33 (0) 3 89 60 87 43



Figure S1: Pictures of chitosan-KOH gel electrolyte preparation, showing the main involved steps: a) chitosan polymer host + solvent solution: reticulation b) solution after 2 M KOH electrolyte addition; c) solution casting in Petri dish; d) hydrogel cutting.

For the textural properties analysis, the samples (~100 mg) were outgassed under vacuum at 300 °C for 12 h on the degassing port and subsequently for another 2 h on the analysis port at the same temperature, then we subjected them to N<sub>2</sub> adsorption. The specific surface area (S<sub>BET</sub>) was calculated from the linear plot at the relative pressure range of 0.05-0.3 using the BET (Brunauer-Emmett-Teller) model. The micropore volume (V<sub>micro</sub>) was determined by the Dubinin-Radushkevich (DR) equation, while the mesopore volume (V<sub>meso</sub>) was obtained by substracting the micropore volume from the total pore volume (V<sub>T</sub>) of N<sub>2</sub> adsorbed at relative pressure P/P<sub>0</sub> equal to 0.95. Pore size distribution was evaluated using the adsorption isotherm branch and the 2D-NLDFT (non-local density functional theory) heterogeneous surface pore model for carbon materials explored in SAIEUS software.<sup>1</sup>

Table S1: Textural properties of activated carbon Norit R3 extra using N2 adsorption at 77 K.

| Material       | $S_{BET} (m^2 g^{-1})$ | $V_{T}$ (cm <sup>3</sup> g <sup>-1</sup> ) | $V_{micro}$ (cm <sup>3</sup> g <sup>-1</sup> ) | $V_{meso}$ (cm <sup>3</sup> g <sup>-1</sup> ) |  |  |
|----------------|------------------------|--------------------------------------------|------------------------------------------------|-----------------------------------------------|--|--|
| Norit R3 Extra | 1224                   | 0.56                                       | 0.47                                           | 0.09                                          |  |  |



Figure S2: Chemical structure of chitosan.



Figure S3: (a) <sup>1</sup>H NMR (inset: <sup>1</sup>H NMR from 3 - 4 ppm), (b) <sup>13</sup>C NMR of precursors used in the preparation of chitosan-KOH gel electrolyte.

The conductivity ( $\sigma$ ) was calculated using the following formula:

$$\sigma = \frac{L}{R * A}$$

Where L is the thickness of the self-standing gel-electrolyte (cm), R is the resistance given by EIS ( $\Omega$ ) and A is the surface of the self-standing gel-electrolyte in contact with electrode (cm<sup>2</sup>). The result is given in S cm<sup>-1</sup>. The resistance R has been measured by EIS in several places and the average value has been used.



Figure S4: Capacitance vs. frequency for activated carbon using different chitosan-KOH electrolyte solution aged for different time periods and liquid KOH 2 M.



Figure S5: Electrochemical performance with of carbon-carbon supercapacitor using chitosan-KOH gel electrolyte (21 d) at a voltage of 0.8 V; (a) cyclic voltammetry at different sweep rates; (b) galvanostatic charge discharge at different current densities; (c) Nyquist plot from electrochemical impedance spectroscopy; (d) capacitance vs frequency from electrochemical impedance spectroscopy.



Figure S6: Electrochemical performance with of carbon-carbon supercapacitor using chitosan-KOH gel electrolyte (4 d) at a voltage of 1.3 V: (a) cyclic voltammetry at different sweep rates; (b) Rate capability at different current densities (inset: galvanostatic charge discharge at different current densities); (c) Nyquist plot from electrochemical impedance spectroscopy; (d) Capacitance vs frequency from electrochemical impedance spectroscopy.



Figure S7: Pore size distribution using the 2D-NLDFT heterogeneous surface carbon model in the SAIEUS software for (a) pristine and positive electrodes; (b) pristine and negative electrodes after voltage window widening to 1.4 V.

Table S2: Electrochemical performance of different electrochemical capacitors using differentgel electrolytes based on aqueous electrolytes.

| Polymer/  | Electrolyte                        | Gel       | Type of         | Electrode  | Voltage | Capacitance              | Energy              | References |
|-----------|------------------------------------|-----------|-----------------|------------|---------|--------------------------|---------------------|------------|
| Gelling   | <br> <br> <br> <br>                | thickness | electrochemical | active     | window  | at current               | and                 |            |
| agent     |                                    |           | cell            | material   | (V)     | load                     | power               |            |
|           |                                    |           |                 |            |         |                          |                     |            |
|           |                                    |           |                 |            |         |                          |                     |            |
| Polyvinyl | $Na_2SO_4$ 1                       | 300 µm    | Symmetric two   | Microporo  | 1.8     | 135 F g <sup>-1</sup> at | 13 W h              | 2          |
| alcohol   | М                                  |           | and three       | us         |         | 1 A g <sup>-1</sup>      | kg <sup>-1</sup> at |            |
| (PVA)     |                                    |           | electrode       | activated  |         |                          | 100 W               |            |
|           |                                    |           |                 | carbon     |         |                          | kg-1                |            |
|           |                                    |           |                 |            |         |                          |                     |            |
| Agar      | K <sub>2</sub> SO <sub>4</sub> 0.5 | 200 µm    | Symmetric two   | Activated  | 1.6     | 100 F g <sup>-1</sup> at | 8 W h               | 3          |
|           | М                                  |           | and three       | carbon     |         | 1 A g <sup>-1</sup>      | kg <sup>-1</sup> at |            |
|           |                                    |           | electrode       | Kynol      |         |                          | 100 W               |            |
|           |                                    |           |                 | 507-20     |         |                          | kg-1                |            |
|           |                                    |           |                 |            |         |                          |                     |            |
| Polyvinyl | H <sub>3</sub> PO <sub>4</sub> 1.5 | -         | Symmetric solid | Single     | 0.8     | 45 F g <sup>-1</sup> at  | 0,9 W               | 4          |
| alcohol   | М                                  |           | state           | walled     |         | 0.1 A g <sup>-1</sup>    | h kg-1              |            |
| (PVA)     | <br> <br> <br> <br>                |           | supercapacitor  | carbon     |         |                          | at 10,5             |            |
|           |                                    |           |                 | nanotubes  |         |                          | W kg <sup>-1</sup>  |            |
|           |                                    |           |                 |            |         |                          |                     |            |
| PVA       | KOH 0.5                            | -         | Symmetric quasi | Hierarchic | 1       | 177 F g <sup>-1</sup> at | 7.3 W               | 5          |
|           | М                                  |           | solid state     | al porous  |         | 0.1 A g <sup>-1</sup>    | h kg-1              |            |
|           |                                    |           | supercapacitor  | self-doped |         |                          | at                  |            |
|           |                                    |           |                 | carbon     |         |                          | 125.1               |            |
|           | <br>                               |           |                 |            |         |                          |                     |            |

|          |                                   | l<br>I    |                 |           | 1                                                                                           |                          | W ko-1              |           |
|----------|-----------------------------------|-----------|-----------------|-----------|---------------------------------------------------------------------------------------------|--------------------------|---------------------|-----------|
|          | <br> <br>                         |           |                 |           |                                                                                             |                          | ·· • • • • • •      |           |
| Chitosan | Li <sub>2</sub> SO <sub>4</sub> 1 | ~100 µm   | Symmetric quasi | Activated | 1.4                                                                                         | 31.89 F g <sup>-1</sup>  | 8.7 Wh              | 6         |
|          | М                                 |           | solid state     | carbon    |                                                                                             | at 0.5 A g <sup>-1</sup> | kg <sup>-1</sup> at |           |
|          |                                   |           | supercapacitor  |           |                                                                                             |                          | 350.3               |           |
|          |                                   |           |                 |           | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                          | W kg <sup>-1</sup>  |           |
| Chitosan | KOH 1 M                           | ~ 100     | Symmetric quasi | Carbon    | 0.9                                                                                         | 39.11 F g <sup>-1</sup>  | 4.39                | 7         |
|          |                                   | μm        | solid state     | cloth     |                                                                                             | at 0.5 A g <sup>-1</sup> | Wh kg⁻              |           |
|          |                                   |           | supercapacitor  |           |                                                                                             |                          | <sup>1</sup> at     |           |
|          |                                   |           |                 |           |                                                                                             |                          | 224.99              |           |
|          |                                   |           |                 |           |                                                                                             |                          | W kg <sup>-1</sup>  |           |
| Chitosan | KOH 2 M                           | 200 µm    | Symmetric two   | Activated | 1.3                                                                                         | 109 F g <sup>-1</sup> at | 5.1 W               | This work |
|          |                                   |           | electrodes      | carbon    |                                                                                             | 0.1 A g <sup>-1</sup>    | h kg-1              |           |
|          |                                   |           |                 | Norit R3  |                                                                                             |                          | at 32.5             |           |
|          |                                   |           |                 | extra     |                                                                                             |                          | W kg <sup>-1</sup>  |           |
|          | 1                                 | <br> <br> | 1<br>1<br>1     | 1         |                                                                                             | <br> <br>                |                     |           |



Figure S8: Comparison of charge discharge profiles of chitosan-KOH gel electrolyte (20 d) at a voltage of 1.3 V for long cycling at 5 A  $g^{-1}$ .



Figure S9: Electrochemical measurements after cycling for 10000 cycles at 1.3 V with a current load of 5 A g<sup>-1</sup> for electrochemical capacitor using liquid 2 M KOH and chitosan-KOH gel electrolyte: (a) Cyclic voltammetry at 5 mv s<sup>-1</sup> (b) Potentiostatic electrochemical impedance spectroscopy at 1.3 V.



Figure S10: Cyclic voltammetry of chitosan-KOH gel electrolyte with  $C/Co_3O_4$  750-230 nanocomposite at different sweep rates.

References:

- 1 S. Zallouz, B. Réty, L. Vidal, J.-M. Le Meins and C. Matei Ghimbeu, ACS Appl. Nano Mater., DOI:10.1021/acsanm.1c00522.
- 2N. Batisse and E. Raymundo-Piñero, Journal of Power Sources, 2017, 348, 168-174.
- 3J. Menzel, E. Frackowiak and K. Fic, *Electrochimica Acta*, 2020, 332, 135435.
- 4S. Hong, H. Kim, S. Gao, R. L. Lavall, H. Y. Jung and Y. J. Jung, *Journal of Power Sources*, 2019, **432**, 16–23.
- 5Z. Li, S. Gao, H. Mi, C. Lei, C. Ji, Z. Xie, C. Yu and J. Qiu, Carbon, 2019, 149, 273-280.
- 6H. Yang, X. Ji, Y. Tan, Y. Liu and F. Ran, Journal of Power Sources, 2019, 441, 227174.
- 7Q. Zhang, L. Zhao, H. Yang, L. Kong and F. Ran, *Journal of Membrane Science*, 2021, **629**, 119083.