Free-standing graphene oxide/oxidized carbon nanotube films with mixed proton and electron conductor properties

Nurun Nahar Rabin, ${ }^{\text {a,b }}$ Md. Saidul Islam, ${ }^{\text {a,b }}$ Mohammad Atiqur Rahman, ${ }^{\text {b }}$
Tagawa Ryuta, ${ }^{\text {b }}$ Yuta Shudo, ${ }^{c}$ Yoshihiro Sekine, b,d and Shinya Hayami*a, b, e

${ }^{\text {a }}$ Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, (Japan).
bepartment of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, (Japan).
c National Institute of Advanced Industrial Science and Technology (AIST), Japan, Japan.
${ }^{\text {dPriority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, }}$ Kumamoto 860-8555 (Japan).
eInternational Research Center for Agricultural and Environmental Biology (IRCAEB)2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, (Japan).

Figure S1: C1s XPS spectra of SWCNT and Ox-SWCNT

Figure S2: FT-IR spectra of SWCNT and Ox-SWCNT

Figure S3: SEM image of GO/Ox-SWCNT representing the distribution of GO and OxSWCNT and demonstrates the attachment of Ox-SWCNT to GO

Figure S4: SEM image of GO/Ox-SWCNT (a) before and (b) after the bending of film

Figure S5: Representative cole-cole plot of of GO/Ox-SWCNT depending on RH at room temperature.

Figure S6: I-V plot of pristine SWCNT measured in the in-plane direction at room temperature and $50 \% \mathrm{RH}$ for measurement of electrical conductivity in the out of plane direction.

