Supporting Information

Online hyphenation of in-capillary aptamer-functionalized solidphase microextraction and extraction nanoelectrospray ionization for miniature mass spectrometry analysis

Yueguang Lv^a, Yuhan Shang a, Linsen Li^{a,b}, Ying Zhang A, Qiang Ma^{a,*}

^a Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China

^b Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China

* Corresponding Author:

Qiang Ma

Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine

Beijing 100176, China

E-mail: maqiang@caiq.org.cn

Phone: +86 10 53897463

Fax: +86 10 53897454

Table of Contents

Supplementary Tables:

- Table S1: The amount of the caffeine-specific aptamers immobilized on the aluminum foil SPME strip with different gold-sputtering time.
- Table S2: Instrumental parameters of the miniature mass spectrometer.
- Table S3: Results of recovery experiments spiked at low, medium, and high concentration levels (n = 6).
- Table S4: Comparison of the current method with other approaches for the analysis of caffeine.

Supplementary Figures:

- Figure S1: Photo of the custom-modified sample cartridge for miniature MS analysis.
- Figure S2: Calibration curve for quantitative analysis of the caffeine-specific aptamers (n = 6).
- Figure S3: Optimization of microextraction time for the in-capillary aptamer-functionalized SPME process (n = 6).
- Figure S4: Optimization of desorption solvent for the in-capillary aptamer-functionalized SPME process (n = 6).
- Figure S5: The CD spectra of the caffeine-specific aptamers in water and methanol.
- Figure S6: Optimization of desorption time for the in-capillary aptamer-functionalized SPME process (n = 6).
- Figure S7: Optimization of capillary-to-inlet distance and electric voltage.
- Figure S8: (A) Full-scan MS and (B) MS/MS spectra for the analysis of caffeine in a real coffee beverage sample (Americano, brand A).
- Figure S9: (A) Full-scan MS and (B) MS/MS spectra for the analysis of caffeine in a real coffee beverage sample (Americano, brand B).
- Figure S10: (A) Full-scan MS and (B) MS/MS spectra for the analysis of caffeine in a real coffee beverage sample (Americano, brand C).
- Figure S11: (A) Full-scan MS and (B) MS/MS spectra for the analysis of caffeine in a real coffee beverage sample (Mocha, brand C).
- Figure S12: Quantitative analysis of caffeine in four real coffee beverage samples using the current method and a well-established LC–MS method.

References

Supplementary Tables

Table S1. The amount of the caffeine-specific aptamers immobilized on the aluminum foil SPME strip with different gold-sputtering time.

Sputtering time (s)	20	40	60	80	100	120
UV Absorbance at 260 nm	0.704	0.379	0.390	0.394	0.450	0.456
Immobilization amount (nmol/cm ²)	0.109	0.812	0.789	0.780	0.659	0.645

Table S2. Instrumental parameters of the miniature mass spectrometer.

Mode	Polarity	Spray voltage	DAPI injection size	CID amplitude	Mass range
		(kV)	(ms)	(V)	(m/z)
Full-scan	Positive	2.8	40	/	50–300
MS/MS	Positive	2.8	50	1.2	50-220

Table S3. Results of recovery experiments spiked at low, medium, and high concentration levels (n = 6).

Sample	Amount spiked	Amount detected	Recovery	RSD
	(ng/mL)	(ng/mL)	(%)	(%)
Electronic cigarette	20	22.3	111.5	3.1
liquid	50	46.2	92.4	4.6
	100	89.3	89.3	5.2
Beverage	20	21.7	108.5	3.8
	50	44.6	89.2	5.3
	100	87.5	87.5	6.1

Table S4. Comparison of the current method with other approaches for the analysis of caffeine.

Matrix	Sample preparation	Analytical Technique	Analysis time	LOD	LOQ	Linear range	RSD	Reference
			(min)	$(\mu g/mL)$	$(\mu g/mL)$	$(\mu g/mL)$	(%)	
Tea, coffee, and	DLLME	GC-NPD	~31	0.02	0.05	0.05-500	3.2	[1]
beverage								
Tea	MIP-SPE	ESI-IMS	154	0.20	0.50	0.5–20	< 6.0	[2]
Coffee	DES-LPME	HPLC-UV	8	0.12	0.40	0.5-100	2.2	[3]
Beverage	DLLME	UV-Vis	960	0.46	1.54	2–75	2.1	[4]
Beverage	DDSME	GC-MS	12	0.004	0.05	0.05-5	4.4	[5]
Beverage and	Sonication and	Electrochemical	20	0.56	0.97	0.97–19.42	5.9	[6]
pharmaceutical formulations	centrifugation	Sensor						
Human plasma	Centrifugation	LC-MS/MS	13	0.0001	0.00033	0.00067-0.333	< 5.0	[7]
Electronic cigarette	SPME	Extraction nanoESI-	< 5	0.0015	0.05	0.01-1	< 6.1	This work
liquid and beverage		MS		0.003	0.01			

^{*}DLLME: dispersive liquid—liquid microextraction; MIP-SPE: molecular imprinted polymer-solid phase extraction; DES-LPME: deep eutectic solvent-based liquid-phase microextraction; DDSME: Drop-to-drop solvent microextraction; SPME: solid-phase microextraction, GC—NPD: gas chromatography—nitrogen phosphorus detection; ESI-IMS: electrospray ionization-ion mobility spectrometry; HPLC-UV: high-performance liquid chromatography-ultraviolet spectroscopy; UV—Vis: ultraviolet-visible spectroscopy; GC—MS: gas chromatography—mass spectrometry; LC-MS/MS: liquid chromatography-tandem mass spectrometry; nanoESI-MS: nanoelectrospray ionization-mass spectrometry.

Supplementary Figures

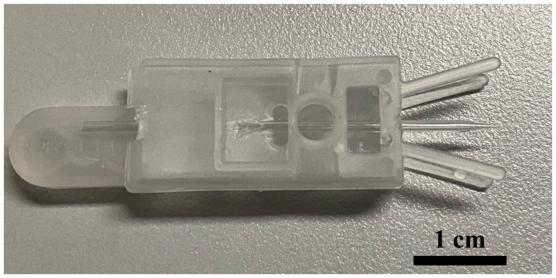


Figure S1. Photo of the custom-modified sample cartridge for miniature MS analysis.

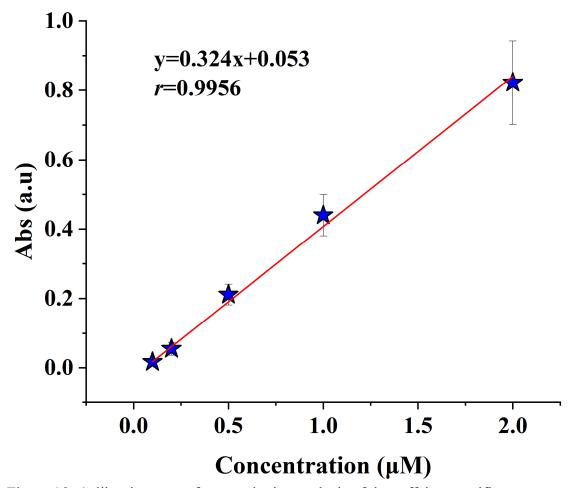


Figure S2. Calibration curve for quantitative analysis of the caffeine-specific aptamers (n = 6).

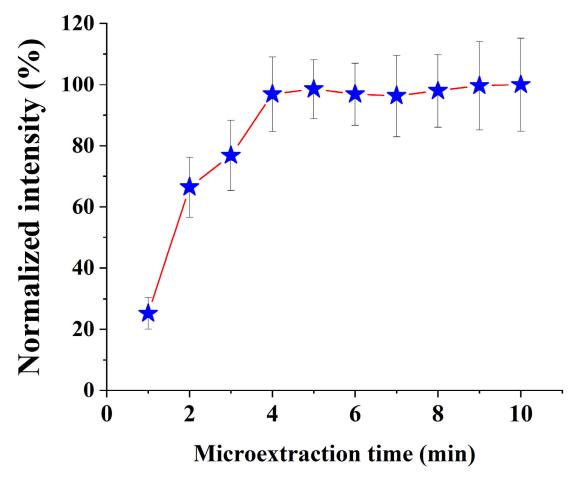


Figure S3. Optimization of microextraction time for the in-capillary aptamer-functionalized SPME process (n = 6).

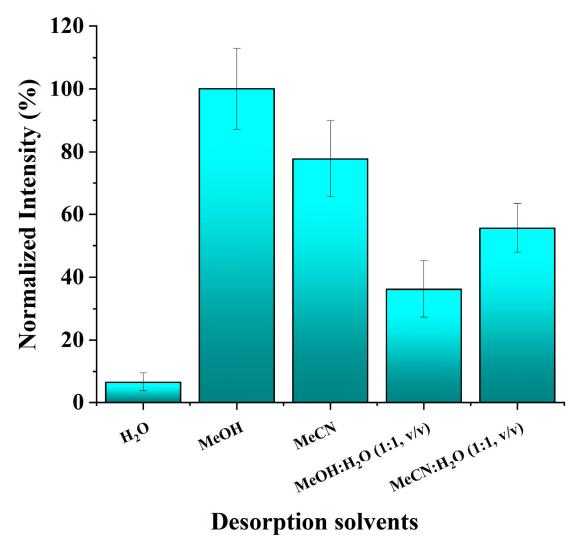


Figure S4. Optimization of desorption solvent for the in-capillary aptamer-functionalized SPME process (n = 6).

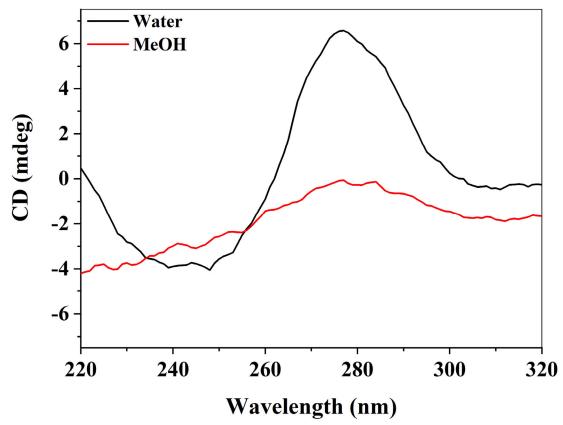


Figure S5. The CD spectra of the caffeine-specific aptamers in water and methanol.

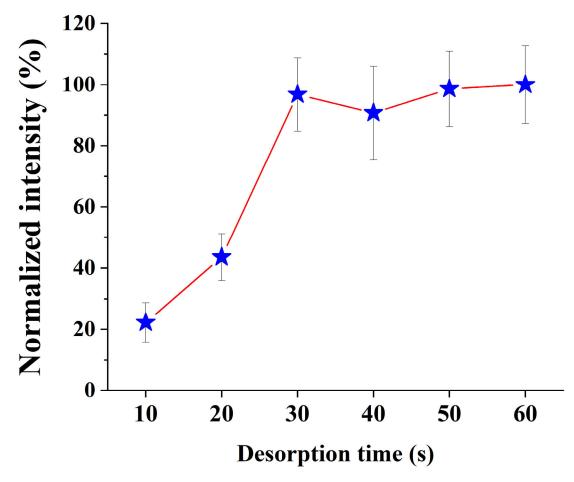


Figure S6. Optimization of desorption time for the in-capillary aptamer-functionalized SPME process (n = 6).

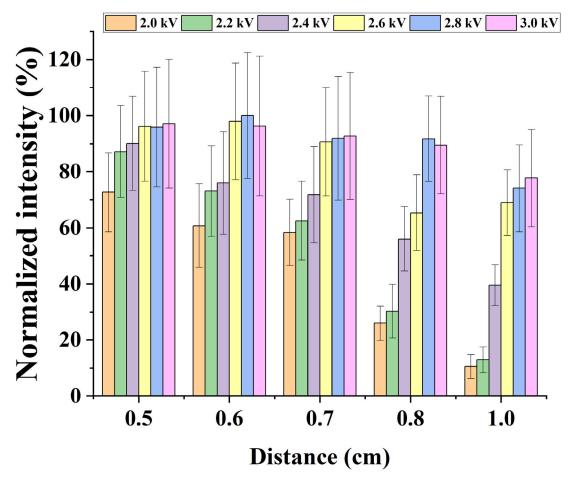


Figure S7. Optimization of capillary-to-inlet distance and electric voltage.

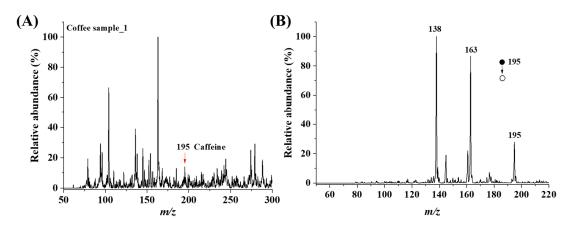


Figure S8. (A) Full-scan MS and (B) MS/MS spectra for the analysis of caffeine in a real coffee beverage sample (Americano, brand A).

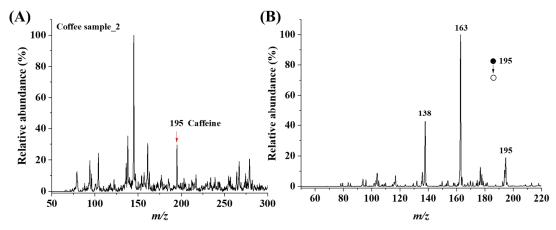


Figure S9. (A) Full-scan MS and (B) MS/MS spectra for the analysis of caffeine in a real coffee beverage sample (Americano, brand B).

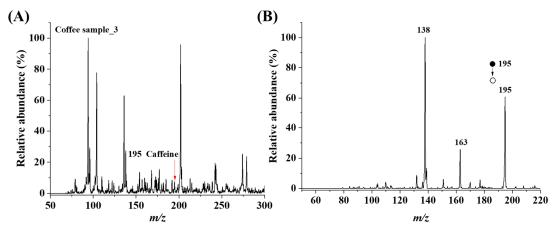


Figure S10. (A) Full-scan MS and (B) MS/MS spectra for the analysis of caffeine in a real coffee beverage sample (Americano, brand C).

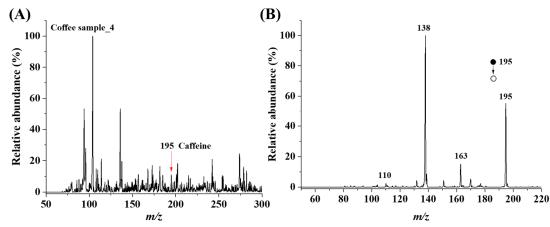


Figure S11. (A) Full-scan MS and (B) MS/MS spectra for the analysis of caffeine in a real coffee beverage sample (Mocha, brand C).

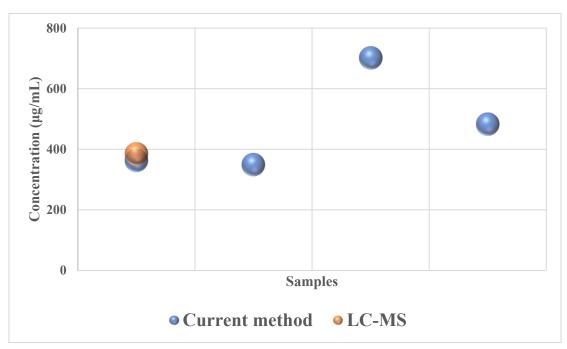


Figure S12. Quantitative analysis of caffeine in four real coffee beverage samples using the current method and a well-established LC–MS method.

References

- [1] H. Sereshti, S. Samadi, Food Chem., 2014, 158, 8-13.
- [2] M.T. Jafari, B. Rezaei, M. Javaheri, Food Chem., 2011, 126, 1964-1970.
- [3] S. Sivrikaya, Food Addit. Contam., 2020, 37, 488-495.
- [4] R.M. Frizzarin, F. Maya, J.M. Estela, V. Cerda, Food Chem., 2016, 212, 759-767.
- [5] K. Shrivas, H.-F. Wu, J. Chromatogr. A, 2007, 1170, 9-14.
- [6] M.K.S. Monteiro, D.R.D. Silva, M.A. Quiroz, V.J.P. Vilar, E.V.D. Santos, Materials, 2020, 14, 37.
- [7] Y.H. Wang, G. Mondal, M. Butawan, R.J. Bloomer, C.R. Yates, J. Chromatogr. B, 2020, 1155, 122278.