Dimensionality reduction for deep learning in infrared microscopy: A comparative computational survey

Supplementary Material

Dajana Müller, David Schuhmacher, Stephanie Schörner, Frederik Großerueschkamp, Iris Tischoff, Andrea Tannapfel, Anke Reinacher-Schick, Klaus Gerwert, Axel Mosig

List of Supplementary Figures

1	Explained variance ratio of the principal components	2
2	Comparison of encodings with t-SNE in euclidean space (perplexity = 30)	3
3	Comparison of encodings with t-SNE in euclidean space (perplexity = 10) \dots	4
4	Workflow and whole-slide cancer segmentation on permutated infrared samples and embeddings	5

List of Supplementary Tables

1	Metric values of segmentation results with various dimensionality	2
2	Classification results of CompSegNet trained on permuted infrared samples and embeddings	5

Supplementary Figure 1. Explained variance ratio of the principal components. Individual explained variance ratio (%) is plotted in blue bars and the cumulative explained variance in yellow for the first 16 principle components (PCs). The sum of the first 9 PCs exceeds 95% cumulative explained variance.

Supplementary Table 1. Training time and classification results of CompSegNet trained with dimensionality reduced datasets.

	num.	t train	Validation data				Testing data			
	of	model	Sens	Spec	Acc	F1	Sens	Spec	Acc	F1
	dim.	(h)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
PCA	4	~21	89.97	87.62	88.78	88.82	85.70	86.07	86.63	83.71
PCA	9	~23	98.38	98.41	98.40	98.38	94.83	96.10	95.60	94.42
PCA	32	~30	99.03	100.0	99.52	99.51	96.12	99.16	97.97	97.38
Random	4	~21	97.10	95.87	96.47	96.46	90.95	90.81	90.86	88.66
Random	9	~23	98.71	98.41	98.56	98.55	95.26	96.39	95.94	94.85
Random	32	~30	96.44	100.0	98.24	98.19	96.98	98.61	97.97	97.40

Supplementary Figure 2. Comparison of encodings with t-SNE in euclidean space. Spectral data of 6 different (tissue) classes (1, background, black; 2, cancer, red; 3, crypts, green; 4, muscle, cyan; 5, connective tissue, purple; 6, lymphocytes, blue) from a test patient have been encoded with principal component analysis (PCA), uniform manifold approximation and projection (UMAP), fully-connected contractive autoencoder (FCCAE), stacked contractive autoencoder (SCAE), and random projection into 16 dimensions and were embedded into euclidean space with t-SNE (perplexity = 30). t-SNE was also conducted on full spectra for comparison.

Supplementary Figure 3. Comparison of encodings with t-SNE in euclidean space. Spectral data of 6 different (tissue) classes (1, background, black; 2, cancer, red; 3, crypts, green; 4, muscle, cyan; 5, connective tissue, purple; 6, lymphocytes, blue) from a test patient have been encoded with principal component analysis (PCA), uniform manifold approximation and projection (UMAP), fully-connected contractive autoencoder (FCCAE), stacked contractive autoencoder (SCAE), and random projection into 16 dimensions and were embedded into euclidean space with t-SNE (perplexity = 10). t-SNE was also conducted on full spectra for comparison.

Suppementary Figure 4. Workflow and whole-slide cancer segmentation on permutated infrared samples and embeddings. a: Training and validation of pixel permuted full and encoded spectra with the stacked contractive autoencoder (SCAE). b: Testing of normal and pixel permuted whole slide images on full spectra and encodings. c: Example of permutation used. d: Segmentations of 3 different samples of the independent test cohort of the ColoPredict Plus 2.0 registry study with workflow b. Black: background of sample with no tissue. Grey: Annotation of cancer-free tissue.. Purple: Cancer-associated tissue that is not detected by the neural network (false-negative). Yellow: Segmentation output of cancerous pixels (true-positive). Green: Segmentation output of hypothetical cancerous pixels (false-positive). Lime: Segmentation output (green + yellow). Annotations were performed on H&E slides by a pathologist.

	num. of	Validation data				Testing data			
	dim.	Sens	Spec	Acc	F1	Sens	Spec	Acc	F1
		(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
Full Spectra	427	98.38	97.77	98.08	98.06	96.98	93.87	95.09	93.95
SCAE	16	98.38	96.83	97.60	97.59	98.28	93.59	95.43	94.41

Supplementary Table 2. Classification results of CompSegNet trained on permuted infrared samples and embeddings.