Supplementary Material

Reporter emission multiplexing in digital PCR (REM-dPCR): Direct quantification of multiple target sequences per detection channel by population specific reporter

Silvia Calabrese[‡], Anja M. Markl[‡], ^b, Maximilian Neugebauer^{a, c}, Stefanie J. Krauth^{d,e}, Nadine Borst^{a,c}, Felix von Stetten^{*,a,c}, Michael Lehnert^a

a Hahn-Schickard, 79110 Freiburg, Germany

b Faculty of Chemistry and Pharmacy, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany

c Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany

d School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK

e School of Health and Wellbeing, General Practice and Primary Care, University of Glasgow, Glasgow, UK

Corresponding Author

Name: Felix von Stetten Institute: University of Freiburg, IMTEK-Department of Microsystems Engineering Email: <u>vstetten@imtek.de</u> Phone: +49 761 203 73243

Table of contents

	Supplemental Table S1: Target panel.	2
	Supplemental Table S2: Oligonucleotide sequences	3
	Supplemental Table S3: Signal to noise ratios (SNR) of designed universal reporters (PSR) used in a Naica PRISM III.	the 4
	Supplemental Table S4: VMR ratios	5
	Supplemental Table S5: Absorption and Emission maxima of Fluorophores used in universal report (PSR) structures	ter 6
	Supplemental Fig. S1: Annealing temperature gradient	7
	Supplemental Fig. S2: Two-plex Primer titration	8
	Supplemental Fig. S3: Two-plex MP:PSR titration	9
	Supplemental Fig. S4. Combination of leading conditions	9
	Supplemental Fig. S5: KRAS Four-plex REM-dPCR in condition C2	.10
	Supplemental Fig. S6: KRAS four-plex titration	.11
R	EFERENCES	.12

SUPPLEMENTAL TABLE S1: TARGET PANEL.

Table S1 In the target region mutations are highlighted in red, complementary probe binding regions are highlighted in yellow and red.

Target	Gene	Name	Codon		Т	arge	et re	egioi	n (5´	→ 3	;^)		Change of nucleotide	Change of amino acid	Library number (NCBI)	Chromosome / position	Detection channel	PSR-Type
1	BDAE	WT	600	T	T	T	C	Α	С	Т	G	Т	WT				blue	08
11	DNAF	V600E	600	Т	Т	Т	C	Т	С	Т	G	Т	c.1799T>A	p.Val600Glu	rs113488022	GRch38 Chr7:140753336	blue	07
			12			T		6	Ŧ	6	C						green	02
		VVI	12	G	L	/	G	6	1	G	G	L	VVI				infra- red	06
IV	KRAS	G12A	12	G	C	Т	G	С	Т	G	G	С	c.35G>A	p.Gly12Asp	rs121913529	GRch38 Chr12:25245350	green	04
V		G12D	12	G	С	Т	G	Α	Т	G	G	С	c.35G>C	p.Gly12Ala	rs121913529	GRch38 Chr12:25245350	red	05
		642)/	12			-			-								red	06
		G12V	12	G	C		G			G	G	C	c.35G>1	p.Giy12Val	rs121913529	GRCN38 Chr12:25245350	infra- red	01

SUPPLEMENTAL TABLE S2: OLIGONUCLEOTIDE SEQUENCES

Table S2 Sequences of primer, mediator probes, universal reporters and synthetic templates. Point mutations are highlighted in red.

Oligo-type	Name	Sequence (5´- 3´)		Modificatio	ons
			5'- end	3'- end	Internal (2/7/8)
	KRAS_fwd ¹	GGCCTGCTGAAAATGACT			
Primer	KRAS_rev ¹	ACAAAATGATTCTGAATTAGCTGTA			
Finner	BRAF_fwd ²	GACCCACTCCATCGAGATTTC			
	BRAF_rev ²	GCTTGCTCTGATAGGAAAATGAG			
	MP_PSR01_KRAS_G12V	TCGTTCTGGGCTTGGCGTAGGCAAGAGTGCCTTGACGAT		MP-block	
	MP_PSR04_KRAS_G12A ²	GATACAGGGTCCACTGGCGTAGGCAAGAGTGCCTTGACG		MP-block	
	MP_PSR05_KRAS_G12D ¹	ATGTCCCAGGTGCATGGCGTAGGCAAGAGTGCCTTGACGAT		MP-block	
Mediator probe	MP_PSR06_KRAS_G12V ¹	AGGTAGGCTCACTTGGCGTAGGCAAGAGTGCCTTGACGAT		MP-block	
	MP_PSR06_KRAS_WT	TAGGCTCACTGAACCAGCTCCAACTACCACAAGTTTATATTCAG		MP-block	
	MP_PSR07_BRAF_V600E	ACATGCTCATGTTGTGTCTGTAGCTAGACCAAAATCACCTATTTTTACTGTGAG		MP-block	
	MP_PSR08_BRAF_WT	GTGTTCCTCACATGCTACTGTAGCTAGACCAAAATCACCTATTTTTACTGTGAG		MP-block	
	PSR01	GACCGGCCAAGACGCGCCGGT7TGTTGGTCGTAGAGCCCAGAACGA	BHQ-2	UR-block	dC-Cy5.5
	PSR02	GACCGGCCAAGACGCGCCGGT7TGTTCACTGACCGAACTGGAGCA	BMN-Q1	UR-block	dC-DY-530
	PSR04	GACCGCACTAGTAGATGCGGT7TGTCGTGGACCCTGTATCGAGCA	BHQ-1	UR-block	dC-BMN536
Population	PSR05	GACCGGCTAAGACGCGCCGGT7TGTTGCACCTGGGACATCGACTAT	BHQ-2	UR-block	dC-Cy5
Reporter	PSR06	GACGCGTAGTACAGAACGCGT7TGTTCAGTGAGCCTACCTGCCTTC	BHQ-2	UR-block	dC-Atto 647N
	PSR06	GACGCGTAGTACAGAACGCGT2TGTTCAGTGAGCCTACCTGCCTTC	BHQ-2	UR-block	dC-Atto-680
	PSR07	ATGCCGATTAGATGCGGCA8TCGATCACAACATGAGCATGTGTAC	BHQ-1	UR-block	dT-FAM
	PSR08	ATCCGCCAAGACGCGCGGA8TAGCATGTGAGGAACACGATGACAC	BMN-Q1	UR-block	dT-Atto 488

Oligo-type	Name	Sequence (5′- 3′)					
	KRAS_WT	CATTTTCATTATTTTATTATAAGGCCTGCTGAAAATGACTGAATATAAACTTGTGGTAGTTGGAGCTGGTGGCGTAGGCAAGAGTGCCTTGACGA TACAGCTAATTCAGAATCATTTTGTGGACGAATAT					
	KRAS_G12A	CATTITCATTATTITTATTATAAGGCCTGCTGAAAATGACTGAATATAAACTTGTGGTAGTTGGAGCTGCTGGCGTAGGCAAGAGTGCCTTGACGAT ACAGCTAATTCAGAATCATTTTGTGGACGAATAT					
Synthetic	KRAS_G12D	CATTITCATTATTITTATTATAAGGCCTGCTGAAAATGACTGAATATAAACTTGTGGTAGTTGGAGCTGATGGCGTAGGCAAGAGTGCCTTGACGA TACAGCTAATTCAGAATCATTTTGTGGACGAATAT					
template	KRAS_G12V	CATTITCATTATTITTATTATAAGGCCTGCTGAAAATGACTGAATATAAACTTGTGGTAGTTGGAGCTGTTGGCGTAGGCAAGAGTGCCTTGACGAT ACAGCTAATTCAGAATCATTTTGTGGACGAATAT					
	BRAF_WT CAAACTGATGGGACCCACTCCATCGAGATTTCACTGTAGCTAGACCAAAATCACCTATTTTTACTGTGAGGTCTTCATGAAGA GTAGTAAGTAAAGGAAAACAGTAGATCTCATTTTCCTATCAGAGCAAGCA						
	BRAF_V600E	CAAACTGATGGGACCCACTCCATCGAGATTTCTCTGTAGCTAGACCAAAATCACCTATTTTTACTGTGAGGTCTTCATGAAGAAATATATCTGAGGT GTAGTAAGTAAAGGAAAACAGTAGATCTCATTTTCCTATCAGAGCAAGCA					

SUPPLEMENTAL TABLE S3: SIGNAL TO NOISE RATIOS (SNR) OF DESIGNED UNIVERSAL REPORTERS (PSR) USED IN THE NAICA PRISM III

Table S3: SNR ± STD were determined in a mediator extension assay ³ using following conditions: 150 nM mediator; 100 nM PSR. Mediator extension assay was performed in a qPCR cycler (RotorGeneQ from Qiagen) with following PCR setting: 300 s at 95°C initial denaturation, followed by 45 cycles 95°C 5 s and 60°C 30 s. Signals were acquired at 28°C; values were taken from a melting curve measurement. Both signal and noise represent values of technical triplicates (n=3).

PSR:	PSR07	PSR08	PSR02	PSR04	PSR05	PSR06
Fluorophore	FAM	Atto 488	DY-530	BMN536	CY5	Atto 647N
Quencher	BHQ-1	BMN-Q1	BMN-Q1	BHQ-1	BHQ-2	BHQ-2
SNR:	41.4 ± 6.5	15.5 ± 1.0	26.8 ± 2.3	16.0 ± 1.1	82.6 ± 1.6	63.3 ± 2.5

Primer		MP	PSR	No. of positive			VMR	<u>.</u>	
forward [nM]	reverse [nM]	[nM]	[nM]	population	iviean	variance	(×10 ²)	Significance test	Condition
500	500	1200	400	2,417	1.14	0.15	12.89	46,097	u
750	500	1200	400	2,683	1.15	0.17	14.92	42,521	itratii S2)
1000	500	1200	400	2,598	1.16	0.18	15.38	50,693	mer t (Fig.
1250	500	1200	400	2,646	1.17	0.20	17.18	54,715	Pri
500	1200	1400	600	2,918	1.15	0.18	15.46	30,057	uo
500	1200	1200	600	3,050	1.19	0.23	19.07	32,772	titrati S3)
500	1200	1000	600	2,952	1.14	0.16	13.62	32,290	:PSR (Fig.
500	1200	800	600	3,036	1,18	0.21	18.12	25,705	AP
1000	500	1200	600	2,967	1.23	0.27	22.12	58,628	of on
1000	500	800	400	3,009	1.22	0.27	22.10	35,318	ation r and titrati S4)
1250	500	1200	600	3,183	1.22	0.27	22.07	39,323	mbina prime PSR 1 (Fig.
1250	500	600	400	3,112	1.20	0.21	20.57	39,323	MP CO

SUPPLEMENTAL TABLE S4: VMR RATIOS

Table S4 Variance to mean ratios (VMR) of leading duplex oligonucleotide titration conditions.

Primer		MP	PSR	No. of positive			VMR				
forward [nM]	reverse [nM]	[nM]	[nM]	droplet population	Mean	Variance	(× 10 ²)	Significance test	Condition		n
1,000	1,000	1,000	250	2,966	1,34	0,38	28.64	29,456	Blue		
1,000	1,000	1,000	250	2,254	1.21	0.24	20.11	26,768	Green	C1	ig. 2
1,000	1,000	1,000	250	4,718	1.31	0.28	28.13	22,717	Red	-	REM F
1,000	500	1,200	600	4,978	1.68	1,03	61.09	25,851	Blue		plex F
1,000	500	1,200	600	4,795	1.17	0.19	16.07	53,195	Green	C2	Two-
1,000	500	1,200	600	2,902	1.22	0.26	20.93	35,283	Red		

SUPPLEMENTAL TABLE S5: ABSORPTION AND EMISSION MAXIMA OF FLUOROPHORES USED IN UNIVERSAL REPORTER (PSR) STRUCTURES

Table S5: Maxima absorption and emission wavelengths in nm according to the website of the PSR manufacturer.

Fluorophore	FAM	Atto 488	BMN536	DY-530	Atto 647N	Cy5	Cy5.5	Atto-680
Maximum absorption [nm]	494	501	536	539	646	649	675	680
Maximum emission [nm]	520	523	553	561	664	670	694	700

SUPPLEMENTAL FIG. S1: ANNEALING TEMPERATURE GRADIENT

Fig. S1 1D and corresponding 2D scatterplots of two-plex REM-dPCR with changing annealing and extension temperatures targeting KRAS WT (III), KRAS G12A (IV). Threshold was set at same intensities (6,000 RFU) in all conditions, indicated by green line. Green populations were positive, negative droplets are indicated in dark grey.

SUPPLEMENTAL FIG. S2: TWO-PLEX PRIMER TITRATION

Fig. S2. 1D scatterplots of the two-plex REM-dPCR primer titration targeting KRAS WT (III, upper population), KRAS G12A (IV, lower population) **(A)**. Negative populations are highlighted in dark grey and positive populations in green. **(B)** Leading conditions of the primer titration. All conditions had 500 nM reverse primer with the different forward primer concentrations indicated at top of the graph. Threshold are indicated with a dashed green line. See Table S4 for VMR analysis.

Fig. S3 1D scatterplots of the two-plex REM-dPCR MP:PSR titration targeting KRAS WT (III, upper population), KRAS G12A (IV, lower population). Threshold is displayed as a green dashed line, negative populations are highlighted in dark grey and positive populations in green. See Table S4 for VMR analysis for leading conditions with 600 nM PSR.

SUPPLEMENTAL FIG. S4. COMBINATION OF LEADING CONDITIONS

Fig. S4 Two-plex REM-dPCR comparing leading conditions of the MP:PSR and primer titration targeting KRAS WT (III, upper population), KRAS G12A (IV, lower population). The threshold was indicated with a green dashed line. The reactions were separated by perpendicular dashed light grey lines. See Table S4 for VMR analysis.

SUPPLEMENTAL FIG. S5: KRAS FOUR-PLEX REM-dPCR IN CONDITION C2

Fig. S5 Four-plex REM-dPCR scatterplots with condition C2 assay parameters targeting KRAS WT (III), KRAS G12A (IV) in the green channel and KRAS G12D (V) and KRAS G12V (VI) in the red channel. Double positive are indicated in yellow. Thresholds are indicated as a green and red line in the figure. Results are shown in 1D and 2D for the respective channels and channel combinations.

SUPPLEMENTAL FIG. S6: KRAS FOUR-PLEX TITRATION

Fig. S6 Four-plex REM-dPCR scatterplots of MP, PSR and primer titrations targeting KRAS WT (III), KRAS G12A (IV) in the green channel and KRAS G12D (V) and KRAS G12V (VI) in the red channel (A). Double positive are indicated in yellow. Thresholds are indicated as a green and red line in the figure. (B) Zoom in of leading conditions of the titrations showing 2D plots in the green and red channel.

REFERENCES

- 1 F. Schlenker, E. Kipf, N. Borst, T. Hutzenlaub, R. Zengerle, F. von Stetten and P. Juelg, *Analytical Chemistry*, 2021, **93**, 10538–10545.
- 2 F. Schlenker, E. Kipf, M. Deuter, I. Höffkes, M. Lehnert, R. Zengerle, F. von Stetten, F. Scherer, J. Wehrle, N. von Bubnoff, P. Juelg, T. Hutzenlaub and N. Borst, *Cancers*, 2021, **13**.
- 3 M. Lehnert, E. Kipf, F. Schlenker, N. Borst, R. Zengerle and F. von Stetten, *Anal. Methods*, 2018, **10**, 3444–3454.