Supplementary Materials

for

A rationally engineered specific near-infrared fluorogenic substrate of human pancreatic lipase for functional imaging and inhibitor screening

Fan-Bin Hou^{a,1}, Na Zhang^{b,1}, Xu-Dong Hou^a, Wei Liu^c, Yu-Fan Fan^a, Guang-Hao Zhu^a, Yue Wu^a, Meng-Ru Sun^a, Bei Zhao ^a, Guang-Bo Ge^{a,*}, Ping Wang^{a,*}

^aShanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China

^bDepartment of Biology, Philipps University, Karl-von-Frisch-Straße 8, Marburg, 35043, Germany

^cDepartment of Pharmacy, Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China

* Corresponding author.

E-mail: <u>pwang@shutcm.edu.cn</u>(P. Wang), <u>geguangbo@shutcm.edu.cn</u>(G.-B. Ge)

¹These authors made equal contributions to this work.

Recombinant expression and purification of hPL	4
Cytotoxicity assays	4
Fluorescence imaging of rat and monkey pancreas slices	4
Fig. S1	5
Fig. S2	6
Fig. S3	7
Fig. S4	7
Fig. S5	7
Fig. S6	8
Fig. S7	8
Fig. S8	9
Fig. S9	9
Fig. S10	10
Fig. S11	10
Fig. S12	11
Fig. S13	11
Fig. S14	12
Fig. S15	13
Fig. S16	14
Fig. S17	15
Fig. S18	15
Fig. S19	16
Fig. S20	17
Fig. S21	17
Fig. S22	18
Fig. S23	19
Fig. S24	19
Fig. S25	20
Fig. S26	21
Fig. S27	21
Fig. S28	21
Fig. S29	22
Fig. S30	22
Fig. S31	23
Fig. S32	24
Fig. S33	24
Fig. S34	25
Fig. S35	26
Fig. S36	26
Fig. S37	26
Fig. S38	27
Fig. S39	27
Fig. S40	28

Contents

Fig. S4128
Fig. S42
Fig. S43
Fig. S44
Fig. S45
Fig. S46
Fig. S47
Fig. S48
Fig. S49
Fig. S50
Fig. S51
Fig. S52
Fig. \$53
Fig. S54
Fig. \$55
Fig. \$56
Fig. S57
Fig. S58
Fig. \$59
Fig. S60
Fig. S61
Fig. S62
Fig. S63
Table S140
Table S2
Table S343
Table S444

Recombinant expression and purification of hPL

The human pancreatic cDNA was cloned into the pTT5 vector with the N-terminal mouse IgG κ chain signal peptide and C-terminal His10-tag. Freestyle 293-F cells (Invitrogen) were cultured in SMM 293T-II medium (Sino Biological Inc.) at 37 °C, 130 rpm under 5% CO₂. The pTT5 containing human pancreatic lipase cDNA plasmid was pre-mixed with PEI MAX 40K (Polysciences) for 30 min before transfection. Transfection was started by adding plasmid-PEI MAX 40K mixture when the cell density reached 2.0×10⁶ cells/mL. After 72 h, the transfected cells were centrifuged at 1000 rpm for 10 min and the conditioned medium was collected. The conditioned medium was loaded on the Ni Sepharose excel resin (GE Healthcare). The resin was washed with wash buffer 1 containing 25 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1 mM CaCl₂, 2 mM imidazole. The protein was eluted with elute buffer 1 containing 25 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1 mM CaCl₂, 200 mM imidazole. The eluted protein was diluted 10 times with a buffer (25 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1 mM CaCl₂) and incubated with Ni-NTA agarose (Qiagen) for further purification. The agarose was washed with wash buffer 2 containing 25 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1 mM CaCl₂, 20 mM imidazole. Then the protein was eluted with elute buffer 2 containing 25 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1 mM CaCl₂, 300 mM imidazole. The human pancreatic lipase-containing fractions were concentrated using a 10 kDa molecular weight cut-off (MWCO) concentrator (Millipore). The concentrated sample was purified on a Superdex 200 10/300 GL column (GE Healthcare) equilibrated in protein storage buffer (25 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1 mM CaCl₂).

Cytotoxicity assays

The determination of cell viability was done by the CCK-8 assay. AR42J cells were inoculated at a density of 1×10^4 in 96-well plates and cultured in Dulbecco's Modified Eagle medium: nutrient mixture F-12 (DMEM/F-12) containing 10% fetal bovine serum (FBS) and maintained in a 5% CO₂ incubator at 37°C for 48 h. The cells were then incubated with different concentrations of **7-STCFC** for 12 hours, followed by washing with PBS. Finally, the CCK-8 assay was used to assess cytotoxicity. Medium containing 10% CCK-8 was added and incubated for a further 3 hours. The absorbance was measured at 450 nm.

Fluorescence imaging of rat and monkey pancreas slices

Monkey and mouse pancreatic tissues were cut into 150 μ m using a Microtome Cryostat (Leica, Wetzlar, Germany) and placed in cell culture dishes. These slices were divided into three groups. Slices in blank groups without adding **7-STCFC** and inhibitor, Slices in experimental groups were only incubated with **7-STCFC** (20 μ M) for 30 min, and slices in negative control groups were treated with orlistat (25 μ M) for 15 min, and then incubated with **7-STCFC** (20 μ M) for 30 min. Finally, slices were observed under confocal microscope (Leica SP8, Wetzlar, Germany). $\lambda_{ex} = 552 \text{ nm}, \lambda_{em} = 650 - 690 \text{ nm}.$

Fig. S1. The change in absorption spectrum of 7-STCFC (50 μ M) in presence of hPL (10 μ g/mL).

Fig. S2. (A) Representative LC-UV chromatograms of **7-STCFC** incubation samples at 37 °C, UV detector was set at 468 nm. Mass spectra of **7-STCFC** with the quasi-molecular ion peak m/z = 636.3507, monitored under negative mode (C), and its hydrolytic product **7-HTCF** with the quasi-molecular ion peak m/z = 372.1005 (B) monitored under positive mode.

Fig. S3. The effect of temperature on the fluorescence response of 7-STCFC to hPL

Fig. S4. The effects of pH values on the fluorescence intensity of 7-STCFC and its metabolite 7-HTCF (5 μ M).

Fig. S5. The photostability of 7-STCFC (5 μ M) and 7-HTCF (5 μ M), following continuous illumination at 570 nm for different time.

Fig. S6. Fluorescence responses of 7-STCFC (5 μ M) to various analytes in aqueous solution. Relative fluorescence intensity (%) = Fluorescence intensity of adding analytes / Fluorescence intensity of control.

Fig. S7. The Linear in fluorescence intensity of 7-STCFC (5 μ M) over time upon addition of hPL (1 μ g/mL) in buffer at 37 °C.

Fig. S8. The cytotoxicity of 7-STCFC in AR42J

Fig. S9. Confocal images of rat pancreas slices. Rat pancreas slices were incubated with PBS only for 30 min (a-b); (c-d) Rat pancreas slices were incubated with **7-STCFC** (20 μ M) for 30 min; (e-f) Rat pancreas slices were pre-treated with orlistat for 30 min and then incubated with **7-SCTCF** for 30 min. $\lambda_{ex} = 550$ nm, $\lambda_{em} = 650-690$ nm. Scale bars = 25 μ m.

Fig. S10. Dose-inhibition curves of orlistat against hPL catalysed 7-STCFC hydrolysis. All data were expressed as mean \pm SD.

Fig. S11. Total ion chromatograms of pu-er tea extract in positive ion mode.

Fig. S12. Inhibitory effects of constituents in the pu-er tea against hPL-catalyzed 7-STCFC hydrolysis. Data were shown as mean \pm SD.

Fig. S13. The second plot of slopes from the Lineweaver–Burk plots.

Fig. S14. An equilibrium stereo detailed view of hPL docked with (A) (-)-Catechin gallate; (B) (-)-Epigallocatechin gallate; (C) (-)-Epicatechin gallate; (D) (-)-Gallocatechin gallate in protein binding cavities-4.

(-)-Epicatechin gallate

(-)-Gallocatechin gallate

Fig. S15. 2D representation of the interactions between (A) (-)-Catechin gallate (B) (-)-Epigallocatechin gallate (C) (-)-Epicatechin gallate (D) (-)-Gallocatechin gallate and the amino acid residues of hPL

Fig. S16. ¹H NMR spectra of compound **L-6C**.

Fig. S17. ¹C NMR spectra of compound L-6C.

Fig. S18. HRMS spectrum of compound L-6C.

Fig. S19. ¹H NMR spectra of compound L-8C.

Fig. S20. ¹C NMR spectra of compound L-8C.

Fig. S21. HRMS spectrum of compound L-8C.

Fig. S22. ¹H NMR spectra of compound L-10C.

Fig. S23. ¹C NMR spectra of compound L-10C.

Fig. S24. HRMS spectrum of compound L-10C.

Fig. S25. ¹H NMR spectra of compound L-12C.

Fig. S26. ¹C NMR spectra of compound L-12C.

Fig. S27. HRMS spectrum of compound L-12C.

Fig. S28. ¹H NMR spectra of compound L-16C.

Fig. S29. ¹C NMR spectra of compound L-16C.

Fig. S30. HRMS spectrum of compound L-16C.

Fig. S31. ¹H NMR spectra of compound L-18C.

Fig. S32. ¹C NMR spectra of compound L-18C.

Fig. S33. HRMS spectrum of compound L-18C.

Fig. S34. ¹H NMR spectra of compound L-22C.

Fig. S35. ¹C NMR spectra of compound L-22C.

Fig. S36. HRMS spectrum of compound L-22C.

Fig. S37. ¹H NMR spectrum of compound L-CP.

Fig. S38. ¹C NMR spectrum of compound L-CP.

Fig. S39. ¹C HRMS spectrum of compound L-CP.

Fig. S42. HRMS spectrum of compound L-PV.

Fig. S43. ¹H NMR spectrum of compound L-TH.

Fig. S44. ¹C NMR spectrum of compound L-TH.

Fig. S45. HRMS spectrum of compound L-TH.

Fig. S47. ¹C NMR spectrum of compound L-Ph.

Fig. S49. ¹H NMR spectrum of compound L-Ci.

Fig. S50. ¹C NMR spectrum of compound L-Ci.

Fig. S51. HRMS spectrum of compound L-Ci.

Fig. S53. ¹C NMR spectrum of compound L-BB.

Fig. S55. ¹H NMR spectrum of compound L-FB.

Fig. S56. ¹C NMR spectrum of compound L-FB.

Fig. S57. HRMS spectrum of compound L-FB.

Fig. S59. ¹C NMR spectrum of compound 7-HTCF.

Fig. S60. ¹H NMR spectrum of compound Compound 2.

Fig. S61. HRMS spectrum of Compound 2.

Fig. S62. ¹H NMR spectrum of compound Compound 3.

Fig. S63. HRMS spectrum of Compound 3.

			Affinity					
	Fluorophore	hCES1A	hCES2A	Notum	AchE	BchE	hPL	towards hPL (kcal/mol)
А	NC CN	8.50	7.73	6.84	12.95	10.71	12.74	-11.71
в	of the state	10.08	4.86	10.22	14.46	12.28	16.22	-12.66
с	Fringer Cole	6.21	12.46	14.20	10.05	12.09	16.22	-13.04
D		10.75	5.30	13.55	12.67	10.48	9.22	-12.68
E	NC C C C C C C C C C C C C C C C C C C	10.56	7.09	7.77	14.63	12.95	10.14	-12.16
F		10.78	10.05	14.77	10.91	12.32	13.25	-12.93
G		6.88	9.05	12.40	11.02	7.67	12.06	-13.15
н		8.30	8.41	11.78	9.38	10.17	13.92	-10.37
I		10.16	9.90	13.74	7.75	10.51	9.98	-11.34
J		9.32	11.90	9.35	11.03	10.86	10.98	-12.00
к	NO SOLO IR	10.61	8.40	10.59	15.27	10.57	12.26	-12.04

Table S1. Computational screening and discovery of fluorescent substrates for 6 serine hydrolases.

L	NG CN CN CN CN CN CN CN CN CN CN CN CN CN C	6.08	8.72	14.98	14.31	10.40	3.60	-11.58
м		8.94	10.37	10.07	8.01	10.35	10.66	-12.87
N	NC - CN OF R'	9.68	9.37	10.15	10.20	6.90	13.05	-11.22
ο		9.10	10.05	10.25	15.25	10.32	7.69	-11.49
Р		6.86	10.18	14.60	13.26	8.90	12.98	-11.54
Q	NC CN	9.64	9.80	5.59	15.02	10.59	12.91	-12.49

Table S2. The names for the herbs.

	1	2	3	4	5	6	7	8	9	10	11	12
A	Blank	orlistat	Aconiti Lateralis Radix Praeparata	Semen Coicis	Angelica dahurica	Lindera aggregata	Eupatorium japonicum Thunb	Polygonum aviculareL	Semen Armeniacae Amarum	Glycyrrhiza uralensis Fisch	Eupatorium fortunei Turcz	Mentha haplocalyx Briq
В	Glycine max (L.)Merr.	Caulispolygo nimultiflori	Commelina communis	Ophicalcitu m	Heracleum hemsleyanu m	Euphorbia humifusa Willd	Puerariae Lobatae Radix	Plantago asiatica L	Arisaema Cum Bile	Citri Reticulatae Pericarpium Viride	Panax quinquefoliu s	Tetradium ruticarpum
С	Silktree Albizia Bark	Centella asiatica (L.) Urban	Equisetumhy emaleL	Setariae Fructus Germinatus	Radix glycyrrhizae preparata	Pumex	Polygonatum sibiricum F. Delaroche	Trogopterori Faeces	Triticum aestivum L	Morus alba L.	Sepiella maindronide Rochebrune	Lygodium japonicum
D	Magnoliae Officinalis Cortex	Itoa orientalis	Fritillaria thunbergii	Sophora japonica Linn	Cnidium monnieri (L.) Cuss	Paris polyphylla	Vitex trifolia L	Chloriti Lapis	Imperata cylindrica	Pyrola calliantha H. Andres	Juncus effusus L	Citri Reticulatae Pericarpium
E	Acorus gramineus Aiton	Actinidia arguta	Citrus maxima	Lasiosphaer a seu Calvatia	Zingiber officinale Roscoe	Ilex pubescensHo ok. et Arn	Semen Nelumbinis	Arisaema heterophyllu m Blume	Fructus Kochiae Scopariae	Caulis Sinomenii	Haematitum	Ilex cornuta Lindl.ex Paxt
F	Smilaxhayat ae	Prunella vulgaris L	Citri sarcodactylis Fructus	Armeniaca mume Sieb	Bubali Cornu	Meretrixmer etrixLinnaeu s	Cyrtomium fortunei J. Sm	Herba Centipedae	Morus alba L	Radic aconiti kusnezoffii preparata	Semen Sojie Preparatum	Angelica dahurica
G	Poria cum Radix Pini	Herba Lophatheri	Herba Taraxaci	Oryza sativa L	Notopterygiu m incisum Ting ex H. T. Chang	Malva verticillata Linn	Lemnaminor L	Ampelopsis japonica	Citrus tangerina Hort.et Tanaka C.erythrosa Tanaka	Ginkgo biloba	Dendranthe ma morifolium (Ramat.) Tzvel	Cyperusrotu ndusL.
Н	Peucedanum praeruptoru m Dunn	Stachyuri Medulla	Concretio Silicea Bambusae	FineleafSchi zonepetaHer b	Cynanchum atratum Bunge	Akebiae Caulis	ChineseBuck eyeSeed	Radix oryzae glutinosae	Curcumae Rhizoma	Andrographi s paniculata	Pericarpium Trichosanthi s	Camellia angustifolia (Pu-er tea)

No.	RT (min)	[M–H] [−]	$[M+H]^+$	Molecular formula	Identification
1	0.92	191.06	193.07	$C_{7}H_{12}O_{6}$	Ellagic acid
2	1.15	173.09	175.11	$C_{7}H_{10}O_{5}$	Shikimic acid
3	1.40	128.03	128.03	C ₅ H ₇ NOS	Goitrine
4	1.94	169.01		C7H6O5	Gallic acid
5	3.62	305.07	307.08	$C_{15}H_{14}O_{7}$	Unknown
6	5.50		181.07	$C_7H_8N_4O_2$	Theobromine
7	8.12	305.07	307.08	$C_{15}H_{14}O_{7}$	Epigallocatechin
8	8.31	289.07	291.09	$C_{15}H_{14}O_{6}$	Catechin
9	9.49	353.09		$C_{16}H_{18}O_9$	chlorogenic acid
10	10.51	353.09		$C_{16}H_{18}O_9$	Cryptochlorogenic acid
11	10.54		195.09	$C_8H_{10}N_4O_2$	Caffeine
12	11.06	457.08	459.09	$C_{22}H_{18}O_{11}$	Gallocatechin gallate
13	11.87	289.07	289.07	$C_{15}H_{14}O_{6}$	Epicatechin
14	12.67	457.08	459.09	$C_{22}H_{18}O_{11}$	Epigallocatechin gallate
15	14.88	441.08	443.10	$C_{22}H_{18}O_{10}$	Catechin gallate
16	15.91	441.08	443.10	$C_{22}H_{18}O_{10}$	Epicatechin gallate
17	18.44	301.00	303.05	$C_{14}H_6O_8$	Ellagic acid
18	18.78	609.15	611.16	$C_{27}H_{30}O_{16}$	Rutin
19	21.07	447.09	449.11	$C_{21}H_{20}O_{11}$	Astragalin
20	23.80	301.04	303.05	$C_{15}H_{10}O_7$	Quercetin
21	26.90	285.04	287.05	$C_{15}H_{10}O_{6}$	Luteolin
22	27.16	285.04	287.05	$C_{15}H_{10}O_{6}$	Kaempferol
23	30.56	193.09	195.09	$C_{10}H_{10}O_4$	Ferulic acid

 Table S3. Identification of the chemical composition of pu-er tea.

Fluorescent substrate	Target enzyme	Detection conditions	LOD	Ref.
HOOC	PPL	λ _{ex} =360 nm λ _{em} =453 nm	0.13 U/L	[2]
	PPL	$\lambda_{\rm ex}$ =350 nm $\lambda_{\rm em}$ =420 nm	0.1 mg/mL	[3]
	pPL	$\lambda_{\rm ex}$ =380 nm $\lambda_{\rm em}$ =562 nm	0.05 U/L	[4]
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	hPL	λ _{ex} =360 nm λ _{em} =460 nm	N.D.	[5]
	hPL	λ _{ex} =600 nm λ _{em} =660 nm	0.40 µg/mL	[6]
of the interest of the interes	hPL	$\lambda_{\rm ex}$ =570 nm $\lambda_{\rm em}$ =590 nm	0.369 µg/mL	[7]
	hPL	$\lambda_{\rm ex}$ =570 nm $\lambda_{\rm em}$ =670 nm	0.06 µg/mL	This study

Table S4. Comparison of reported PL fluorescent substrates with the substrates in this paper.

Reference

[1] Qiao Z., Zhang H. Y., Zhang Y. R., Wang K. W.(2020). Detection of Lipase Activity in Cells by a Fluorescent Probe Based on Formation of Self-Assembled Micelles. iScience, 23(7), 101294.

[2] Shi, J., Deng, Q., Wan, C., Zheng, M., Huang, F., & Tang, B.(2017). Fluorometric probing of the lipase level as acute pancreatitis biomarkers based on interfacially controlled aggregation-induced emission (AIE). Chemical science, 8(9), 6188–6195.

[3] Shi J., Zhang S., Zhen M. M., Deng Q. C., Zheng C., Jing L., Huang F. H.(2017). A novel fluorometric turn-on assay for lipase activity based on an aggregation-induced emission (AIE) luminogen. Sens. Actuator B Chem. 238 765-771.

[4] Guan, P., Liu, Y., Yang, B., Wu, Y., Chai, J., Wen, G., & Liu, B.(2021). Fluorometric probe for the lipase level: Design, mechanism and biological imaging application. Talanta, 225, 121948.

[5] Ivanov Sergey A., Nomura K., Malfanov Ilya L., Sklyar Ilya V., Ptitsyn Leonid R.(2011). Isolation of a novel catechin from Bergenia rhizomes that has pronounced lipase-inhibiting and antioxidative properties. Fitoterapia, 82(2), 212-8.

[6] Hu, Q., Tian, Z., Wang, H., Huang, J., Wang, F., Zhao, B., He, R., Jin, Q., Hou, X., Hou, J., Fang, S., Wang, P., & Ge, G.(2021). Rational design and development of a novel and highly specific near-infrared fluorogenic substrate for sensing and imaging of human pancreatic lipase in living systems. Sensors and Actuators B-chemical, 341, 130033.

[7] Hou F. B., Zhang N., Zhu G. H., Fan Y. F., Sun M. R., Nie L. L., Ge G. B., Zheng Y. J., Wang P.(2023). Functional Imaging and Inhibitor Screening of Human Pancreatic Lipase by a Resorufin-Based Fluorescent Probe. Biosensors. 13(2):283.