An ultrasensitive electrochemical sensor for phospholipase C via signal amplification based on breathing ATRP and its application

Xiwen Li[§], Peiran Meng[§], Mingyang Sun, Yue Chen, Zhiyi Song, Xinyao Wang, Na Li and Yue Sun*

School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China

[§]These authors contributed equally.

Corresponding author:

Email: yuesun@lnnu.edu.cn

Postal address: Yue Sun, School of Chemistry and Chemical Engineering, Liaoning Normal

University, Dalian 116029, China

Tel.: +86 411 82158329; fax: +86 411 82156858

Fig.S 1 DPV results of Cys/Au (curve 1, curve 2) and PE/Cys/Au electrode (curve 3, curve 4) before (curve 1, curve 3) or after (curve 2, curve 4) soaking in ZrOCl₂ solution.

Fig.S 2 Selection of Cys concentration (A), polymerization time (B) and FcMMA concentration (C).

Table	S1 .	Analy	rtical	perf	ormance	e of	different	method	s for	PLC	detection.
		2		1							

Methods	Materials	Linear response range	LOD	Ref.
Fluorometry	11-mercaptoundecanoic acid–gold nanodot–liposome hybrids	5-300 U/L	2 U/L	1

Fluorometry	water-soluble conjugated polyelectrolyte -lipid complex	0-100 μmol/L	1 nmol/L	2
Enzyme catalysis	phosphomolybate complex	10-10 ⁶ nmol/L	10 nmol/L	3
LC-MS assay	1-palmitoyl-2-oleoyl- diacylglycerol	1-10 U/mL	1 U/mL	4
Electrochem istry	PFcMMA/Zr ⁴⁺ /PE/Cys/Au electrode	1-40 U/L (0.78-31.01 nmol/L)	0.27 U/L (0.45 nmol/L)*	This Work

* The value conversion was calculated according to the information provided by the reagent company

Fig.S 3 Relationship of SWV peak current of PFcMMA/Zr⁴⁺/PE/Cys/Au electrode with days.

Table S2 Determination of PLC in three cell extracts	by Elisa kit and PFcMMA/Zr ⁴⁺ /PE/Cys/	'Au
--	---	-----

		PFcMMA/Zr ⁴⁺ /PE/Cys/Au electrodes						
cells	ELISA kit - (U/L) [mean+SD	Direct detection	Standard addition method					
	(n=3)]	(U/L) [mean±SD (n=3)] and RSD	Added (U/L)	Found (U/L) [mean±SD (n=3)]	Recovery (%)	RSD (%)		

				0.5	1.870±0.034	98.0%	1.80%
MCF-7	1.380±0.051	1.406±0.038	2.73%	1.0	$2.388{\pm}0.033$	100.7%	1.39%
				1.5	2.899 ± 0.045	101.2%	1.57%
				2.0	3.336 ± 0.050	97.8%	1.48%
				2.5	$3.854{\pm}0.053$	98.9%	1.36%
				0.5	2.036±0.062	103.5%	3.05%
	1.519±0.067	1.581±0.053		1.0	2.495 ± 0.067	97.6%	2.66%
MDA- MB-231			3.46%	1.5	3.015 ± 0.062	99.8%	2.05%
				2.5	$4.093 {\pm} 0.062$	103.0%	1.53%
				5.0	6.723±0.256	104.1%	3.92%
	0.730±0.088	0.666±0.013	1.73%	0.5	1.234±0.026	100.9%	2.14%
				1.0	1.743 ± 0.036	101.3%	2.06%
MCF-10A				1.5	$2.289{\pm}0.018$	103.9%	0.80%
				2.0	$2.808 {\pm} 0.056$	103.9%	2.04%
				2.5	3.199±0.036	98.7%	1.13%

Reference

- Chen, W.Y.; Chen, L.Y.; Ou, C.M.; Huang, C.C.; Wei, S.C.; Chang, H.T., Synthesis of fluorescent gold nanodot–liposome hybrids for detection of phospholipase C and its Inhibitor. *Anal. Chem.* 2013, 85, 8834-8840.
- Liu, Y.; Ogawa, K.; Schanze, K.S., Conjugated polyelectrolyte based real-time fluorescence assay for phospholipase C. *Anal. Chem.* 2008, 80, 150-158.
- Durban, M. A.; Bornscheuer, U.T., An improved assay for the determination of phospholipase C activity. *Eur. J. Lipid Sci. Tech.* 2007, 109, 469–473.
- Murakami, C.; Mizuno, S.; Kado, S.; Sakane, F., Development of a liquid chromatography-mass spectrometry based enzyme activity assay for phosphatidylcholine-specifific phospholipase C. Anal. Biochem. 2017, 526, 43-49.