Supporting information

CRISPR Cas12a-enabled biosensors coupled with commercial pregnancy test strips for the visible point-of-care testing of

SARS-CoV-2

Peijie Shen,^{a,b} Zhenjun Si,^c Di Huang,^{a,b} Zhipeng Xu,^{d,*} Ziyi Wang,^{a,b} Mengjun Fang,^{a,b} Zhinan Xu^{a,b,*}

^a Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.

^b Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.

^c Hangzhou FasTech Biotechnology Company Limited, Hangzhou 310005, China.

^d The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China.

*Correspondence:

Prof. Zhinan Xu, Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.

E-mail: <u>znxu@zju.edu.cn</u>

Dr. Zhipeng Xu, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China.

E-mail: <u>11618267@zju.edu.cn</u>

Content

Figure S1. Schematic diagram of CRISPR-PTS assay
Figure S2. Established CRISPR-fluorescence assay without amplification4
Figure S3. RT-RAA primer optimization
Figure S4. Feasibility of CRISPR-PTS assay6
Figure S5. Optimization of hCG-modified beads added volume in CRISPR-PTS assay
Figure S6. Optimization of Cas12a/crRNA final concentration in CRISPR-PTS assay
Figure S7. Optimization of cleavage time in CRISPR-PTS assay9
Figure S8. Genome sequence alignment of SARS-CoV and SARS-CoV-210
Figure S9. RT-qPCR standard curve of SARS-CoV-2 pseudovirus spiked throat swab samples
Figure S10. Comparison between strips from different brands using CRISPR-PTS assay
Table S1. Oligonucleotides used in this study 13
Table S2. Validation of CRISPR-PTS assay using spiked throat swab samples16
Table S3. Comparison between CRISPR-PTS assay and RT-qPCR on various detection
parameters19

Figure S1. Schematic diagram of CRISPR-PTS assay. (A) Principle of the pregnancy test strip (PTS) assay. (B) Schematic diagram of CRISPR Cas12a-based ssDNA cleavage. The hCG was released from sepharose beads after Cas12a *trans*-cleavage and could be detected by PTS.

Figure S2. Established CRISPR-fluorescence assay without amplification. (A) Reaction kinetics of SARS-CoV-2 E1 site tested by CRISPR-fluorescence system. The dsDNA was diluted to different final concentrations as targets and the fluorescence was measured every 3 min (the curves showed the mean of three repeated measurements collected every 3 min by a 384-well plate reader). (B) Sensitivity of the CRISPR-fluorescence assay for SARS-CoV-2 E1 site at 15 min (each column was the average of three repeated measurements; error bars represented the mean \pm S.D.; **p < 0.01 in "Student's t test").

Figure S3. RT-RAA primer optimization. Six different primer combinations were tested in this section and primer pair 6 containing E1-RT-RAA-R2 and E1-RT-RAA-6F showed the highest amplification efficiency (CRISPR-fluorescence assay was used in this part; fluorescence intensity was measured at 15 min; pseudovirus concentration was 5 copies/ μ L; each column was the average of three repeated measurements; error bars represented the mean \pm S.D.; NC: without any primer addition).

Figure S4. Feasibility of CRISPR-PTS assay. (A) Schematic diagram of CRISPR Cas12a-mediated ssDNA cleavage. (B) SDS-PAGE analysis of hCG and ssDNA conjugate (the theoretical molecular weight of hCG was 36 kDa and he larger molecular weight bands in line 1, 2 and 3 represented the hCG-ssDNA conjugate). (C) Feasibility test of CRISPR-PTS assay. The hCG-modified streptavidin sepharose beads were respectively treated (or not) by DNase I (10 U) and Cas12a (with crRNA, and 100 nM target) followed by immersing the strip into the reaction mixture.

Figure S5. Optimization of hCG-modified beads added volume in CRISPR-PTS assay. (A) Comparison of band intensity observed by unaided eyes between different groups. No. 1 to No. 12 represented experimental groups with beads adding volume ranging from 0 to 20 μ L, respectively (left: NC; right: DNase I). (B) Comparison of band intensity observed by a test strip reader between different groups. This cleavage system contained 0.5 U/ μ L RNase inhibitor, 1×NEBuffer2.1 and different amount of hCG-modified beads, treated by DNase I or not (NC) for 1 hour at 37 °C (each column was the average of three repeated measurements; error bars represented the mean ± S.D.).

Figure S6. Optimization of Cas12a/crRNA final concentration in CRISPR-PTS assay. (A) Comparison of band intensity observed by unaided eyes between different groups. No. 1 to No. 4 represented experimental groups with Cas12a final concentrations ranging from 50 to 200 nM, respectively (left: 0 nM dsDNA target; middle: 5 nM dsDNA target; right: 100 nM dsDNA target). (B) Comparison of band intensity observed by a test strip reader between different groups. This cleavage system contained 0.5 U/µL RNase inhibitor, 1×NEBuffer2.1 and 20 µL hCG-modified beads, treated by different amount of Cas12a/crRNA (molar ratio=1:2) for 1 hour at 37 °C. Three different kinds of dsDNA concentrations were tested in this experiment as mocked target (each column was the average of three repeated measurements; error bars represented the mean \pm S.D.).

Figure S7. Optimization of cleavage time in CRISPR-PTS assay. (A) Comparison of band intensity observed by unaided eyes between different groups. No. 1 to No. 4 represented experimental groups with cleavage time ranging from 20 to 80 min, respectively (left: 0 nM dsDNA target; middle: 5 nM dsDNA target; right: 100 nM dsDNA target). (B) Comparison of band intensity observed by a test strip reader between different groups. This cleavage system contained 100 nM Cas12a, 200 nM crRNA, 0.5 U/µL RNase inhibitor, 1×NEBuffer2.1 and 20 µL hCG-modified beads, treated at 37 °C for different time. Three different kinds of dsDNA concentrations were tested in this experiment as mocked target (each column was the average of three repeated measurements; error bars represented the mean \pm S.D.).

Figure S8. Genome sequence alignment of SARS-CoV and SARS-CoV-2. The protospacer adjacent motif (PAM) and specific sequence for Cas12a/crRNA recognition were both on the E gene of two viral strains. The red part of the sequence represented the significant difference between two viral types and was suitable for CRISPR Cas12a detection system.

Figure S9. RT-qPCR standard curve of SARS-CoV-2 pseudovirus spiked throat swab samples. The picture showed the linear response of Ct values towards log_{10} (pseudovirus final concentrations). The data was taken by three biological repetitions and error bars represent the mean \pm S.D.; $R^2 = 0.993$.

Figure S10. Comparison between strips from different brands using CRISPR-PTS assay (NC: templete was RNase-free ddH₂O; PC: templete was throat swab samples mixed with pseudovirus at a final concentration of 100 copies/ μ L). The brands of commercial pregnancy test strips from group 1 to 5 were respectively David[®], Cofoe[®], Wellday[®], Yuting[®] and Hainuo[®].

Name	Sequence (5' start)
N1-NTS	CTGGTCCCCAAAATTTCCTTGGGTTTGTTCTGGACCAC
	GTCTGCCGAAAG
N1-TS	CTTTCGGCAGACGTGGTCCAGAACAAACCCAAGGAAA
	TTTTGGGGACCAG
N2-NTS	CCTCAGCAGCAGATTTCTTAGTGACAGTTTGGCCTTGT
	TGTTGTTGGCCT
N2-TS	AGGCCAACAACAACAAGGCCAAACTGTCACTAAGAAA
	TCTGCTGCTGAGG
E1-NTS	AAGAATTCAGATTTTTAACACGAGAGTAAACGTAAAA
	AGAAGGTTTTACA
E1-TS	TGTAAAACCTTCTTTTTACGTTTACTCTCGTGTTAAAAA
	TCTGAATTCTT
E2-NTS	TAGCGTACTTCTTTTTTTTTCTTGCTTTCGTGGTATTCTTGCT
	AGTTACACTAG
E2-TS	CTAGTGTAACTAGCAAGAATACCACGAAAGCAAGAAA
	AAGAAGTACGCTA
N1-crRNA-F	TAATACGACTCACTATAGGGTAATTTCTACTAAGTGTA
	GATCTTGGGTTTGTTCTGGACCA
N1-crRNA-R	TGGTCCAGAACAAACCCAAGATCTACACTTAGTAGAA
	ATTACCCTATAGTGAGTCGTATTA
N2-crRNA-F	TAATACGACTCACTATAGGGTAATTTCTACTAAGTGTA
	GATTTAGTGACAGTTTGGCCTTG
N2-crRNA-R	CAAGGCCAAACTGTCACTAAATCTACACTTAGTAGAA
	ATTACCCTATAGTGAGTCGTATTA
E1-crRNA-F	TAATACGACTCACTATAGGGTAATTTCTACTAAGTGTA
	GATACACGAGAGTAAACGTAAAA
E1-crRNA-R	TTTTACGTTTACTCTCGTGTATCTACACTTAGTAGAAAT

 Table S1. Oligonucleotides used in this study.

	TACCCTATAGTGAGTCGTATTA
E2-crRNA-F	TAATACGACTCACTATAGGGTAATTTCTACTAAGTGTA
	GATTTGCTTTCGTGGTATTCTTG
E2-crRNA-R	CAAGAATACCACGAAAGCAAATCTACACTTAGTAGAA
	ATTACCCTATAGTGAGTCGTATTA
E1-RT-RAA-F1	CGGAAGAGACAGGTACGTTAATAGTTAATAGC
E1-RT-RAA-R2	AGACCAGAAGATCAGGAACTCTAGAAGAAT
E1-RT-RAA-F3	ATGTACTCATTCGTTTCGGAAGAGACAGGTA
E1-RT-RAA-R4	GACCAGAAGATCAGGAACTCTAGAAGAATTCAGAT
E1-RT-RAA-F5	TCGGAAGAGACAGGTACGTTAATAGTTAATAGCG
E1-RT-RAA-6F	GTTTCGGAAGAGACAGGTACGTTAATAGTT
SARS-CoV-E-F	CAACGGTTTACGTCTACTCGCGTGTTAAA
SARS-CoV-E-R	TTTAACACGCGAGTAGACGTAAACCGTTG
MERS-ORF1a-	TACGAGCCCACTACTCCCATTTCGTCAG
F	
MERS-ORF1a-	CTGACGAAATGGGAGTAGTGGGCTCGTA
R	
MERS-upE-F	CTCTGCGCTACTATGGGTCCCGTGTAGAG
MERS-upE-R	CTCTACACGGGACCCATAGTAGCGCAGAG
MERS-ORF1b-	TCGATGTTGAGGGTGCTCATGCTTCCCGT
F	
MERS-ORF1b-	ACGGGAAGCATGAGCACCCTCAACATCGA
R	
Reporter	HEX-TTATTATTATTA-BHQ
SH-DNA	Thiol-(T)74-TCAGTGAATCGATCTAGTCAGTCAG
Biotin-DNA	Biotin-(T)74-CTGACTGACTAGATCGATTCACTGA
RT-qPCR-F	GGGGAACTTCTCCTGCTAGAAT
RT-qPCR-R	CAGACATTTTGCTCTCAAGCTG
RT-qPCR-probe	FAM-TTGCTGCTGCTTGACAGATT-TARMA

The combination of E1-RT-RAA-R2 and E1-RT-RAA-6F was the primer pair with the highest amplification efficiency.

Sample	Pseudovirus	CRISPR-PTS		RT-qPCR	
ID	added				
	final	TL	Conclusion	Ct value	Conclusion
	concentration	intensity	Conclusion	Ct value	Conclusion
	(copies/µL)				
1	Non	301.0	-	Undetermined	-
2	Non	293.0	-	Undetermined	-
3	Non	246.4	-	Undetermined	-
4	Non	278.2	-	Undetermined	-
5	Non	299.3	-	Undetermined	-
6	Non	228.1	-	Undetermined	-
7	Non	343.5	-	Undetermined	-
8[1]	Non	383.9	+	Undetermined	-
9	Non	255.6	-	Undetermined	-
10	Non	191.3	-	Undetermined	-
11	Non	209.9	-	Undetermined	-
12	Non	295.2	-	Undetermined	-
13	Non	290.3	-	Undetermined	-
14	Non	183.3	-	Undetermined	-
15	Non	256.9	-	Undetermined	-
16	Non	306.8	-	Undetermined	-
17	Non	232.7	-	41.93	-
18	Non	238.7	-	Undetermined	-
19	Non	239.6	-	Undetermined	-
20	Non	266.6	-	40.20	-
21 ^[2]	1	388.5	+	36.55	-
22	2.5	429.8	+	34.91	+
23	4	473.2	+	34.34	+

Table S2. Validation of CRISPR-PTS assay using spiked throat swab samples.

24	5	507.3	+	34.08	+
25	7.5	513.0	+	33.61	+
26	8	545.0	+	33.63	+
27	9	438.5	+	33.13	+
28	12.5	492.4	+	32.71	+
29	15	580.6	+	32.58	+
30	20	634.2	+	32.26	+
31	25	587.0	+	31.50	+
32	30	634.1	+	31.40	+
33	40	648.8	+	30.97	+
34	45	636.3	+	30.71	+
35	50	647.2	+	30.60	+
36	55	574.3	+	30.52	+
37	60	637.6	+	30.34	+
38	65	636.9	+	30.27	+
39	70	660.8	+	30.05	+
40	75	478.6	+	29.94	+
41	80	673.3	+	29.96	+
42	90	655.3	+	29.87	+
43	100	691.8	+	30.41	+
44	150	619.5	+	28.14	+
45	200	806.9	+	27.65	+
46	250	585.7	+	28.25	+
47	500	655.0	+	27.32	+
48	600	832.1	+	26.42	+
49	750	853.9	+	26.82	+
50	1250	751.2	+	26.28	+
51	1300	811.3	+	25.55	+
52	1500	1025.8	+	25.44	+

53	1800	916.2	+	25.30	+
54	2000	762.0	+	26.48	+

(-) Negative result; (+) Positive result.

[1]Sample No. 8 was actually negative control but appeared false-positive result.

[2]Sample No.21 was added with 1 copy/µL pseudovirus at final concentration. Single copy level of pseudovirus was not detected by RT-qPCR but detected by CRISPR-PTS assay established in this study.

 Table S3. Comparison between CRISPR-PTS assay and RT-qPCR on various detection

 parameters

	CRISPR-PTS assay	RT-qPCR	
Target	E gene	ORF1ab, N gene	
Technological process	 Sample pretreatment (70 °C, 10 min) RT-RAA (42°C, 30 min) Cas12a cleavage (37 °C, 40 min) Strip signal readout (37 °C, 2 min) 	 Genome extraction (r.t., 1 h) Reverse transcription (50 °C,15 min) Denature (95 °C, 5 min) 4. Amplification (95 °C, 10 s; 55 °C 40 s; *45) 	
Sample-to-result time	82 min	117.5 min	
LOD	1 copy per μl input	2.5 copies per µl input	
Assay results	Qualitative	Quantitative	
Material cost	6.08 \$	11.04 \$	
Bulky instrumentation required	No	Yes	