Supporting Information

Fabrication of molecularly imprinted gold nanoparticlesembedded Fe-MOFs for highly selective SERS detection of 17 β-estradiol in milk

Mengmeng Zhang, Zhouya Wu, Yunhan Yang, Jing Ye, Sheng Han*, Yuanting Li*

School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China

*Corresponding author: Yuan-Ting Li; Sheng Han School of Chemical and Environmental Engineering Shanghai Institute of Technology No. 100 Haiquan Road Shanghai, 201418, P. R. China Tel/Fax: + 086 21 60873241 E-mail: <u>liyuanting@sit.edu.cn</u> (Y.T. Li); <u>hansheng654321@sina.com</u> (S. Han)

Contents:

Figure S1-Figure S14 (Page S1-Page S7)

Table S1 (Page S7)

Text S1 (Page S8-Page S9)

References (Page S9)

Figure S1. UV-vis spectroscopy of the elution solution. The wavelength of 17β -E2 is located at 280 nm.

Figure S2. The chemical structure of estrone (E1), 17β -estradiol (17β -E2) and estriol (E3).

Figure S3. TEM images of (A) AuNPs and (B) core-shell AuNP@MIP-PDA.

Figure S4. The size distribution of citrate-stabilized AuNPs (A) and the thickness of MIP-PDA shell (B).

Figure S5. UV–vis spectra of (A) AuNPs and (B) AuNP@MIP-PDA dispersed in water and 0.1 mol/L NaCl. Insets are photographs of different dispersions.

Figure S6. (A) SEM image of AuNP@PDA-MIP fabricated after coating AuNPs with 0.1 mg/mL DA for 40 min. (B) The size distribution of PDA-MIP shell thickness.

Figure S7. The self-polymerization process of DA in aqueous solution.

Figure S8. FT-IR spectra of AuNPs and AuNP@MIP-PDA.

Figure S9. (A-F) TEM images from different views of AuNP@MIP-PDA@MIL-101(Fe) fabricated with 9 mL of AuNP@MIP-PDA in the absence of acetic acid.

Figure S10. The plots of adsorption efficiency *vs.* time for AuNP@MIP-PDA@MIL-101(Fe) and AuNP@NIP-PDA@MIL-101(Fe) after adsorption of 2.0×10^{-8} mol/L 17β-E2, respectively. Integration time: 40 s; laser power: 40 mW.

Figure S11. Normal Raman spectra of (a) AuNPs, (b) AuNP@MIP-PDA, (c) MIL-101(Fe), (d) AuNP@NIP-PDA@MIL-101(Fe) and (e) AuNP@MIP-PDA@MIL-101(Fe). Integration time: 40 s; laser power: 40 mW.

Figure S12. (A) SERS spectra of AuNP@MIP-PDA@MIL-101(Fe) upon four cycles of elution and recombination of 1.0×10^{-8} mol/L 17β-E2. (B) The corresponding responses by monitoring SERS intensity of the bands at 1611 cm⁻¹. Integration time: 40 s; laser power: 40 mW.

Figure S13. The relationships between SERS intensity at 1611 cm⁻¹ and the storage weeks.

Figure S14. SERS band intensity of 1611 cm⁻¹ for 1.0×10^{-8} mol/L 17β-E2, diethylstilbestrol, bisphenol A, chloramphenicol, Ca²⁺, Na⁺, K⁺ and Cl⁻, respectively.

Raman	SERS	Assignments
-	868	v(C-C)
1002	1024	δ(C-C)
-	1074	v(C-O)
1125	1131	δ (C-H) ring; γ (C-H)
1143	-	δ(CH ₃)
1176	-	$\gamma(CH_3)$
1233	1228	γ (C-H) from methyl; δ (C-H) + δ (-OH) + ν (C-C) from phenol
		groups
1251	-	v(C-O); v(C-C) ring
1300	-	δ(-OH)
1338	-	v (C-C) from phenyl rings; δ (C-H) + δ (-OH) from phenol
		groups
1430	1428	$\delta(CH_3)$
1589	-	v(C-C) ring
1621	1611	v(C-C) ring

Table S1. Raman and SERS spectral data of 17β -E2 incubated on AuNP@MIP-PDA@MIL-101(Fe).¹⁻³

v: Stretching vibration, δ : in-plane bending vibration, γ : out of plane bending vibration.

S1. Calculation of Enhancement Factor (EF).

The EF value can be estimated using the following equation:

$$EF = \left(\frac{I_{SERS}}{I_{Raman}}\right) \times \left(\frac{N_{Raman}}{N_{SERS}}\right)$$

where I_{SERS} stands for the intensities of the vibrational mode in the SERS spectra and I_{Raman} stands for the normal Raman spectra of solid 17 β -E2. N_{SERS} and N_{Raman} are the number of 17 β -E2 molecules adsorbed on the AuNP@MIP-PDA@MIL-101(Fe) substrate and bulk molecules illuminated by the laser focus spot under SERS and normal Raman conditions, respectively. I_{SERS} and I_{Raman} can be obtained from the spectra directly while N_{SERS} and N_{Raman} need to be calculated on the basis of the estimation of the corresponding sample area. N_{SERS} and N_{Raman} can be obtained according to the reported method⁴⁻⁵.

In this work, 3 μ L of 1.0 × 10⁻⁸ mol/L 17β-E2 solution was dropped onto the AuNP@MIP-PDA@MIL-101(Fe) substrate, which left a spot of ca. 2.72 mm in diameter, following the SERS spectra of 17β-E2 were recorded, and the band 1611 cm⁻¹ was selected to calculate the EF. Suppose the molecules uniformly dispersed on the substrate and then the density of the molecules on the substrate was assumed to be 1.0 × 10⁻⁸ mol/L × 3 μ L × N_A /(π × 1.36² mm²). The laser spot has a 10 μ m diameter and the surface area is about 7.9 ×10⁻⁵ mm², so N_{SERS} value is estimated as following:

 $N_{SERS} = 1.0 \times 10^{-8} \text{ mol/L} \times 3 \times 10^{-6} \text{ L} \times \text{N}_A \times (7.9 \times 10^{-5}/5.8) = 2.45 \times 10^{5}$

Taking the laser spot diameter (about 10 µm), the penetration depth (about 2 µm), and the molecule weight of solid 17β-E2 (1.17 g/cm³) into account, N_{Raman} had a value of 4.06×10^{11} (N_{Raman} =1.17 g cm⁻³ × π × 25 µm² × 2 µm × N_A / 272.382 g mol⁻¹ =4.06×10¹¹) in the detected solid sample area.

All the spectra were normalized for laser power and acquisition time. Raman intensity I_{SERS} is 36052 cnts at the band of 1611 cm⁻¹, and the I_{Raman} is measured to be 1400 cnts. Therefore,

 $EF_{17\beta-E2} = (I_{SERS} / I_{Raman}) \times (N_{Raman} / N_{SERS}) = (36052 \text{ cnts} / 1400 \text{ cnts}) \times (4.06 \times 10^{11} \text{ mol} / 2.45 \times 10^5 \text{ mol}) = 4.26 \times 10^7.$

The EF at the band at 1611 cm⁻¹ of 17β -E2 can be calculated to be 4.26×10^7 for the AuNP@MIP-PDA@MIL-101(Fe) substrate (Figure S15).

Figure S15. (a) Normal Raman spectrum of solid 17 β -E2; (b) SERS spectra of AuNP@MIP-PDA@MIL-101(Fe) substrate after adsorption of 17 β -E2 with the concentration of 1.0×10⁻⁸ mol/L, respectively.

References:

1. Wang, X.; Song, M.; Wang, Y.; Deng, W.; Li, D., Peak-differentiation-imitating-assisted SERS strategy for the accurate detection of estrogens at the femtomole level. *Chemical Communications* **2022**, *58* (100), 13887-13890.

2. Albuquerque, C. D. L.; Nogueira, R. B.; Poppi, R. J., Determination of 17β-estradiol and noradrenaline in dog serum using surface-enhanced Raman spectroscopy and random Forest. *Microchemical Journal* **2016**, *128*, 95-101.

3. Yao, L.; Li, Y.; Cheng, K.; Pan, D.; Xu, J.; Chen, W., Determination of 17beta-estradiol by surface-enhanced Raman spectroscopy merged with hybridization chain reaction amplification on Au@Ag core-shell nanoparticles. *Mikrochim Acta* **2019**, *186* (2), 52.

4. Jiang, Z.; Gao, P.; Yang, L.; Huang, C.; Li, Y., Facile in Situ Synthesis of Silver Nanoparticles on the Surface of Metal-Organic Framework for Ultrasensitive Surface-Enhanced Raman Scattering Detection of Dopamine. *Anal Chem* **2015**, *87* (24), 12177-12182.

5. Xia, Z.; Li, D.; Deng, W., Identification and Detection of Volatile Aldehydes as Lung Cancer Biomarkers by Vapor Generation Combined with Paper-Based Thin-Film Microextraction. *Anal Chem* **2021**, *93* (11), 4924-4931.