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A SERS maps simulation and experimental results
We first demonstrated the performance of our proposed methods with simulated datasets. We simulate three types of SERS maps in
total, including 1) SERS maps without any contaminants, 2) SERS maps with contaminants at a fixed Raman shift location, and 3)
SERS maps with random contaminants at random Raman shift locations. We explain the SERS map simulation and show the SERS
maps below. The implementation of the SERS map generation is publicly available.

A.1 SERS maps simulation

In this section, we explain the process for simulating a SERS map with the shape of [Sh,Sw,Nw]. We define a SERS map that has ShSw

spectra, and each spectrum has Nw wavenumbers. Each spectrum Si j at location i, j in the SERS map S is a summation of a background
spectrum Bi j, a pure Raman spectrum Ri j, and the noise spectrum Ni j as shown in Eq. A.1.

Si j = Bi j +Ri j +Ni j (A.1)

A.1.1 Background simulation

We first simulate the background spectrum Bi j by multiplying a base background spectrum b that follows an AR(1) process and a
location-specific coefficient τi j that is drawn from a Beta distribution. Given a constant c and the autoregression coefficient ψ, we
simulate the base background spectrum bw at Raman shift w using Eq. A.2a. We then normalize the entire base spectrum b such that its
intensity is between [0, 1] using Eq. A.2b. To add variation on the background spectrum Bi j at different locations in the SERS map, we
multiply the base background spectrum b with a coefficient τi j that is drawn from a beta distribution Beta(α,β ).

bw = c+ψbw−1 + ε, ε ∼ N (0,1),w ∈ {2, ...,Nw} (A.2a)

b = b−min(b) b =
b

max(b)
(A.2b)

Bi j = bτi, j, τi, j ∼ Beta(α,β ) (A.2c)

A.1.2 Signal simulation

We assume the Raman signal is a combination between the hotspot map Shotspot that has the shape of [Sh,Sw] and the Raman spectrum
V . We assume the hotspot map Shotspot has Nh hotspots and it can show the spatial distribution of the enhancement factors1. The
Raman spectrum V is assumed to be a summation of Np spectra where each of the spectrum Vp is a combination between a Lorentzian
distribution and a Gaussian distribution2. We will explain the generation of the hotspot map Shotspot and Raman spectrum V below.

Hotspot map Shotspot

We first simulate the hotspot map Shotspot that has the shape of [Sh,Sw] and Nh hotspots. Since the statistics such as the location µ,
size r, and intensity a of each hotspot can be different, we assume that the map Shotspot is a summation of Nh hotspot maps as shown
in Eq. A.3c. We draw each hotspot map Hh that has the shape of [Sh,Sw] following a Gaussian distribution that is parameterised by the
location of the hotspot µh and the size of the hotspot rh as shown in Eq. A.3b. We draw the location µh for hotspot h from an uniform
distribution and the size of the hotspot rh from a Gaussian distribution as shown in Eq. A.3a
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Fig. A.1 Example SERS maps and the corresponding spectra. The first two columns are the SERS maps at the signal peak locations. The third
column is either the averaged SERS map over the wavenumber dimension or the SERS map at the contaminated Raman shift locations. The last
column shows all the spectra from the SERS map and the pseudo-Voigt profile (V ). We highlight ten spectra that have the highest and lowest peak
intensities
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µh ∼ [Unif(0,Sh −1),Unif(0,Sw −1)]

rh ∼ N (hs,1),ah ∼ Unif(0.5,0.6)
(A.3a)

Hh,i j = ah exp(− (i−µh[0])2 +( j−µh[1])2

r2
h

) (A.3b)

Shotspot =
Nh−1

∑
h=0

Hh (A.3c)

Raman spectrum V
We next simulate the spectrum V for the Raman signal. We assume the Raman spectrum V contains Np peaks, and each of the peak

corresponds to a Raman spectrum Vp that is drawn from a combination of the Lorentzian distribution and the Gaussian distribution
using Eq. A.4c. The Lorentzian distribution and Gaussian distribution are parameterised by the centre location of a peak cp and the
half-width-at-half-maximum γp as shown in Eq. A.4a and A.4b. We draw the centre location cp for peak p in the Raman shift domain of
the spectrum following a uniform distribution that ranges from v = 20 to v = Nw −20. We sample γp following a Gaussian distribution
N (5,1) and the ratio of the Lorentzian distribution ρ is sampled following a uniform distribution Unif(0, 1). Each spectrum Vp is
normalised such that the maximum intensity is one using Eq. A.4d. We then take the sum of the spectrum Vp over p peaks as the Raman
spectrum V as shown in Eq. A.4e.

Lp =
1

1+ (v−cp)2

γ2
p

(A.4a)

Gp = exp(−
(v− cp)

2

2γ2
p

) (A.4b)

Vp = ρpLp +(1−ρp)Gp (A.4c)

Vp =
Vp

maxVp
(A.4d)

V =
Np−1

∑
p=0

Vp (A.4e)

Raman signal Ri j

Given the hotspot map Shotspot, the Raman spectrum V , and the background B, we can calculate the amplitude of the peaks with
respect to the signal-to-background ratio SBR following Eq. A.5. For simplicity, we assume the amplitude for all the peaks are same. We
then take the product between the hotspot map Shotspot, amplitude A, and the Raman spectrum V to get the final Raman signal Ri j at a
specific location using Eq. A.6.

A =

√√√√SBR
∑

Sh−1
i=0 ∑

Sw−1
j=0 ∑

Nw−1
w=0 B2

i jw

∑
Sh−1
i=0 ∑

Sw−1
j=0 ∑

Nw−1
w=0 (Shotspot,i jVw)2

1
N2

p
(A.5)

Ri j = Shotspot,i jAV (A.6)

A.1.3 Noise simulation

We simulate each noise spectrum at Raman shift w using eq. A.7 where σn is defined as the degree of the noises.

Ni j,w = σ
2
n εn, where εn ∼ N (0,1) (A.7)

A.2 Simulated dataset
We explain three different types of simulated SERS maps in this section. We assume that the molecule of interest contains two peaks
(Np = 2) and the fingerprint characteristics, such as the peak locations cp, half-width-at-half-maximum γp, and the ratio of the Lorentzian
distribution ρp, are the same for all three types of maps. There are 900 spectra in each SERS map Sh = 30,Sw = 30 and the length of the
wavenumbers is 110 (Nw = 110). We assume that the relation between the signal-to-background ratio (SBR) and the concentration is
non-linear, as can be seen in Fig. A.2.To make the simulated maps more realistic, we propose including contaminants. These contami-
nants can appear either at a fixed Raman shift location or at random Raman shift locations. We summarize the simulated SERS maps
into three types:

• Type 1: SERS maps without any contaminants.
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• Type 2: SERS maps with contaminants that appear at a fixed Raman shift location. This contaminant may appear because of other
Raman active molecules in the substrate in a real-world scenario3. We assume that 20% of the SERS maps contain contaminants,
and the peak location of the contaminants is fixed. Other characteristics, such as γ and ρ for these contaminants, are randomly
drawn.

• Type 3: SERS maps with contaminants that are at random Raman shift locations. These contaminants can be caused by the
preparation of the substrates, environmental contaminants, and lighting3. We assume that 50% of the SERS maps contain such
contaminants and every characteristic, such as c, γ, and ρ of these contaminants, are randomly drawn at each time.
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Fig. A.2 Relation between concentration and signal-to-background ratio (SBR). As the concentration increases, the signal-to-background ratio (SBR)
is also increasing non-linearly

Depending on the task, we simulate a different number of SERS maps per concentration, as can be seen in Table. A.1. For the
detection task, the goal is to detect whether a SERS map contains a molecule of interest (1/0). Therefore, we simulate the same
number of maps for class 0 and class 1 to mimic the perfect class-balance scenario. Similarly, we simulate the same amount of SERS
maps per concentration for the quantification task. We simulate the same amount of SERS maps for training, validating, and testing the
model.

Table A.1 The number of training/validation/testing maps per concentration for detection and quantification tasks. To simulate the perfect class-
balance scenario, we simulate the same number of maps for class 0 and class 1 for the detection task and the same number of maps per concentration
for the quantification task

Concentration (label) 0 (0) 0.0025 (1) 0.0050 (1) 0.0100 (1) 0.0250 (1) 0.0500 (1) 0.0750 (1) 0.1000 (1) 0.2000 (1) 0.3000 (1) 0.4000 (1) 0.5000 (1)

Detection 550 50 50 50 50 50 50 50 50 50 50 50
Quantification 50 50 50 50 50 50 50 50 50 50 50 50

Some example SERS maps at the signal peak locations and the corresponding spectra can be seen in Fig A.1. We highlight ten
spectra with the highest and lowest intensities at the signal peak locations. The SERS maps at low and zero concentrations are hardly
distinguishable. Besides, the spectra with the highest intensities at signal peak locations are less similar to the corresponding pseudo-
Vogit profile due to the background and noise. However, we can quickly identify the hotspots at high concentrations, and the differences
between the highest and lowest intensity in fingerprint regions are more obvious.

We further show the relationship between the intensities at the peak locations and concentrations to explore the differences between
the spectra at different concentrations. We extract all the spectra from each SERS map and rank them based on the intensities at the
signal peak locations. We then select a subset of the spectra, such as the top 10%, and calculate the average of the peak intensities
over them. The average and the standard deviation of the peak intensities over 50 SERS maps per concentration are shown in Fig. A.3.
The trend that a higher concentration is more likely to correspond to a higher peak intensity is more visible when we only select and
aggregate a subset of spectra per map.

A.3 Experimental results on simulated datasets

We report and compare the performance between our proposed approach (ViT) that takes SERS maps as input and the methods that
take the averaged spectra as input in this section. For the spectra-based models, except for ranking and selecting the spectra based on
the peak intensities Eq. A.8a, we also experimented with using mean Eq. A.8b, standard deviation Eq. A.8c, and the difference of the
intensity Eq. A.8d between the neighbouring wavenumbers for selecting the spectra as shown in:
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Fig. A.3 The correlation between the averaged peak intensity and concentration for different datasets. The errorbar represents the standard deviation
of the averaged peak intensities over 50 SERS maps per concentration. The correlation is more obvious when we extract the peak intensity with fewer
spectra per map, i.e., the top 10% of the spectra.

Px,y = ∑
w∈P

Xx,y,w, (A.8a)

Mx,y =
∑

Nw
w=1 Xx,y,w

Nw
(A.8b)

Sx,y =
∑

Nw
w=1(Xx,y,w −Mx,y)

2

Nw
(A.8c)

Dx,y =
Nw−1

∑
w=1

||Xx,y,w+1 −Xx,y,w|| (A.8d)

We quantitatively show the detection and quantification performance on three different simulated datasets: Type 1 without contam-
inants, Type 2 with random contaminants at a fixed Raman shift location, and Type 3 with random contaminants at random Raman
shift locations. We also provide a qualitative explanation of the performance difference between the models.

A.3.1 Detection

For the methods that take the spectra as the input, we select the most appropriate combination between αtrain and αeval following the
procedure in the manuscript. The heatmap of the validation loss is shown in Fig. A.7. For each of these three datasets, averaging
a spectrum from a subset of spectra leads to lower validation loss compared to averaging the entire SERS map. Besides, we benefit
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Fig. A.4 Detection accuracy with a 95% confidence interval of the correct detection rate over five runs on different datasets. Our method significantly
improves the detection accuracy, especially at low concentrations, compared to the methods that use spectra as the input. When the SERS maps
contain more complicated contaminates, the detection accuracy drops.

by selecting a similar amount of spectra during training and validating since we tend to get lower validation loss near the diagonal.
When the peak locations are known, selecting spectra based on the peak intensities leads to lower validation loss. We then use the best
combination between αtrain and αeval for each of the datasets on the test dataset to demonstrate the detection accuracy.

Fig. A.4 shows the averaged detection accuracy over five runs with the 95% confidence interval of the correct detection rate
(±1.96 p̂(1−p̂)

54 , p̂ = T P + T N + 2, T P + T N + FP + FN = 50). In general, we obtain a relatively lower detection accuracy when the
concentration of the molecule of interest is lower. We observe little performance difference between using Xception, U-CNN, and
ResNet. Compared to the methods that use the averaged spectra as the input, our proposed approach (ViT) achieves much higher
accuracy, especially when the concentration of the molecule of interest is low. The accuracy of ViT drops when the dataset contains
more complicated contaminants.

We calculate the validation loss at each concentration level to understand what prevents the spectra-based models from obtaining
good accuracies at high concentrations. Fig A.6 shows the result on the Type 1 dataset when we select spectra based on the peak
intensities. As the concentration increases, the modality of the accuracy is also changing. The model benefits more from selecting fewer
spectra at 0 concentration. However, we get a lower loss when more spectra are selected for calculating the averaged spectrum at low
concentrations (0.0025 ∼ 0.0500). The models produce similar detection results regardless of the percentage of selected spectra at
high concentrations (0.3 ∼ 0.5). These changes in the modalities make it harder to obtain a single selection criterion appropriate for all
the concentrations. We need to sacrifice the accuracies at low or high concentrations. However, this can be dangerous in a real-world
scenario. For example, we need to detect the chemical hazards to a concentration as low as possible while also being able to signal
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Fig. A.5 Concentration prediction and a 95% confidence interval over 50 maps per concentration. The predicted concentration is an average of over
five runs. Our method can predict the concentration much more accurately than the models that take the spectra as the input, especially at low
concentrations. The quantification accuracy drops when we include more complicated contaminants in the SERS maps.
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Fig. A.7 Detection performance on the validation datasets (binary cross-entropy loss). When the peak location is known, selecting spectra based on
the peak intensities leads to a lower loss compared to other selection criteria. Preparing the input by averaging a subset of spectra from each map
leads to better detection performance than averaging the full SERS map.
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Fig. A.8 Quantification performance R2(logc) on the validation datasets. When the peak location is known, selecting and aggregating spectra based on
the peak intensities leads to a better quantification performance than other selection criteria. Selecting a subset of spectra gives better quantification
performance compared to averaging the whole SERS map
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when the concentration is high.

A.3.2 Quantification

We follow the same process to report the quantification performance. Fig. A.8 shows the R2 on the log-transformed concentrations
on the validation dataset. We observe a similar trend as shown in the detection task. Selecting a subset of spectra and a similar
number of spectra during training and validation gives better quantification accuracy against other combinations. This phenomenon
can attribute to the consistency between the peak intensities when selecting the spectra during training and validating with the same
selection parameters. We then use the combination that gives the highest R to demonstrate the spectra-based models’ performance on
the test dataset.

The averaged predicted concentration with a 95% confidence interval (± 1.96σĉ√
50

) where σĉ is the standard deviation of the predicted
concentration within each concentration level using different models for each dataset is shown in Fig. A.5. There is no significant
difference between the spectra-based models Xception, U-CNN, and ResNet. They all can give relatively accurate and non-overlapping
concentration predictions down to a concentration of 0.2. The model tends to fail to differentiate between the spectra when the
concentration is below 0.2. However, our proposed model ViT which takes the SERS map as input, can achieve much more accurate
quantification results. We can differentiate the SERS maps when their concentrations are larger than 0.01. We obtain slightly worse
prediction results, especially at lower concentrations (≤ 0.01), as we add more complicated contaminants to the dataset.
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B Addition details for preparing the SERS maps

B.1 Fabrication process

200 nm

6 inch Ø
3 mm

3
m
m
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Ag
cap
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c)

Fig. B.1 SERS substrates obtained from a two-step fabrication process. A maskless RIE of Si and e-beam evaporation of Ag were performed on
a polished 6-inch black Si wafer (a). The resulting structures are vertically standing Ag-capped Si NPs, as shown in (b) from a SEM image and a
graphical representation. 3x3 mm2 chips, shown in (c), were then cut using a laser micromachining tool.

B.2 Additional figures for the spectra
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Fig. B.2 Example 4-NBT spectra at different concentration levels. We here select the top 1% of spectra with the highest fingerprint peak intensities
from each SERS map and show the normalised averaged spectrum. We normalize it by subtracting the mean of the intensities and dividing by the
standard deviation of the intensities.
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Fig. B.3 Example DNP spectra at different concentration levels. We here select the top 1% of spectra with the highest fingerprint peak intensities
from each SERS map and show the normalised averaged spectrum. We normalize it by subtracting the mean of the intensities and dividing by the
standard deviation of the intensities.
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Fig. B.4 Example picric acid spectra at different concentration levels. We here select the top 1% of spectra with the highest fingerprint peak intensities
from each SERS map and show the normalised averaged spectrum. We normalize it by subtracting the mean of the intensities and dividing by the
standard deviation of the intensities. The fingerprint peaks at low concentrations are less visible compared to the peaks at high concentration level.

C Extra experimental details

C.1 Spectra-based model architecture
In this section, we explain the models that take the averaged spectra as the input. For the classical machine learning methods, including
K Nearest Neighbors (KNN), Gradient Boosting, Random Forest, Support Vector Machine (SVM), and Decision Tree, we use the default
implementations in scikit-learn https://scikit-learn.org/stable/. For the neural networks, we will explain the details below. All
the implementations are publicly available.

• Xception: We use the same feature extractor as described by Li. et al4. We then append a single MLP layer on top of the feature
extractor for either performing detection task or quantification task.

• Unified CNN: We use a similar feature extractor as described by Liu. et al 5. We then append layers on top of the feature extractor
following: Linear-BatchNorm1d-Linear-Dropout-Linear.

• ResNet: we use the same architecture as described by Ho. et al6.

C.2 Augmentation procedure and hyperparameters
We explain the augmentation procedure in this section. We follow the augmentation scheme as described in Li. et al4. We use Gaussian
noise with amplitude proportional to the standard deviation σw over a length K sliding window of the first difference dw = sw − sw−1 of
the intensities,

µw =
1
K

K−1

∑
k=0

dw+k, σ
2
w =

1
K

K−1

∑
k=0

(dw+k −µw)
2, ŝw ∼ N (sw,κ ·σ2

w), (C.1)

where sw and ŝw are the original and augmented spectra, and w is the wavenumber index. In our case, we set K = 8 and κ ∼ N (0,1).
For each SERS map measurement, we simulate 10 SERS maps for the 4-NBT dataset and 5 SERS maps for the DNP and the PA dataset.
More detailed hyperparameters can be found in the repository.
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C.3 Training and inference time
We show the number of parameters, training time, and evaluation time in Table C.1. While the ViT is a bit slower to train, the inference
time is similar to other methods.

Table C.1 Comparison between different architectures. Models are trained for 300 epochs, and the evaluation is performed using Intel(R) Xeon(R)
CPU E5-2620 v4 @ 2.10GHz.

ViT Xception ResNet U-CNN

Model parameters 1,028,418 228,467 1,247,050 7,743,074
Training time (min) 11 7 7 6
Evaluation time (ms) 8 9 17 4

D Extra experimental results
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Fig. D.1 Classification loss (binary cross-entropy loss) on the validation datasets using different models. For better visualization, the colour bar
indicates the log-transformed cross-entropy loss. The darker the colour is, the more accurate the model is. The lowest validation loss per heatmap is
annotated with a x. Averaging the SERS map with a subset of spectra tends to be more accurate than averaging the entire SERS map.
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Fig. D.2 R2 on the log-transformed concentrations (Eq. ??) on the validation datasets using different models. The darker the colour is, the more
accurate the predicted concentrations are. The highest R2 per heatmap is annotated with a x. Averaging the SERS map with a subset of spectra
gives a better prediction of the concentration than with all the spectra in the map. Due to the low signal in the Picric acid (PA) dataset, we achieve
a lower validation R2 compared to other datasets.
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Table D.1 Detection and quantitation performance on multiple data sets.

Global accuracy R2

4-NBT DNP PA 4-NBT DNP PA

KNN 0.77 0.87 0.80 0.80 0.60 0.55
Random forest 0.73 0.90 0.72 0.56 0.20 0.44
SVM 0.73 0.90 0.84 0.75 0.65 0.56
GradientBoost 0.70 0.87 0.72 0.77 0.51 0.65
Xception 0.73 0.93 0.92 0.86 0.85 0.36
U-CNN 0.73 0.90 0.88 0.81 0.81 0.81
ResNet 0.79 1.00 0.88 0.78 0.59 0.24
ViT 1.00 1.00 0.96 0.94 0.92 0.81
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Fig. D.3 SERS measurements (DNP 100 nM) and contaminants. From left to right, we have the map that is calculated over the DNP peak regions
(pink regions in the last subfigure), the map that is at the contaminant’s peak, and the spectra (the pink regions denote the fingerprint region of
DNP).

D.2 Detecting DNP in the presence of contaminants
A key use case for our method is detection of explosives in a scenario where strong contaminants are present7. We opt to further
examine the performance of detecting DNP in the presence of contaminants, and since ResNet and ViT both have 100% accuracy for
DNP in the setting with no contaminants, we focus our analysis on comparing these two methods. We have carried out experiments
where the DNP measurements are contaminated with simulated contaminants at random wavenumbers, random intensities, and peak
shapes (see Fig. D.3) following the procedure as explained in the Supplementary Information Section A.

We follow the procedure described in Section 2 from the manuscript to demonstrate the performance. During training, for each
sample we add a random contaminant to 75% percent of training examples. Simulated contaminants with random intensity N (µc,10)
are added to the SERS map, where µc =2843 is chosen as the 85-th intensity percentile within the DNP fingerprint region. We train the
model for 300 epochs.Similar to the other experiments we perform leave-one-out crossvalidation, but evaluate the model’s performance
on 4000 examples created by combining the left-out test example with 4000 different contaminants. For the ResNet, we follow the
established procedure and preprocess each sample to a single spectrum by averaging the top 5% of the spectra, which have the highest
intensities across the DNP’s fingerprint regions, as described in Section 2.3 in the manuscript. At test time, we also select the top 5% of
the spectra per map (5% is the tuned hyperparameter, as shown in Fig.D.1 in the Supplementary Information). We include test results
for three levels of contaminant amplitudes to demonstrate out of distribution performance.

The results are shown in Table D.2. No matter how strong the contaminants’ signals are, the ViT achieves a detection accuracy ≥

Table D.2 Detection accuracy and balanced accuracy on samples that are created by mixing DNP measurements with random generated contaminants
where the intensity of the contaminants follow N (µc,10).

Contaminant Global accuracy Balanced accuracy

ResNet ViT ResNet ViT

None 1.000 1.000 1.000 1.000
µc = 1644 0.964 0.994 0.967 0.990
µc = 2843 0.962 0.991 0.957 0.987
µc = 4183 0.957 0.986 0.936 0.982
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Table D.3 Detection accuracy on samples that are created by mixing DNP measurements with random generated contaminants where the intensity of
the contaminants follow N (µc,10). Each number shows the averaged accuracy of 4000 samples. We highlight the better performance (the difference
between ResNet and ViT is larger than 0.02) within each contribution level. We see that ViT performs better than ResNet, especially when the signal
of the contaminants is strong

Contaminant Blank 1nM 10nM 100nM 1µM 10µM

ResNet ViT ResNet ViT ResNet ViT ResNet ViT ResNet ViT ResNet ViT

µc=1644 0.983 0.985 1.000 1.000 0.981 0.993 1.000 0.992 0.820 1.000 1.000 1.000
µc=2843 0.960 0.982 1.000 0.999 0.982 0.987 1.000 0.989 0.832 1.000 1.000 1.000
µc=4183 0.915 0.979 1.000 0.996 0.978 0.976 1.000 0.980 0.846 0.999 1.000 1.000
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Fig. D.4 Detection performance using ViT (top) and ResNet (bottom). Each dot corresponds to the detection accuracy of 4000 samples where a
SERS measurement is mixed with 4000 different contaminates. Different colour means the strength of the signal in the contaminants. A larger µc
means that peaks of contaminants are with higher intensity. 4183 is the highest peak intensity within the DNP fingerprint regions in the measurements.
In the legend, Accuracy 0.99&1.00 means that ViT achieves on average 99% accuracy when DNP does not exist in the samples (Blank) and 100%
accuracy when DNP exists in the samples (The rest of mixtures).

98%, whereas the ResNet is significantly less robust to the contamination. Detailing the results, Table D.3 and Fig. D.4 show that the ViT
performs slightly worse on the samples that contain the 3rd measurement at 100 nM and contaminants. From Fig.5 in the manuscript,
we see methods such as U-CNN, KNN, Random Forest, SVM, GradienBoost also have trouble of classifying this 3rd measurement (orange
color coding) at concentration level of 100 nM.

D.3 Attention maps for DNP and Picric Acid datasets
We show the attention maps for datasets DNP and PA in this section. We observe a similar pattern here that ViT can capture the
fingerprint characteristics better than the averaging scheme where we average a SERS map into a single spectrum.
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