Supporting Information for

## Glucose Sandwich Assay based on Surface-Enhanced Raman Spectroscopy

Tingting Zhang<sup>a</sup>, Rui Lu<sup>a, \*</sup>, Gongying Wang<sup>a</sup>, Xiuyun Sun<sup>a</sup>, Jiansheng Li<sup>a</sup>, Boris Mizaikoff<sup>b, \*</sup>

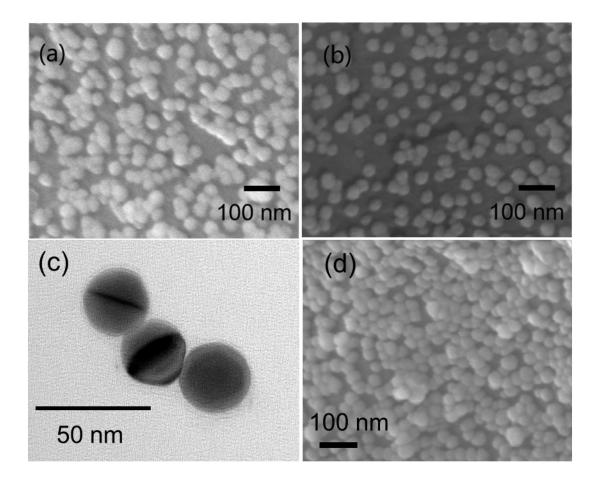
<sup>a</sup>Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental

and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's

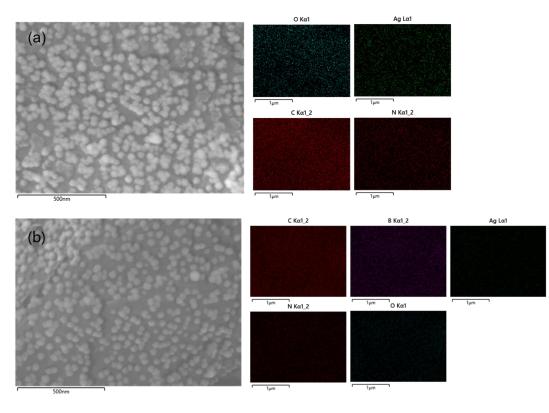
## Republic of China

<sup>b</sup>Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert Einstein Allee 11, 89081

Ulm, Germany & Hahn-Schickard, Ulm Sedanstrasse 14, 89077 Ulm, Germany


This supporting information is a 17-page document, including 10 figures, 4 tables, and this cover page.

#### 1. Calculation of enhancement factor


According to the most widely used definition of the average SERS enhancement factor (EF)<sup>1</sup>, we calculated the SERS EF for R6G adsorbed on polyamide-Ag.

$$EF = (I_{SERS}/N_{surf})/(I_{RS}/N_{vol})$$
(S1)

where  $I_{SERS}$  and  $I_{RS}$  are the intensities of a particular peak of an analyte in the SERS and normal Raman (non-SERS) spectra measured under identical conditions, respectively. During a SERS experiment,  $N_{surf}$ represents the average number of molecules adsorbing in the scattering volume, while in a non-SERS experiment,  $N_{vol}$  represents the average number of molecules adsorbing in the scattering volume. Based on the assumption that the molecules were uniformly distributed on the polyamide-Ag, it was assumed that the density of R6G on the polyamide-Ag under SERS would be  $1 \times 10^{-9}$  mol  $L^{-1} \times 10 \ \mu L \times NA/16$ mm<sup>2</sup> (16 mm<sup>2</sup> stands for the surface area of the polyamide-Ag), which corresponds to  $3.76 \times 10^8$ molecules per mm<sup>2</sup>, whereas the density of folic acid on the silicon under non-SERS was assumed to be  $1 \times 10^{-3}$  mol  $L^{-1} \times 10 \ \mu L \times NA/16 \ mm^2$ , which corresponds to  $3.76 \times 10^{14}$  molecules per mm<sup>2</sup>. The diameter of the laser spot is approximately 1 µm, and its surface area is about  $7.9 \times 10^{-7} \ mm^2$ . Therefore, the  $N_{surf}$  value is  $2.97 \times 10^3$ , and the  $N_{vol}$  value is  $2.97 \times 10^8$ , respectively. In accordance with Equation (S1), the EF value is  $3.95 \times 10^5$ , and detailed data are provided in **Table S3**.



**Fig. S1.** SEM images of (a) polyamide-Ag, (b) polyamide-Ag-APBA thin film substrates, (c) TEM image of 30 nm Ag NPs and (d) SEM image of {polyamide-Ag-APBA}-glucose/PVP-[Ag-APBA/AEPO sandwich structure.



**Fig. S2.** Element surface distribution of (a) polyamide-Ag and (b) polyamide-Ag-APBA energy spectrum analysis.

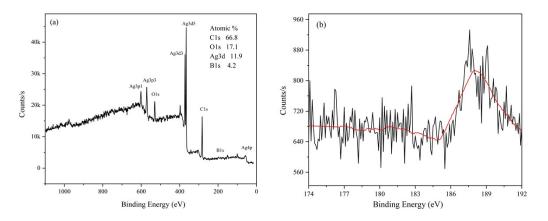



Fig. S3. XPS spectra of (a) polyamide-Ag-APBA and (b) boron element.

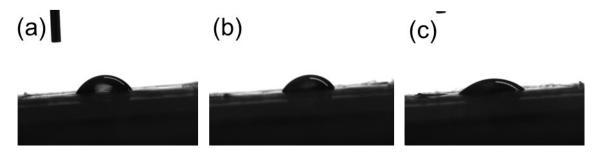
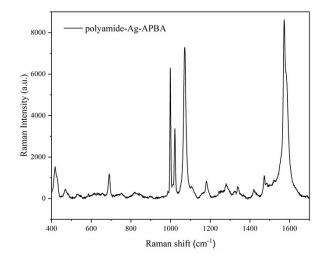
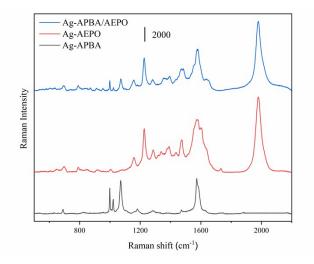
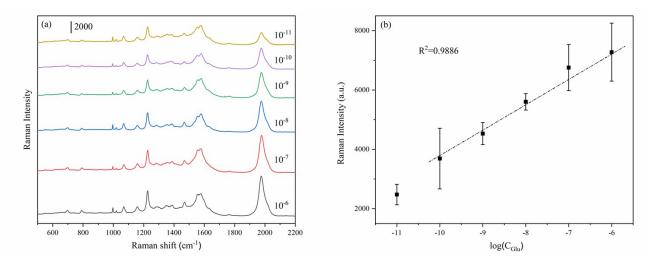
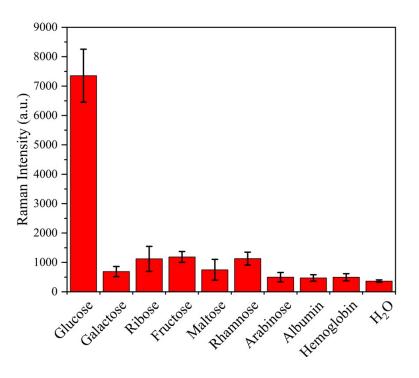


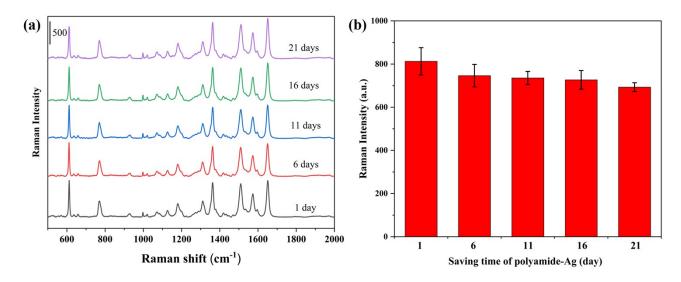

Fig. S4. The contact angle test of (a) polyamide-Ag, (b) polyamide-Ag-APBA and (c) polyamide-Ag-

APBA-PVP.

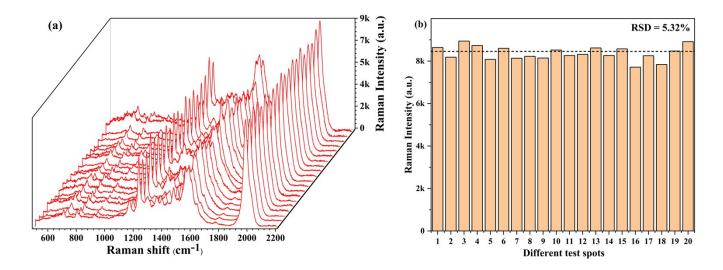






Fig. S5. SERS spectra of polyamide-Ag modified with APBA.




**Fig. S6.** SERS spectra of Ag nanoparticles modified with APBA, AEPO, and their mixtures with the ratio of 1:1.




**Fig. S7.** (a) Evolution of Raman spectra with the increase of glucose concentrations from 10<sup>-11</sup> M to 10<sup>-6</sup> M by a factor of 10 and (b) the calibration curve of the Raman signal at 1977 cm<sup>-1</sup> as a function of Glu concentration in aqueous solution.



**Fig. S8.** Peak intensities at 1977 cm<sup>-1</sup> of glucose, other saccharides, albumin and hemoglobin (10<sup>-6</sup> M) in aqueous solution. Error bars represent RSD from three replicate samples, each of which was measured at six different spots.



**Fig. S9.** (a) SERS spectra and (b) Peak intensities at 609 cm<sup>-1</sup> of 10<sup>-9</sup> M R6G collected from a freshly prepared polyamide-Ag substrate and the same substrate after different days of storage.



**Fig. S10.** (a) SERS spectra of and (b) peak intensities at 1977 cm<sup>-1</sup> of 10<sup>-6</sup> M glucose obtained from 20 random points on the same substrate.

| component                       | Concentration (g/L) |  |  |  |
|---------------------------------|---------------------|--|--|--|
| Urea                            | 25.00               |  |  |  |
| KCl                             | 1.60                |  |  |  |
| NaCl                            | 2.93                |  |  |  |
| $Na_2SO_4$                      | 2.25                |  |  |  |
| NH <sub>4</sub> Cl              | 1.00                |  |  |  |
| KH <sub>2</sub> PO <sub>4</sub> | 1.40                |  |  |  |
| $CaCl_2 \cdot 2H_2O$            | 1.10                |  |  |  |
| creatinine                      | 1.10                |  |  |  |
| Ovalbumin                       | 0.05                |  |  |  |

 Table S1. Composition of artificial urine medium.

| Concentration       | Glucose in aqueous solution |      |      |      | Glucose in artificial urine |      |      |      |      |      |      |      |
|---------------------|-----------------------------|------|------|------|-----------------------------|------|------|------|------|------|------|------|
| 10 <sup>-6</sup> M  | 8834                        | 8796 | 8165 | 7931 | 8024                        | 7852 | 8712 | 8320 | 8130 | 8332 | 7785 | 7592 |
| 10 <sup>-7</sup> M  | 6626                        | 6158 | 6895 | 6253 | 6985                        | 6852 | 5608 | 6546 | 6822 | 7068 | 6835 | 6381 |
| 10 <sup>-8</sup> M  | 4670                        | 4590 | 4835 | 4597 | 4362                        | 4975 | 4682 | 4174 | 4518 | 4787 | 4407 | 4980 |
| 10 <sup>-9</sup> M  | 3419                        | 3260 | 3550 | 3574 | 3230                        | 3492 | 3207 | 3368 | 3498 | 3357 | 3526 | 3481 |
| 10 <sup>-10</sup> M | 2063                        | 2340 | 1860 | 1960 | 2040                        | 2109 | 2763 | 1926 | 2231 | 2024 | 2306 | 2053 |
| 10 <sup>-11</sup> M | 1606                        | 1408 | 1760 | 1490 | 1730                        | 1680 | 1921 | 1798 | 1596 | 1638 | 1723 | 1692 |

Table S2. The Peak intensities at 1977 cm<sup>-1</sup> of various glucose concentrations in aqueous solution and

# artificial urine.

| Parameter         | Date                |
|-------------------|---------------------|
| I <sub>RS</sub>   | 1640                |
| I <sub>SERS</sub> | 648                 |
| $N_{vol}$         | $2.97	imes10^8$     |
| $N_{surf}$        | $2.97 	imes 10^{3}$ |
| EF                | $3.95 	imes 10^5$   |

Table S3. The calculation of SERS EF for the R6G adsorbed on polyamide-Ag.

| Reporter molecule                                                        | Chemical bond                | Raman peak (cm <sup>-1</sup> ) | Limit of detection (M)         | Real samples                            | References |
|--------------------------------------------------------------------------|------------------------------|--------------------------------|--------------------------------|-----------------------------------------|------------|
| Mercapto phenylboronic acid                                              | B-OH<br>stretching           | 1071                           | Physiologically relevant range | Vivo rabbit eyes                        | 2          |
| Triosmium Carbonyl<br>Cluster–Boronic Acid Conjugates                    | C=O                          | 2111                           | Physiologically relevant range | Human saliva                            | 3          |
| 4,4'-dimercaptoazobenzene                                                | N=N stretching<br>vibrations | 1436, 1140                     | 10-5                           | Urine                                   | 4          |
| Malachite green                                                          | ring C-C<br>stretching       | 1613                           | 3.9×10 <sup>-7</sup>           | Tears                                   | 5          |
| 4-Mercapto phenylboronic acid                                            | B-OH<br>stretching           | 1068                           | 2.11×10-7                      | Tears                                   | 6          |
| 4-Mercapto phenylboronic acid                                            | B-OH<br>stretching           | 1069                           | $1.2 \times 10^{-7}$           | Serum                                   | 7          |
| 3-Mercapto phenylboronic acid                                            | B-OH<br>stretching           | 1069                           | $7 \times 10^{-8}$             | Artificial urine and normal human serum | 8          |
| 4-Mercaptophenylboronic acid-<br>triosmium carbonyl cluster<br>conjugate | C≡N                          | 2111                           | 10-10                          | Human urine                             | 9          |
| 3-amino-6-<br>ethynylpicolinonitrile                                     | C≡C                          | 1977                           | 10-11                          | Artificial urine                        | This work  |

Table S4. Comparison of developed methods and previously reported SERS methods for glucose detection.

### References

- 1. G. Demirel, R. L. M. Gieseking, R. Ozdemir, S. Kahmann, M. A. Loi, G. C. Schatz, A. Facchetti and H. Usta, *Nat. Commun.*, 2019, **10**, 5502.
- D. Yang, S. Afroosheh, J. O. Lee, H. Cho, S. Kumar, R. H. Siddique, V. Narasimhan, Y. Z. Yoon,
   A. T. Zayak and H. Choo, *Anal. Chem.*, 2018, 90, 14269-14278.
- D. Lin, S. W. Yang, C. L. Hsieh, K. J. Hsu, T. Gong, Q. Wu, S. Qiu, S. Feng and K. V. Kong, ACS Sens, 2021, 6, 1240-1247.
- 4. X. Bi, X. Du, J. Jiang and X. Huang, *Anal. Chem.*, 2015, **87**, 2016-2021.
- 5. X. Cui, J. Li, Y. Li, M. Liu, J. Qiao, D. Wang, H. Cao, W. He, Y. Feng and Z. Yang, Spectrochim. Acta. A Mol. Biomol. Spectrosc., 2022, 266, 120432.
- 6. W.-C. Lee, E. H. Koh, D.-H. Kim, S.-G. Park and H. S. Jung, "Sens. Actuators, B", 2021, 344.
- X. Teng, F. Chen, Y. Gao, R. Meng, Y. Wu, F. Wang, Y. Ying, X. Liu, X. Guo, Y. Sun, P. Lin, Y. Wen and H. Yang, *Anal. Chem.*, 2020, **92**, 3332-3339.
- 8. X. Gu, H. Wang, Z. D. Schultz and J. P. Camden, Anal. Chem., 2016, 88, 7191-7197.
- K. V. Kong, Z. Lam, W. K. Lau, W. K. Leong and M. Olivo, *J Am Chem Soc*, 2013, 135, 18028-18031.