SUPPLEMENTARY FIGURES

$\operatorname{NcoI}(-2$ to 4) NdeI (58-63)
$1 \begin{array}{llllllllllllllllllll} & M & G & S & S & H & H & H & H & H & H & S & S & G & L & V & P & R & G & S\end{array}$
1 ATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGTGCCGCGCGGCAGCCAT
BLA $24 \downarrow$
$21 \mathrm{M} \quad \mathrm{H} \quad \mathrm{P} \quad \mathrm{E} \quad \mathrm{T} \quad \mathrm{L} \quad \mathrm{V} \quad \mathrm{K}$ V
61 ATGCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTG

121 GGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAA
$\begin{array}{llllllllllllllllllllll}61 & R & F & P & M & M & S & T & F & K & V & L & L & C & G & A & V & L & S & R & V\end{array}$ 181 CGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTGTT
 241 GACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAG
 301 TACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGT
$\begin{array}{llllllllllllllllllllll}121 & A & A & I & T & M & S & D & N & T & A & A & N & L & L & \text { L } & \text { T } & \text { T } & \text { I } & G & G\end{array}$ 361 GCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGA $\begin{array}{llllllllllllllllllllllll}141 & \mathrm{P} & \mathrm{K} & \mathrm{E} & \mathrm{L} & \mathrm{T} & \mathrm{A} & \mathrm{F} & \mathrm{L} & \mathrm{H} & \mathrm{N} & \mathrm{M} & \mathrm{G} & \mathrm{D} & \mathrm{H} & \mathrm{V} & \mathrm{T} & \mathrm{R} & \mathrm{L} & \mathrm{D} & \mathrm{R}\end{array}$ 421 CCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGT
 481 TGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCA
$181 \mathrm{~A} \quad \mathrm{M}$ A $\quad \mathrm{T}$ 541 GCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGG 201 Q Q L I D W M E A D K V A G P L L R 601 CAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCC
 661 CTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGT
 721 ATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACG
 781 GGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTG BLA 286
 841 ATTAAGCATTGGGGATCAggaggcggaggatcaggaggaggtggttctggtggaggtggt

Aß42 starts \downarrow
301 S G G G G S D A E F R 901 agtgggggcggcGGATCCgatgcagaattccgacatgactcaggatatgaagttcatcat
 961 caaaaattggtgttctttgcagaagatgtgggttcaaacaaaggtgcaatcattggactc XhoI (1016-1021)
$341 \mathrm{M} V \mathrm{G}$ G V V I A * * A S * K L * L E
1021 atggtgggcggtgttgtcatagcgtaatgaGCTAGCtaaAAGCTTtaaCTCGAG
Figure S1. DNA and protein sequences of BLA-Aß42. The DNA sequence shown is located on the pET28b plasmid between NcoI and XhoI sites. Residue M180 is indicated with an arrow. BLA protein is 286-residue long, but residues 2-23 of the BLA protein are not included in the construct.

```
    NcoI (-2 to 4) NdeI (58-63)
    1 M G S S S H H
    1 ATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGTGCCGCGCGGCAGCCAT
    BLA 24\downarrow
```



```
    6 1 ~ A T G C A C C C A G A A A C G C T G G T G A A A G T A A A A G A T G C T G A A G A T C A G T T G G G T G C A C G A G T G ~
    41 G Y I E L D L N S G K I I L L E S S F F R P E E E
121 GGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAA
    61 R F F P M M M M S T T F F
181 CGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTGTT
    81 D A G Q E Q L G R R R I H H
2 4 1 \text { GACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAG}
101 Y S P V T E K H L T T D D G M T T V V R E L L C S
3 0 1 ~ T A C T C A C C A G T C A C A G A A A A G C A T C T T A C G G A T G G C A T G A C A G T A A G A G A A T T A T G C A G T ~
```



```
3 6 1 ~ G C T G C C A T A A C C A T G A G T G A T A A C A C T G C G G C C A A C T T A C T T C T G A C A A C G A T C G G A G G A ~
141 P K E L T A F L L H N N M G D D H N V T R R L D D R
4 2 1 ~ C C G A A G G A G C T A A C C G C T T T T T T G C A C A A C A T G G G G G A T C A T G T A A C T C G C C T T G A T C G T ~
161 W E P P E L N N E A A I P
4 8 1 \text { TGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCA}
BLA 195\downarrow
```



```
5 4 1 ~ G C A A T G G C A A C A A C G T T G C G C A A A C T A T T A A C T G G C G A A G G A T C A G G A G G C G G A G G A T C A ~
                                    A\beta42 starts\downarrow
201 G G G G S G G G G S G G G G S D A A E F F
601 GGAGGAGGTGGTTCTGGTGGAGGTGGTAGTGGGGGCGGCGGATCCGATGCAGAATTCCGA
221 H D S G Y E V H H Q L K L V V F F F A N E D D V G
6 6 1 \text { CATGACTCAGGATATGAAGTTCATCATCAAAAATTGGTGTTCTTTGCAGAAGATGTGGGT}
241 S N K G A I I G L M V G G V V I A * * A
7 2 1 ~ T C A A A C A A A G G T G C A A T C A T T G G A C T C A T G G T G G G C G G T G T T G T C A T A G C G T A A T G A G C T ~
    XhoI (796-801)
261 S * K L * L E
8 0 1 ~ A G C T A A A A G C T T T A A C T C G A G ~
```

Figure S2. DNA and protein sequences of NBLA-Aß42. The DNA sequence shown here is located on the pET28b plasmid between NcoI and XhoI sites. NBLA contains residues 24-195 of the BLA protein.

```
    NcoI (-2 to 4)
    1 M G S S S H H H H H
    1 ATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGTGCCGCGCGGCAGCCAT
    BLA 24\downarrow
```



```
    6 1 ~ A T G C A C C C A G A A A C G C T G G T G A A A G T A A A A G A T G C T G A A G A T C A G T T G G G T G C A C G A G T G ~
    41 G Y I E L D L N S S G K I L L E S S F F R P
121 GGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAA
    61 R F F P M M M M S T T F F K V V L L L Cllllllllllll
181 CGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTGTT
    81 D A G Q E Q L L G R R R I I H
2 4 1 \text { GACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAG}
101 Y S P V T E K H L T D D G M M T V V R E L C C S
3 0 1 ~ T A C T C A C C A G T C A C A G A A A A G C A T C T T A C G G A T G G C A T G A C A G T A A G A G A A T T A T G C A G T ~
121 A A I T M M S D N N T A A A N L L L L L T T T I I G G
361 GCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGA
```



```
4 2 1 ~ C C G A A G G A G C T A A C C G C T T T T T T G C A C A A C A T G G G G G A T C A T G T A A C T C G C C T T G A T C G T ~
161 W E P P E L N N E A A I I P N N N D D E N
4 8 1 ~ T G G G A A C C G G A G C T G A A T G A A G C C A T A C C A A A C G A C G A G C G T G A C A C C A C G A T G C C T G C A ~
    BLA 195\downarrow NGR tripeptide
```



```
5 4 1 ~ G C A A T G G C A A C A A C G T T G C G C A A A C T A T T A A C T G G C G A A A A C G G T C G T G G A T C A G G A G G C ~
                                    A\beta42 starts\downarrow
201 G G S G G G G S G G G G S G G G G G S D A
601 GGAGGATCAGGAGGAGGTGGTTCTGGTGGAGGTGGTAGTGGGGGCGGCGGATCCGATGCA
221 E F R H D D S G Y E V F H H C Q K L L V F F F A E
6 6 1 \text { GAATTCCGACATGACTCAGGATATGAAGTTCATCATCAAAAATTGGTGTTCTTTGCAGAA}
241 D V G S N K K G A I I I G L M M V G G G V V I I A
71 GATGTGGGTTCAAACAAAGGTGCAATCATTGGACTCATGGTGGGCGGTGTTGTCATAGCG
    XhoI (805 to 810)
261 * * A S * K L * L E
8 1 0 ~ T A A T G A G C T A G C T A A A A G C T T T A A C T C G A G ~
```

Figure S3. DNA and protein sequences of NBLA-Aß42 containing the NGR tripeptide insertion. The DNA sequence shown here is located on the pET28b plasmid between NcoI and XhoI sites. NBLA contains residues 24-195 of the BLA protein. NGR tripeptide is inserted after residue 196 of the BLA protein.

```
        NcoI (-2 to 4)
            BLA 196\downarrow
        1 M G G L L T L A S S R R Q Q L L I I D W W M E A A D
        1 ATGGGCGGACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGAT
```



```
        6 1 ~ A A A G T T G C A G G A C C A C T T C T G C G C T C G G C C C T T C C G G C T G G C T G G T T T A T T G C T G A T A A A ~
    41 S G A G E R G S R G I I A A A L G G P D D G K
1 2 1 ~ T C T G G A G C C G G T G A G C G T G G G T C T C G C G G T A T C A T T G C A G C A C T G G G G C C A G A T G G T A A G ~
    61 P S R I I V V I Y Y T T T G S S Q A A T M M D D E R N
181 CCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAAT
                                BLA 286\downarrow
    81 R Q I A A E I G A A S L L I I K N H
2 4 1 ~ A G A C A G A T C G C T G A G A T A G G T G C C T C A C T G A T T A A G C A T T G G G G A T C A G G A G G C G G A G G A ~
101 S G G G G S G G G G S G G G G G G S S D D A A E F
3 0 1 ~ T C A G G A G G A G G T G G T T C T G G T G G A G G T G G T A G T G G G G G C G G C G G A T C C G A T G C A G A A T T C ~
```



```
3 6 1 ~ C G A C A T G A C T C A G G A T A T G A A G T T C A T C A T C A A A A A T T G G T G T T C T T T G C A G A A G A T G T G ~
141 G S N K G A I I G L M V G G V V I A * *
4 2 1 ~ G G T T C A A A C A A A G G T G C A A T C A T T G G A C T C A T G G T G G G C G G T G T T G T C A T A G C G T A A T G A ~
    HindIII (490 to 495)
161 A S * K L
495 GCTAGCTAAAAGCTT
```

Figure S4. DNA and protein sequences of CBLA-Aß42. The DNA sequence shown here is located on the pCDFDuet-1 plasmid between NcoI and HindIII sites. CBLA contains residues 196-286 of the BLA protein.

```
    NcoI (-2 to 4)
                                    NdeI (58-63)
    1 M G S S S H H
    1 ATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGTGCCGCGCGGCAGCCAT
    BLA 24\downarrow
    21 M H P E E T L L V K V V K N D A A
    6 1 ~ A T G C A C C C A G A A A C G C T G G T G A A A G T A A A A G A T G C T G A A G A T C A G T T G G G T G C A C G A G T G ~
    41 G Y I E L D L N S G K I I L L E S S F F R P E E E
121 GGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAA
    61 R F F P M M M S T T F F
1 8 1 ~ C G T T T T C C A A T G A T G A G C A C T T T T A A A G T T C T G C T A T G T G G C G C G G T A T T A T C C C G T G T T ~
    81 D A G Q E Q L G G R R R I I H
2 4 1 \text { GACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAG}
101 Y S P V T E K H L T T D D G M T T V V R E L L C S
3 0 1 ~ T A C T C A C C A G T C A C A G A A A A G C A T C T T A C G G A T G G C A T G A C A G T A A G A G A A T T A T G C A G T ~
121 A A I T T M S D D N T A A A N N L L L I L T T T I I G G
361 GCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGA
141 P K E L T A F L L H N N M G D D H N V T R R L D D R
4 2 1 ~ C C G A A G G A G C T A A C C G C T T T T T T G C A C A A C A T G G G G G A T C A T G T A A C T C G C C T T G A T C G T ~
161 W E P E L N E E A I I P P N N D E E R R D D T N
4 8 1 ~ T G G G A A C C G G A G C T G A A T G A A G C C A T A C C A A A C G A C G A G C G T G A C A C C A C G A C G C C T G C A ~
                                    BLA 195\downarrow
181 A M A T T T L L R K L L L T T G E F G S S G G G G S
5 4 1 ~ G C A A T G G C A A C A A C G T T G C G C A A A C T A T T A A C T G G C G A A G G A T C A G G A G G C G G A G G A T C A ~
                                    BamHI (640-645)
201 G G G G S G G G G S G G G G S D A A E H
601 GGAGGAGGTGGTTCTGGTGGAGGTGGTAGTGGGGGCGGCGGATCCGATGCAGAGCACCAC
221 H H H H *
6 6 1 ~ C A C C A C C A C C A C T G A ~
```

Figure S5. DNA and protein sequences of NBLA-M180T. The DNA sequence shown here is located on the pET28b plasmid.

```
        NcoI (-2 to 4)
            BLA 196\downarrow
        1 M G G L L T L A S R R Q Q L L I I D W W M E A A D
        1 ATGGGCGGACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGAT
    21 K V A G P L L R S S A L P P A G G W F F I A A C
6 1 ~ A A A G T T G C A G G A C C A C T T C T G C G C T C G G C C C T T C C G G C T G G C T G G T T T A T T G C T G A T A A A ~
    41 S G A G E R G S R G I I A A A L G G P D D G K
1 2 1 ~ T C T G G A G C C G G T G A G C G T G G G T C T C G C G G T A T C A T T G C A G C A C T G G G G C C A G A T G G T A A G ~
    61 P
181 CCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAAT
        BLA 286\downarrow
    81 R Q I A E I G A S L I I K H
2 4 1 ~ A G A C A G A T C G C T G A G A T A G G T G C C T C A C T G A T T A A G C A T T G G G G A T C A G G A G G C G G A G G A ~
| G G G G G G G G G (343-348)
3 0 1 ~ T C A G G A G G A G G T G G T T C T G G T G G A G G T G G T A G T G G G G G C G G C G G A T C C G A A T T C G A G C T C ~
121 G A P A G R Q A C G R I M L K K S N N R K *
361 GGCGCGCCTGCAGGTCGACAAGCTTGCGGCCGCATAATGCTTAAGTCGAACAGAAAGTAA
```

Figure S6. DNA and protein sequences of CBLA. The DNA sequence shown here is located on the pCDFDuet-1 plasmid.

Figure S7. Calibration of the ENrich SEC 650 size exclusion column. (A) Gel filtration standard containing thyroglobulin (670 kD), γ-globulin (158 kD), ovalbumin (44 kD), myoglobin ($17 \mathrm{kD} \mathrm{)}$, vitamin B12 (1.35 kD) was run at $1 \mathrm{~mL} / \mathrm{min}$ in PBS buffer (50 mM phosphate, $140 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.4$). (B) Standard curve using a linear fit to the log molecular mass of the gel filtration standard (excluding vitamin B12) versus elution volume. The molecular mass of the two activity peaks for the split lactamase-A $\beta 42$ cell lysate was estimated to be 600 and 22 kD .

