Supplementary Material

Greener Chemistry in Analytical Sciences - from Green Solvents to Applications in Complex Matrices. Current Challenges and Future Perspectives: A Critical Review

Slavica Ražić, *^a Jelena Arsenijević, ^b Svetlana Đogo Mračević, ^a Jasmina Mušović ^c and Tatjana Trtić-Petrović ^c

^aUniversity of Belgrade – Faculty of Pharmacy, Department of Analytical Chemistry, Vojvode Stepe 450, 11221, Belgrade, Serbia. E-mail: slavica.razic@pharmacy.bg.ac.rs

^bUniversity of Belgrade – Faculty of Pharmacy, Department of Pharmacognosy, Vojvode Stepe 450, 11221, Belgrade, Serbia

^cUniversity of Belgrade - Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Laboratory of Physics, Mike Petrović Alasa 12-14, Belgrade, Serbia

Figure and Tables

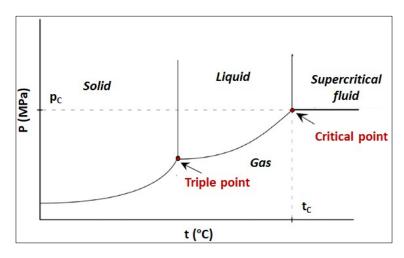


Fig. S1 Phase diagram of a pure single-component system.

 Table S1 Parameters for the NEMI diagram.

Principle	Description	Color
Persistent, bioaccumulative, toxic	Yes	White
chemicals are used	No	Green
Hazardous chemicals are used	Yes	White
	No	Green
The pH value of the sample is in the	Yes	Green
range of 2–12	No	White
The amount of generated waste	Yes	White
does exceed 50 g	No	Green

Table S2 The penalty points (PPs) to calculate analytical Eco-Scale.

Reagents			Total PP
	Amount	<10 mL (g)	1
		10–100 mL (g)	2
		>100 mL (g)	3
	Hazard	None	0
		Less severe hazard	1
		More severe hazard	2
			Amount PP x Hazard PP
Instruments	Energy	<0.1 kWh per sample	0
		<1.5 kWh per sample	1
		>1.5 kWh per sample	2
	Occupational hazard		0
			3
	Waste	None	0
		<1 mL (g)	1
		1–10 mL (g)	3
		>10 mL (g)	5
		Recycling	0
		Degradation	1
		Passivation	2
		No treatment	3

Table S3 Green Analytical Procedure Index parameters description.

Category	Description	Color
Sample Collection (1)	In-line	Green
	On-line or at-line	Yellow
	Off-line	red
ample Preservation (2)	None	Green
	Chemical or physical	Yellow
_	Physico-chemical	Red
Sample Transport (3)	None	Green
	Required	Yellow
—	-	Red
Sample Storage (4)	None	Green

	Under normal conditions	Yellow
	Under special conditions	Red
Type of method: direct or	No sample preparation	Green
indirect (5)	Simple procedures, eg. filtration,	Yellow
	decantation	
	Extraction required	Red
The scale of extraction (6)	Nano-extraction	Green
	Micro-extraction	Yellow
	Macro-extraction	Red
Solvents/reagents used (7)	Solvent-free methods	Green
	Green solvents/reagents used	Yellow
	Non-green solvents/reagents used	Red
Additional treatments (8)	None	Green
	Simple treatments (clean up, solvent	Yellow
	removal)	
	Advanced treatments	Red
Reagent and solvents:	<10 mL (< 10 g)	Green
Amount (9)	10–100 mL (10–100 g)	Yellow
	>100 mL (> 100 g)	Red
eagent and solvents: Health hazard	Slightly toxic, slight irritant; NFPA health	Green
(10)	hazard score = 0 or 1.	
	Moderately toxic; could cause temporary	Yellow
	incapacitation; NFPA = 2 or 3.	
	Serious injury on short-term exposure;	Red
	known or suspected small animal	
	carcinogen; NFPA = 4.	
Reagents and solvents: Safety	The highest NFPA flammability or instability	Green
hazard (11)	score of 0 or 1. No special hazards.	0.0011
	Highest NFPA flammability or instability	Yellow
	score of 2 or 3, or a special hazard is used.	
	Highest NFPA flammability or instability	Red
	score of 4.	neu
Instrumentation:	≤0.1 kWh per sample	Green
Energy (12)	≤1.5 kWh per sample	Yellow
	>1.5 kWh per sample	Red
Instrumentation:	Hermetic sealing of analytical process	Green
Occupational hazard (13)		Yellow
	Emission of vapours to the atmosphere	Red
Waste (14)		
vvasie (14)	<1 mL (< 1 g)	Green
	<u>1-10 mL (1-10 g)</u>	Yellow
	>10 mL (< 10 g)	Red
Waste treatment (15)	Recycling	Green
	Degradation, passivation	Yellow
	No treatment	Red

 Table S4 AGREE tool parameters description.

Category	Description	Score
1. Sample pretreatment activities	Remote sensing without sample damage	1.00
_	Remote sensing with little physical damage	0.95
_	Noninvasive analysis	0.90
-	In-field sampling and direct analysis	0.85
-	In-field sampling and on-line analysis	0.78
-	On-line analysis	0.70
-	At-line analysis	0.60
-	Off-line analysis	0.48
-	External sample pre-and treatment and batch	0.30
	analysis (reduced number of steps)	
-	External sample pre-and treatment and batch	0.00
	analysis (a large number of steps)	
2. Type of analysis (sample size	Ultramicroanalysis (<1)	1.00
mg or μL)	Microanalysis (1–10)	= -0.142 × ln (amount
<u> </u>	Semimicroanalysis (10–100)	of sample in g or mL) +
-	Macroanalysis (>100)	0.65
3. Instrumental	In-line	1.00
Position	On-line	0.66
-	At-line	0.33
-	Off-line	0.00
4. Number of steps in analytical	Three or fewer 1.00	1.00
		0.80
process	Four	0.80
-	Five	
-	Six	0.40
-	Seven	0.20
	Eight or more	0.00
5. Level of automation	automatic, miniaturized	1.00
and miniaturization	semi-automatic, miniaturized	0.75
_	manual, miniaturized	0.50
-	automatic, not miniaturized	0.50
-	semi-automatic, not miniaturized	0.25
	manual, not miniaturized	0.00
6. Derivatization status	No derivatization applied	1.00
	Derivatization applied	$= DA_1 \times DA_2 \times DA_3 \times \dots \times$
		DA _n
		where DA _i is the score
		corresponding to the
		particular
		derivatization
		agent.
7. Amount of waste	0.1 g (mL)	1.00
-	10 g (mL)	0.40
-	25 g (mL)	0.25
-	100 g (mL)	0.10
-	Any other amount	= -0.134 × ln
		(amount of waste
		in g or mL) + 0.6946
8. Number of analytes per hour	1	0.00
	÷	0.00
-	10	0.50

	70	1.00
	Any other number of analytes	= 0.2429 × ln
		(number of
		analytes
		determined in 1 h)
		- 0.0517
9. Amount of energy per sample	<0.1 kWh 1.0	1.00
	0.1–1.5 kWh	0.50
	>1.5 kWh	0.00
10. Condition (toxic reagents)	No toxic reagents or solvents are used	1.00
	Toxic reagents or solvents are used	= -0.156 × ln
		(amount of reagent
		or solvent in g or
		mL) + 0.5898
11. Condition (reagents obtained	No reagents are applied, or all are from bio-based	1.00
from renewable source)	sources	
	If some of them are derived from bio-based	0.50
	sources, while others are not	
	None of the reagents originates from bio-based	0.00
	sources	
12. Threats (The threats shouldn't	All threats avoided 1.0	1.00
be toxic to aquatic life,	One threat present	0.80
bioaccumulative, persistent,	Two threats present	0.60
highly flammable, highly	Three threats present	0.40
oxidizable, explosive or corrosive)	Four threats present	0.20
	Five or more threats present	0.00

Table S5 Comprehensive green analytical procedure index parameters description.

Category	Description	Color
Yield (I)	>89%	Green
	70–89%	Yellow
	<70%	red
Temperature/time (II)	Room temperature, <1 h	Green
	Room temperature, > 1 h	Yellow
	Heating, < 1 h	
	Cooling to 0°C	
	Heating, > 1 h	Red
	Cooling < 0 °C	
elation to the green economy	5-6	Green
Number of rules met (III)	3-4	Yellow
	1-2	Red
Reagents and solvents	Slightly toxic, slightly irritant; NFPA health hazard	Green
Health hazard (IVa)	score is 0 or 1	
	Moderately toxic; could cause temporary	Yellow
	incapacitation; NFPA = 2 or 3	
	Serious injury on short-term exposure; known or	Red
	suspected small animal carcinogen; NFPA = 4	
Reagents and solvents	Highest NFPA flammability, instability score of 0	Green
Safety hazard (IVb)	or 1. No special hazards	

	Highest NEDA flammability or instability score is 2	Yellow
	Highest NFPA flammability or instability score is 2	reliow
	or 3, or a special hazard is involved	
	Highest NFPA flammability or instability score is 4	Red
Instrumentation	Common setup	Green
Technical setup (Va)	Additional setups/semi-advanced instruments	Yellow
	used	
	Pressure equipment >1 atm; glove box	Red
Instrumentation	≤0.1 kW h per sample	Green
Energy (Vb)	≤1.5 kW h per sample	Yellow
	>1.5 kW h per sample	Red
Instrumentation	Hermetization of the analytical process	Green
Occupational hazard (Vc)	-	Yellow
	Emission of vapors to the atmosphere	Red
Workup and purification of the end	None or simple processes	Green
product (VIa)	Application of standard purification techniques	Yellow
	Application of advanced purification techniques	Red
Purity (VIb)	>98%	Green
	97–98%	Yellow
	<97%	Red

 Table S6 AGREEprep tool parameters description.

Category	Description	Score
Criterion 1. Favor in situ sample	In-line/In situ	1.00
preparation	On-line/In situ	0.66
	On-site	0.33
	Ex situ	0.00
Criterion 2. Use safer solvents and	Solvent-free and reagent-less sample preparation	1.00
reagents	procedures	
	>10mL or 10 g of hazardous solvents and reagents	0.00
	Any other amount	= -0.145 × ln
		(amount of hazardous
		substances in g or mL
		+ 0.3333
Criterion 3. Target sustainable,	Only sustainable and renewable materials are used	1.00
reusable, and renewable	several times	
materials	> 75% of reagents and materials are sustainable or	0.75
	renewable	
	50-75% of reagents and materials are sustainable	0.50
	or renewable and can only be used once	
	Materials are not sustainable or renewable and are	0.50
	used several times	
	25-50% of reagents and materials are sustainable	0.25
	or renewable	
	< 25% of reagents and materials are sustainable or	0.00
	renewable and can only be used once	
Criterion 4. Minimize waste	<0.1 g (mL)	1.00
	> 50.0 g (mL)	0.00
	Any other amount	= -0.161 × ln
		(sample mass or

		volume in g or mL) + 0.6295
Criterion 5. Minimize sample,	Any amount	= -0.145 × ln
chemical and material amounts		(sample mass or
		volume in g or mL) +
		0.6667
Criterion 6. Maximize sample	Any amount	= 0.2354 × ln
throughput		(number of prepared
		samples per hour)
Criterion 7. Integrate steps and	≤2 steps	1.00
promote automation	3 steps	0.75
	4 steps	0.50
	5 steps	0.25
	≥6 steps	0.00
	fully automated systems	1.00
	semi-automated systems	0.50
	manual systems	0.25
	The final score for principle 7 is the product of both	0.25
	sub-scores.	
Critorian & Minimize anarou		1.00
Criterion 8. Minimize energy	<10 Wh per sample	1.00
consumption	between 10 and 500 Wh per sample	$= -0.256 \times \ln (1000)$
	- F00 M/I	(Wh/sample) + 1.588
	>500 Wh per sample	0.00
Criterion 9. Choose the greenest	Simple, readily available detection (information	1.00
possible post-sample preparation	technology and communications equipment such	
configuration for analysis	as smartphones, desktop scanners, etc.)	
	Molecular optical spectroscopic techniques (e.g.	0.75
	UV-vis spectrophotometry, fluorimetry,	
	chemiluminescence, etc.), surface analysis	
	techniques, voltammetry, potentiometry	
	Gas chromatography with non-mass spectrometry	0.50
	(MS) detection, atomic absorption spectroscopy,	
	capillary electrophoresis	
	Liquid chromatography (due to mobile phase	0.25
	consumption, usually being or containing organic	
	solvents), gas chromatography with quadrupole	
	mass spectrometric detection	
	Advanced mass spectrometry techniques (due to	0.00
	high energetic requirements), inductively coupled	
	plasma-optical emission spectroscopy (ICP-OES),	
	ICP-MS (due to noble gas consumption)	
Criterion 10. Ensure safe	no hazards	1.00
procedures for the operator	1 hazard	0.75
•	2 hazards	0.50
	3 hazards	0.25