## **Supporting Information**

## A chemiluminescent sensor for imaging endogenous hydrogen

## polysulfides imaging in living system

Hanqing Zhao, Fenghui Qi, Yanian Xiong, Jianzhong Lu\*

School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.

E-mail: jzlu@shmu.edu.cn.

Table S1. Reported  $H_2S_n$  probes and CL-HP.

| Probe structure | Excitation/<br>Emission<br>wavelength | Limit of detection | Linear<br>range | Ref.                                              |
|-----------------|---------------------------------------|--------------------|-----------------|---------------------------------------------------|
|                 | 550/655 nm                            | 3.9 nM             | 0-18 µM         | Anal. Methods, 2017,<br>9, 6443–6447              |
|                 | 395/482,655<br>nm                     | 43 nM              | 0-50 µM         | J. Mater. Chem. B,<br>2018, 6, 70157020           |
|                 | 535/682 nm                            | 8.2 nM             | 0-20 µM         | Sensors and Actuators<br>B 254 (2018) 222–<br>226 |
|                 | 680/720 nm                            | 22 nM              | 0-10 μM         | J. Mater. Chem. B,<br>2017, 5, 25742579           |
| rand aran       | 370/448, 541<br>nm                    | 700 nM             | 0-16 µM         | Anal. Chem. 2016, 88,<br>11892–11899              |
|                 | 405/460, 518<br>nm                    | 100 μM             | 0-8 μΜ          | Anal. Chem., 2016, 88<br>(14), 7206–7212          |

| F<br>NO2              | 675/730 nm | 25 nM  | 0-10 µM     | Anal. Chem. 2015, 87,<br>3631–3638                      |
|-----------------------|------------|--------|-------------|---------------------------------------------------------|
|                       | 435/540 nm | 26 nM  | 0.1-100 μM  | Sensors & Actuators:<br>B. Chemical 278<br>(2019) 64–72 |
|                       | 530/584 nm | 26 nM  | 0-10 μM     | Chem. Commun.,<br>2018, 54, 37353738                    |
| o,N C F o o o f C No2 | 490/515 nm | 71 nM  | 0.5-15 μM   | J. Am. Chem. Soc.,<br>2014, 136, 7257-7260.             |
|                       | 550/589 nm | 26 nM  | 0-50 µM     | Analyst., 2019, 144,<br>3221-3225.                      |
|                       | -          | 100 nM | 0.1-2 mM    | Chem. Commun.,<br>2019, 55, 4487-4490.                  |
|                       | -          | 230 nM | 0.025-10 mM | This work                                               |

#### Materials and instruments

All chemical solvents and reagents used for synthesis were of analytical grade, and the inhibitors for biological experiments were purchased from commercial suppliers (TCI, Admas, Sigma-Aldrich, and Bide Pharmatech). All materials were applied without further purification. Reactions were magnetically stirred and monitored by thin layer chromatography (TLC). The silica gel chromatographic separation was performed with silica gel (200–300 mesh). <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were recorded on Bruker 600 MHz instruments at the indicated frequencies. All chemical shifts ( $\delta$ ) recorded in ppm were related to internal standard tetramethylsilane ( $\delta$  = 0.0 ppm) or signals of residual solvent CDCl<sub>3</sub> (7.26 ppm for <sup>1</sup>H, 77.16 ppm for <sup>13</sup>C), and the coupling constants were given in Hz. Mass spectra were recorded on an AB Sciex TripleTOF<sup>®</sup> 5600+ system. The chemiluminescence signals were measured by Fluoroskan Ascent Fluorescence instrument (Thermo Electron Corporation, USA). The chemiluminescence images of cells and mice was measured by Xenogen IVIS<sup>®</sup> Spectrum imaging system (Caliper Life Science, USA). UV–Vis absorption spectra were recorded on the Hitachi U-2900 spectrophotometer. The fluorescence spectra were tested on the Hitachi F-7000 fluorescence spectrometer. All solutions of CL-HP1 and CL-HP2 were diluted from the corresponding DMSO stock solution (10 mM). The Na<sub>2</sub>S<sub>4</sub> and other analytes' solution is prepared freshly before the experiments.



Fig. S1. Time-lapse images of probe CL-HP1 (up) and CL-HP2 (bottom) in 60 min.



Fig. S2. Fluorescence spectra of probe CL-HP2 (20  $\mu$ M) before (black line) and after (red line) the incubation with Na<sub>2</sub>S<sub>4</sub> in PBS for 30 min ( $\lambda$ <sub>ex</sub> = 380 nm).



Fig. S3. UV–vis absorption spectra of probe CL-HP2 (20  $\mu$ M) before (black line) and after (red line) the incubation with Na<sub>2</sub>S<sub>4</sub> in PBS for 30 min.



Fig. S4. Chemiluminescence responses of CL-HP2 (20.0  $\mu$ M) with 100  $\mu$ M of different analytes. From 1 to 26: Na<sub>2</sub>S<sub>4</sub>, H<sub>2</sub>O<sub>2</sub>, ClO<sup>-</sup>, His, Asp, Ala, Gly, Glu, Lys, Tyr, Al<sup>3+</sup>, Ba<sup>2+</sup>, Ca<sup>2+</sup>, Cr<sup>3+</sup>, Li<sup>+</sup>, Mg<sup>2+</sup>, Mn<sup>2+</sup>, Fe<sup>2+</sup>, Fe<sup>3+</sup>, K<sup>+</sup>, I<sup>-</sup>, Br<sup>-</sup>, Cl<sup>-</sup>, F<sup>-</sup>, NO<sub>3</sub><sup>-</sup>, AcO<sup>-</sup>.

#### Cell culture and imaging

MDA-MB-231 cells were cultured in DMEM supplemented with 10% fetal bovine serum (FBS) at 37 °C in a humidified atmosphere of 5% CO<sub>2</sub> incubator for 24 h. In the confocal imaging, MDA-MB-231 cells were plated on a laser confocal dish with a medium of DMEM. Cells then were incubated at 37 °C in a humidified atmosphere of a 5% CO<sub>2</sub> incubator. The cells were washed three times with PBS prior to imaging.

#### CCK8 assay

MDA-MB-231 cells were seeded into a 96-well microtiter plate at 37 °C in a 5% CO<sub>2</sub>/95% air incubator for 12 h. The cells were incubated for an additional 12 h with different concentrations of CL-HP2 (0, 10, 20, 50, 100  $\mu$ M). Then the cells were washed with PBS three times. Following, the culture media was removed and 100  $\mu$ L of FBS-free DMEM containing 10% CCK8 was added. After being incubated for 2 h, the absorbance was measured at 450 nm. The results from three individual experiments were averaged. Following formula was used to calculate the viability of cell growth:

Percentage of cell viability (%) = (mean of treatment group  $- blank)/(mean of control group - blank) \times 100\%$ 



Fig. S6. CCK8 assay for the survival rate of MDA-MB-231 cells treated with probe CL-HP2 (0, 10, 20, 50 and 100  $\mu$ M) for 12 h.

# Real-time chemiluminescence images of $H_2 S_n$ in living murine model of inflammation



**Fig. S7.** Real-time chemiluminescence images (exposure time, 40 s) of the LPS injected mice (top) and the *E. coli* infected mice (bottom) after injecting CL-HP2 (20 µM, 100 µL) acquired at 0, 5, 10, 20, 30, 45, and 60 min.



Scheme S1. Synthesis of probe CL-HP1 and CL-HP2.

Compound **a** was synthesized through the reported synthetic route.<sup>1,2</sup>

**Synthesis of compound b**: A mixture of 2-(benzoylthio)benzoic acid (129 mg, 0.5 mmol), EDCI (115 mg, 0.6 mmol) and DMAP (73 mg, 0.6 mmol) was added in CH<sub>2</sub>Cl<sub>2</sub> (25 mL) at RT under Ar atmosphere.. After stirring for 30 min, Compound a (194 mg, 0.5 mmol) was added. The mixture was stirred for 6 h and solution was evaporated. The crude solid product was purified by column chromatography (neutral silica gel, Petroleum Ether /AcOEt = 20:1) to afford compound b as pale white solid (85 mg, yield 27%). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.27 (d, J = 7.8 Hz, 2H), 7.74 – 7.53 (m, 9H), 7.2-7.28 (m, 1H), 6.50 (d, J = 16.2 Hz, 1H), 3.74 (s, 3H), 3.35 (s, 3H), 2.16 – 1.65 (m, 14H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  189.3, 167.7, 166.7, 163.9, 146.5, 139.1, 137.9, 137.5, 134.2, 132.3, 130.9, 130.6, 129.5, 129.2, 129.1, 128.8, 128.7, 128.3, 127.6, 124.9, 121.2, 57.4, 51.9, 39.3, 37.0, 36.3, 32.9, 30.6, 29.8, 29.7, 27.5, 19.2. HR-MS: found, m/z 651.1579 [M + Na]<sup>+</sup> (calcd, 651.1584).

**Synthesis of compound c**: A mixture of Compound a (194 mg, 0.5 mmol), 2-fluoro-4-nitrobenzoyl chloride (112 mg, 0.55 mmol), trimethylamine (0.2 mL, 1.5 mmol) was added in CH<sub>2</sub>Cl<sub>2</sub> (5 mL) at 0 °C under Ar atmosphere. After 30 min, the reaction was stirred for 3 h at room temperature. Subsequently, the solution was diluted with CH<sub>2</sub>Cl<sub>2</sub>, washed with saturated brine, dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under vacumm. The crude production was purified by column chromatography (neutral silica gel, Petroleum Ether/AcOEt = 15:1) to afford compound c as pale white solid (220 mg, yield 80%). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  9.08 (m, 1H), 8.56 (m, 1H), 7.73 (d, J = 15.6 Hz, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.46 (t, J = 9 Hz, 1H), 7.29 (d, J = 8.4 Hz, 1H), 6.78 (d, J = 10.2 Hz, 1H), 6.51 (d, J = 15.6 Hz, 1H), 3.77 (s, 3H), 3.34 (s, 3H), 2.14-1.25 (m, 14H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  166.6, 164.7, 159.4, 159.3, 145.5, 144.1, 138.8, 139.2, 136.9, 130.8, 130.7, 130.1, 128.9, 128.8, 125.0, 121.7, 119.0, 118.8, 57.4, 52.0, 37.0, 32.9, 31.9, 29.8, 29.7, 29.4, 28.3, 28.1, 22.7. HR-MS: found, m/z 554.1422 [M]<sup>-</sup> (calcd, 554.1387).

### NMR and MS spectra



Fig. S8. <sup>1</sup>H NMR spectrum of compound **b** in CDCl<sub>3</sub>.



Fig. S9. <sup>13</sup>C NMR spectrum of compound b in CDCl<sub>3</sub>.



Fig. S10. <sup>1</sup>H NMR spectrum of CL-HP1 in CDCl<sub>3</sub>.



Fig. S11. <sup>13</sup>C NMR spectrum of CL-HP1 in CDCl<sub>3</sub>.



Fig. S12. <sup>1</sup>H NMR spectrum of compound c in CDCl<sub>3</sub>.



Fig. S13. <sup>13</sup>C NMR spectrum of compound c in CDCl<sub>3</sub>.



Fig. S14. <sup>1</sup>H NMR spectrum of CL-HP2 in CDCl<sub>3</sub>.



Fig. S15. <sup>13</sup>C NMR spectrum of CL-HP2 in CDCl<sub>3</sub>.



Fig. S16. HRMS spectrum of compound b.



Fig. S17. HRMS spectrum of CL-HP1.



Fig. S18. HRMS spectrum of compound c.



Fig. S19. HRMS spectrum of CL-HP2.

#### References

- 1 M. Yang, J. Zhang, D. Shabat, J. Fan and X. Peng, ACS Sens., 2020, 5, 3158-3164.
- 2 O. Green, T. Eilon, N. Hananya, S. Gutkin, C.R. Bauer and D. Shabat, ACS Cent. Sci., 2017, 3, 349-358.