Electronic Supplementary Information

Fabrication of Paper-based Facile and Low-cost Microfluidic Device and Digital Imaging Technique for Point-of-Need Monitoring of Hypochlorite

Snehasish Debnath^{a,b}, Riya Ghosh,^{a,b} Pragti,^c Suman Mukhopadhyay,^{*c} Kamesh Viswanathan Baskaran,^{*d} Pabitra B. Chatterjee^{*a,b}

^aAnalytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, India.

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India. ^cDepartment of Chemistry, Indian Institute of Technology Indore, Indore, India.

^dDr. K. C. Patel Research & Development Centre, Charotar University of Science and Technology, Changa, India.

Corresponding author: pbchatterjee@csmcri.res.in

Experimental Section

The image capture parameter is given below, and it is carried out by Thermo iBright FL 1000 imaging system (used for molecular biology for gel imaging system).

Sl. No.	Parameter	Value
1.	Digital camera	9 megapixels
2.	Zoom Optical	1.3x
3.	Zoom Digital	1x
4.	Exposure time	25-30 ms for background
		30-50 ms for samples
5.	Excitation filter	455-485 nm filter and captured at 470 nm for probe
6.	Emission filter	586-617 nm filter and captured at 592 nm for probe

Fig. S1 ¹H NMR spectrum of 1 in D_2O .

Fig. S2 ¹H NMR spectrum of 2 in D_2O .

Fig. S3 13 C (top) and DEPTQ NMR (bottom) spectra of 1 in D₂O.

Fig. S4 13 C NMR spectrum of 2 in D₂O.

Fig. S5 FT-IR spectrum of 1.

Fig. S6 FT-IR spectrum of 2.

Fig. S7 ESI-MS of 1.

Fig. S8 ESI-MS of 2.

Fig. S9 (A) SEM image profile of 1. (B) SEM-EDX profile, and (C) elemental mapping of 1 showing traces of sulfur, sodium, and oxygen.

Fig. S10 UV-vis selectivity profile of 2 (B) in the presence of different anionic species (250 μ M) in 10 mM aqueous PBS buffer at 7.4 pH.

Fig. S11 Fluorometric response of 20 μ M 2 towards 12.5 equivalents of different anionic species in 10 mM aqueous PBS buffer at 7.4 pH. The excitation wavelength was set at 400 nm.

Fig. S12 Linear fitting plots of the fluorescence titration data points of 1 (A) and 2 (B) with varying concentrations of OCI[–]. The excitation wavelength was set at 400 nm.

Fig. S13 Fluorescence-based interference data during OCl⁻ detection by 1 (A) and 2 (B) in the presence of excess competing analytes in 10 mM aqueous PBS buffer at 7.4 pH. The excitation wavelength was set at 400 nm.

Fig. S14 UV-vis-based interference data for OCl⁻ detection by 2 in the presence of excess competing analytes in 10 mM aqueous PBS buffer at 7.4 pH.

Fig. S15 Time-dependent fluorescence intensity (top) and UV-vis (bottom) changes of 1 (20 μ M) in the presence of 200 μ M OCl⁻ in PBS buffer solution (10 mM, pH = 7.4).

Fig. S16 Change in fluorescence intensities of 1 (A) and 2 (B) in the presence and absence of 200 μ M OCl⁻ in PBS buffer solution (10 mM, pH = 7.4) under variable pH conditions. The excitation was set at 400 nm.

Fig. S17 Contact angle vs. time plot of the paper without coating and with 1 % paper coating.

Fig. S18 Fluid holding images of a paper chip with time tested by methylene blue without coating (A) and with 1% polystyrene coated paper (B).

Fig. S19 Fluorescent images of $1@\mu$ PADs toward various anions such as Cl⁻, NO₃⁻, Br⁻, F⁻, SO₄²⁻ and PO₄³⁻ at 250 μ M solution captured by gel doc imaging system.

Fig. S20 Linear calibration plot of $1@\mu$ PAD via fluorescence technique with colour spacing distance vs. various concentrations of OC1⁻.

Fig. S21 Unknown concentration measurements of OCI⁻ using (a) compound 1 and (b) YDN. Fluorimetric linear calibration plot in PBS buffer solution (10 mM, pH = 7.4) was used.

Fig. S22 1:1 Analytical validation of various concentrations of OCl⁻ between 1@μPAD (μPAD –N (Narmada) & μPAD-G (Ground water)) and HACH method.

Fig. S23 Cytotoxicity profiles of 1 and 2 with HEK293 (A) and HeLa (B) cells.

Fig. S24 ¹H NMR profiles of 1 in the absence and presence of different equivalents of OCl⁻ in D_2O solution (Red astericks indicate imine proton peak, black astericks indicate proton peak of the adjacent position of the coumarin acetyl moiety).

Fig. S25 ESI-MS spectrum of 1 upon addition of OCI-.

Table S1. Comparison of the current embossing μ PAD technique with the existing printing techniques.

Sl.	Type of	Advantage	Disadvantage
No.	Fabrication		
1	Laser Printing	1. Commercial tonner, high 1. Printin	g equipment is required.
		resolution. 2. Addition	onal heating step.
		2. Simple to print using 3. Limited	d to the use of specific
		commercial devices. materia	als for printing purpose.
		3. Fabricate to print the 4. Ability	to do 3D with extensive
		hydrophobic walls in process	5.
		2D. 5. Not co	ompatibility for all types
		analyti	cal reagents.
		6. Ability	to retain the fluid in the
		capilla	ry of the substrate <10
		minute	s.
2	Wax Printing	1. Requires wax printer, 1. Low	resolution and requires
		hotplate, and solid wax. heating	g step.
		2. Simple and fast 2. Wax s	preads on edges of the
		fabrication process. barrier	S.
		3. Fabricate to print the 3. Ability	to do 3D with extensive
		hydrophobic walls in process	5.
		2D. 4. Ability	to retain the fluid in the
		capilla	ry of the substrate <10
		minute	S.
		5. Not c	ompatible for all types
		analyti	cal reagents.
3	Embossing	1. Fabrication by plastic 1. Low re	solution.
		mold for 2D and 2. Suscep	tible to contamination.
		adhesive tapes helps for 3. Requir	es polymer coating on the
		3D in paper substrate. substra	te.
		2. Flexible, foldable,	
		lightweight, portable,	

		and disposable.	
		3. Low cost.	
		4. Possibility of mass	
		production.	
		5. Compatible for all types	
		analytical reagents.	
3	3D printing	1. Requires 3D printer and	1. Resolution depends on 3D
		3D printer resin.	printer equipment.
		2. Fast and accessible to	2. High cost
		mass production.	
4	Craft cutting	1. Requires digital craft	1. Requires external pumping
		cutter.	mechanism.
		2. Lightweight, flexible	2. Low resolution
		portable, and disposable.	3. Devices are difficult to
			manipulate and usually require a
			polymer backing.
5	Screen-	1. Requires for mask for	1. Low resolution
	printing	patterning and wax.	2. Unadaptable to mass production.
		2. Hydrophobic patterning	
		like UV curable ink	3. New screen required for each
		carbon, silver/silver	design.
		chloride ink, etc.	4. Ability to retain the fluid in the
		3. Low cost and simple	capillary of the substrate <10
		fabrication process.	minutes.
		4. Fabricate to print the	5. Not compatible for all types
		hydrophobic walls in	analytical reagents.
		2D.	6. Ability to do 3D with extensive
			process.
6	Flexographic	1. Requires customized	1. High cost
	Printing	printing equipment.	2. Complex preparation and
		2. Hydrophobic chemicals	cleaning.
		like polystyrene and	3. Printing quality depends on
		PDMS for applicable	surface to roughness of the

			roll-to-roll process.		paper.
		3.	No heating step.		
		4.	Ability to fabricate in		
			3D.		
7	Inkjet Printing	1.	Requires printing	1.	Requires customised inkjet
			equipment.		printer.
		2.	Requires hydrophobic	2.	Requires solvent treatment of
			chemical and UV		the paper.
			curable acrylate ink.	3.	Not compatible for all types
		3.	High resolution		analytical reagents.
		4.	Fabricate to print the	4.	Ability to do 3D with extensive
			hydrophobic walls in		process.
			2D.	5.	Ability to retain the fluid in
					capillary of the substrate for < 10
					minutes.
8	Current	1.	Same as embossing	1.	Low resolution.
	embossing		technique. Coating with	2.	Requires polymer coating of
	technique		1 % polystyrene in paper		paper.
	μPAD		helps in hydrophobic		
			conditions and ability to		
			retain the fluid for > 60		
			min as shown in Fig.		
			S18B.		
		2.	Probe was coated on the		
			filter paper and sealed		
			with adhesive tape to		
			react with the analyte		
			uniformly and avoid of		
			susceptible to		
			contamination.		
		3.	Surface to roughness of		
			the paper didn't affect the		
			flow due to external		

1 1 5 (
pressure).
4. Possibility of mass
production by systematic
process.
5. Easy and low cost
fabrication process of
testing new probe.
6. No heating process.

Probe	λ_{ex} and	Buffer	Technique	Response	Reference
	λ_{em}	pH		time	
O *Na ^O 3S R	400 and	PBS	Ratiometric	10 s (UV	Present
	455/488	buffer	fluorescence,	vis) and	work
(Et) ₂ N 0 R = H, 1 R = $SO_3 Na^+$, 2			and colorimetry	60 s (Fl.)	
	520 and	Sodium	Fluorescence	2 min	1
ОН	541	phosphate			
		buffer			
Et ₂ NOC F CONEt ₂		7.4			
Br	542 and	Water	Fluorescence	5 min	2
S COOR	560	7	and colorimetry		
R=H					
B F F F					
R	405 and	PBS	Fluorescence	Within	3
Se Se	480	buffer		sec	
		7.4			
R = H, CM1 R = CH ₃ , CM2					
Se ,	690 and	PBS	Fluorescence	100 sec	4
	786	buffer 7.4			
S R	400 and	PBS	Fluorescence	Within	5
	503	buffer	and UV-vis	secs	
R = COOH		7.4			
R = NH ₂					
	405 and	PBS	Fluorescence	150 s	6
N N	505	buffer 7.4	(off) and UV-vis		
			ratiometric		

Table S2. Comparative literatures on 100 % aqueous soluble OCl- specific optical probes.

NH ₂	614 and	PBS	Fluorescence		7
	676	buffer			
		(7.4)			
\$0 ₃ .					
So,					
HO COH	470 and	PBS	Fluorescence	3 s	8
HO OH OH	558	buffer	and colorimetry		
		(7.4)			
↓ NH₂					
\sim	450 and	PBS	Fluorescence	60 s	9
	550	buffer	and UV-vis		
		(7.4)			
NH2					
│	498 and	KH ₂ PO ₄	Fluorescence		10
	523	buffer 7.4			
0					
NC CN	560 and	PBS	Fluorescence	Within 1	11
	610	buffer 7.4	and colorimetry	min	
°	520 and	HEPES	Ratiometric	Within 2	12
HN H	580	buffer	fluorescence,	min	
		solution	and colorimetry		
· · · · · · · · · · · · · · · · · · ·		74			
		/ • •			
H ₂ N	485 and	PBS	Fluorescence	2 min	13
	516	buffer 7.4	and colorimetry		
H ₂ N N					

	520 and	PBS	Fluorescence	Within 3	14
	580	buffer	and colorimetry	sec	
		(7.4)			
	600 and	PBS	Fluorometry off	5 sec	15
	672	buffer	and colorimetry		
		(7.4)			
	580 and	PBS	Fluorometry off	10 min	16
	626	buffer	and colorimetry		
		(7.4)			
H ₂ N 0 0					
(r4 [†] P(Ph) ₃	505 and	PBS	Fluorescence	4 s	17
	580	buffer 7.4	and UV-vis		
			ratiometric		
	415 and	HEPES	Fluorescence	20 min	18
	485	buffer 7.4			
R = EL, FCN 2	499 1	DDC	Detiensetuie		10
	488 and	PBS	Ratiometric	NA	19
	496/713	buffer 7.4	fluorescence		
			and UV-vis		
NHCOCH ₃	500 and	PBS	Fluorometric on	10 s	20
	567/629	buffer 7.4	ratiometric and		
			UV-vis		

Table S3. Fluid comparison table between paper chips fabricated by laser toner printed vs. embossed using micropipette vs. embossed using capillary driven.

Sl.	Type of paper chip	Fluid insertion	Fluid insertion
No.		timing	
1	Embossed paper chip using	14 s	Improper
	capillary based fluid insertion		
2	Laser wax printed paper using	3 min 51 s	Proper with longer
	capillary based fluid insertion		time
3	Embossed paper chip using	20 s	Proper with shorter
	Micropipette based fluid insertion		time like mini paper
			based tubes.

The total volume of methylene blue used in the experiment is 40 $\mu L.$

Colour St	Camera	Colour Standard chart from Visible spectrophotometer				Colour Differences			
NaOCl Std. Conc.	L (R)	a (G)	b (B)	C. chart (ΔE)	L (R)	a (G)	b (B)	C. chart (ΔE)	Camera and Visible Spectrophotome ter (ΔE)
Blank	74.35 (164)	- 28.05(195)	56.50 (72)	0	93.98 (244)	-17.76 (245)	66.60 (102)	0	14.84
10 µM	74.30 (164)	-27.48 (194)	55.59 (74)	0.6 ± 0.4	94.02 (244)	-17.51 (245)	65.16 (106)	0.41 ± 0.2	14.79
20 µM	73.89 (164)	-26.33 (193)	52.05 (81)	1.4 ± 0.5	94.14 (244)	-16.95 (245)	60.88 (116)	1.5 ± 0.3	15.01
30 µM	73.67 (164)	-25.14 (192)	48.79 (87)	2.5 ± 0.9	94.30 (244)	-16.33 (245)	56.74 (125)	2.6 ± 0.7	15.10
40 µM	74.07 (167)	-23.02 (192)	43.72 (99)	4.1 ± 1.1	94.45 (243)	-15.18 (245)	50.14 (140)	4.6 ± 1.07	14.67
50 µM	73.60 (168)	-19.81 (189)	36.40 (112)	6.7 ± 1.8	94.72 (243)	-13.53 (245)	42.14 (157)	7.2 ± 1.5	14.91
60 µM	73.07 (170)	-15.28 (186)	27.01 (129)	10.6± 2.5	95.02 (243)	-11.14 (245)	32.39 (178)	10.7± 1.9	15.20
70 µM	72.86 (172)	-10.04 (183)	17.04 (147)	15.6± 3.8	95.28 (243)	-8.05 (245)	22.19 (198)	15.1 ± 3.03	15.35
80 µM	72.90 (175)	-6.20 (182)	9.90 (161)	19.4 ± 3	95.50 (243)	-5.65 (244)	14.90 (213)	18.5 ± 2.6	15.39
90 µM	72.70 (176)	-2.92 (180)	4.34 (170)	23.1 ± 2.5	95.57 (243)	-3.32 (244)	8.54 (226)	21.9± 2.2	15.52
100 µM	73.03 (178)	-1.45 (180)	1.89 (176)	24.7± 1.6	95.70 (243)	-2.12 (244)	5.32 (232)	$\begin{array}{c} \hline 23.7 \pm \\ 1.6 \end{array}$	15.30

Table S4. Colour standard chart for 1 (20 μ M) towards OCl⁻ via visible spectrophotometer and digital camera colour variation taken in a cuvette.

Note: All the samples were analyzed in the cuvette was repeatability and reproducibility of n=10 to demonstrate the probe performance.

Concentration	C	Colour Representation for Fluorescent intensity							
of NaOCl (µM)	R	G	В	Luminosity (L)	delta E	Colour Chart			
0	127	127	127	53.18 ± 0.3	0				
10	124	124	124	51.00 ± 0.6	2.14 ±				
20	116	116	116	4933 + 03	0.2 3.82 ±				
20	110	110	110	19.33 ± 0.3	0.2				
30	137	137	137	48.99 ± 0.1	4.16 ±				
	107	107	107	10177 - 011	0.1				
40	111	111	111	47.33 ± 0.5	5.84 ±				
				1,100 - 010	0.7				
50	109	109	109	46.00 ± 0.5	7.17 ±				
	109	109	105	10.00 - 0.0	0.82				
60	94	94	94	39.67 ± 0.6	13.07 ±				
				57.07 ± 0.0	0.21				
70	92	92	92	39 33 + 0.6	13.36 ±				
/0				<i>57.55</i> ± 0.0	0.22				
80	85	85	85	3633 ± 0.5	15.89 ±				
80	05	85 85 85		50.55 ± 0.5	0.24				
00	72	72	72	30.67 ± 0.5	20.35 ±				
20	15	15	/5	50.07 ± 0.3	0.37				
100	64	64	64	26.67 ± 0.1	23.29 ±				
100	04	04	04	20.07 ± 0.1	0.13				

Table S5. Colour standard chart for $1@\mu$ PAD towards OCI⁻ via fluorescence detection in the imaging system.

Note: All the samples were analyzed in µPAD was repeatability and reproducibility with n=3 to demonstrate the probe performance.

Sl. No.	Type of analysis	Fitting method	Detection Limit (µM)	Limit of quantification (µM)	Fitting Equation	R value
1	Digital Camera image colour analysis	Linear	16.83	168.33	0.27308x- 3.74194	0.94
2	Visible spectrophotometer colour analysis	Linear	13.73	137.28	0.26083x- 3.33861	0.95
3	Visible spectrophotometer absorption analysis	Linear	4.52	45.25	0.01215x- 0.04029	0.98
4	Paper chip-based fluorescence camera image analysis	Linear	13.34	133.41	0.2056x	0.99

Table S6. Comparison table of analytical limits in various detection systems.

Quantitative analysis of OCI-						
Samples	[OCl ⁻] measured using a	[OCl ⁻] measured	Error %			
	reported fluorescent probe YDN	using probe 1				
Unknown	16.86 μM	16.05 µM	5 %			
Sample - 1						
Unknown	22.97 μM	22.26 µM	3 %			
Sample - 2						

Table S7. Comparative table showing concentration of measured OCl⁻ using a reported probe YDN and current probe 1.

Table S8. Colour standard chart for $1@\mu$ PAD for the sample analysis via fluorescence detection in the imaging system.

Sample	Water samples with added NaOCl (µM)	Digital camera image colour analysis via fluorescence technique		Color representation
		Obtained (µM)	Recovery %	for fluorescent intensity
R1B N	. –	13.09 ± 0.4	-	
R1B G		17.59 ± 1.1	-	
S1R N	. 69	78.88 ± 2.7	96.1 ± 0.3	
S1R G		87.73 ± 1.4	101.6 ± 0.2	
S2R N	96	112.12 ± 1.3	102.7 ± 0.2	
S2R G		111.42 ± 2.4	98.1 ± 0.3	

Note: G means groundwater samples collected from the CHARUSAT University campus, and N means Narmada river water samples collected from Kevadia, Gujarat, India. All the samples were analyzed in μ PAD was repeatability and reproducibility with n=3 to demonstrate the probe performance.

Notes and references

- 1 Z. -N. Sun, F.-Q. Liu, Y. Chen, P. K. H. Tam and D. Yang, Org. Lett., 2008, 10, 2171–2174.
- 2 A. P. Singh, O. G. Tsay, D. P. Murale, T. Jun, H. Liew, Y.-H. Suh and D. G. Churchill, *Analyst*, 2013, **138**, 2829.
- 3 G. Li, D. Zhu, Q. Liu, L. Xue and H. Jiang, Org. Lett., 2013, 15, 2002–2005.
- G. Cheng, J. Fan, W. Sun, J. Cao, C. Hu and X. Peng, *Chem. Commun.*, 2014, **50**, 1018–1020.
- J.-T. Hou, B. Wang, Y. Zou, P. Fan, X. Chang, X. Cao, S. Wang and F. Yu, *ACS Sens.*, 2020,
 5, 1949–1958.
- B. Zhang, X. Yang, R. Zhang, Y. Liu, X. Ren, M. Xian, Y. Ye and Y. Zhao, *Anal. Chem.*, 2017, 89, 10384–10390.
- 7 J. Shepherd, S. A. Hilderbrand, P. Waterman, J. W. Heinecke, R. Weissleder and P. Libby, *Chem. Biol.*, 2007, 14, 1221–1231.
- 8 Q. Duan, P. Jia, Z. Zhuang, C. Liu, X. Zhang, Z. Wang, W. Sheng, Z. Li, H. Zhu, B. Zhu and X. Zhang, *Anal. Chem.*, 2019, **91**, 2163–2168.
- 9 T. Yang, J. Sun, W. Yao and F. Gao, Dyes Pigm., 2020, 180, 108435.
- 10 Q. Xu, K.-A. Lee, S. Lee, K. M. Lee, W.-J. Lee and J. Yoon, *J. Am. Chem. Soc.*, 2013, **135**, 9944–9949.
- W. Shu, L. Yan, Z. Wang, J. Liu, S. Zhang, C. Liu and B. Zhu, Sens. Actuat. B Chem., 2015, 221, 1130–1136.
- 12 S. Goswami, A. K. Das, A. Manna, A. K. Maity, P. Saha, C. K. Quah, H. K. Fun and H. A. Abdel Aziz, *Anal. Chem.*, 2014, 86, 6315–6322.
- 13 P. Xing, K. Gao, B. Wang, J. Gao, H. Yan, J. Wen, W. Li, Y. Xu, H. Li, J. Chen, W. Wang and S. Sun, *Chem. Commun.*, 2016, **52**, 5064–5066.
- 14 C. Liu, Z. Li, C. Yu, Y. Chen, D. Liu, Z. Zhuang, P. Jia, H. Zhu, X. Zhang, Y. Yu, B. Zhu

and W. Sheng, ACS Sens., 2019, 4, 2156–2163.

- 15 B. Zhu, L. Wu, M. Zhang, Y. Wang, C. Liu, Z. Wang, Q. Duan and P. Jia, *Biosens. Bioelectron*. 2018, **107**, 218–223.
- 16 L. Xu, M. Wu, L. Zhao, H. Han, S. Zhang, P. Ma, Y. Sun, X. Wang and D. Song, *Talanta*, 2020, **215**, 120892.
- 17 H. Teng, J. Tian, D. Sun, M. Xiu, Y. Zhang, X. Qiang, H. Tang and Y. Guo, Sens. Actuat. B Chem. 2020, 319, 128288.
- 18 Y. Zhou, J. Y. Li, K.-H. Chu, K. Liu, C. Yao and J. Y. Li, Chem. Commun., 2012, 48, 4677.
- 19 J. Nie, H. Sun, B. Miao and Z. Ni, Dyes Pigm., 2020, 181, 108590.
- 20 S. Liu, D. Yang, Y. Liu, H. Pan, H. Chen, X. Qu and H. Li, Sens. Actuat. B Chem., 2019, 299, 126937.