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Fig. S1. The schematic of our system. (A) Assembly diagram of optical imaging 

system. (B) Design diagram of ddPCR chip.

Fig. S2. Structure of the improved YOLOv5 network.



Fig. S3. An image labeled by Darklabel. Droplets in the yellow and blue boxes 

are positive and negative droplets, respectively.

The YOLOv5 series algorithms extract features from images using several 

convolutional kernels of different sizes. However, distinguishing the class of the 

center droplet correctly requires using brightness information from the surrounding 

droplets. Therefore, we labelled part of the environment around the droplet as target 

information during labelling (as shown in Fig. S3). This facilitates the network in 

learning about the environment around the droplet, enabling it to more accurately 

determine the class of the droplet.



Text S1.  Calculation of attentional mechanisms.

Attention mechanisms were initially developed in the field of machine 

translation, but are now widely used to improve the performance of models for small 

target detection. The principle of the attention mechanism module is to allocate 

different weights to the outputs of the network nodes and adjust the weights through 

continuous training to highlight some key information and suppressing noises.

Attentional mechanisms can be broadly classified into two categories. In the first 

category, the channel attention mechanism assigns weights to different channels and 

suppresses unimportant information. In the other category, the spatial attention 

mechanism assigns weights to different locations of the feature map in every channel. 

Generally, the channel attention mechanism is more focused on the question of what 

the target is, whereas the spatial attention mechanism is more focused on the location 

of the target.

The Convolutional Block Attention Module (CBAM) combines the advantages 

of both the channel and spatial attention mechanisms, as shown in Fig. S4. The whole 

process can be expressed by the following equations:

{𝑊1 = 𝜎(𝐶𝑜𝑛𝑣 ∗ (𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐼)) + 𝐶𝑜𝑛𝑣 ∗ (𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐼))) 
𝐼' = 𝑊1 × 𝐼𝑛𝑝𝑢𝑡

𝑊2 = 𝜎(𝐶𝑜𝑛𝑣(𝐶𝑜𝑛𝑐𝑎𝑡(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐼'),𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐼')))) 
𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑊2 × 𝐼' �

The channel attention module performs maximum pooling and global average 

pooling on the input I with a dimension of HWC to obtain two feature vectors with 

dimensions of 11C. Two convolution operations are then performed on these 

vectors, and the output feature is activated by the activation function to obtain the 

weight coefficient, . The input is then fed to the spatial attention module after the 𝑊1

channel weight  was applied. Subsequently, the spatial attention module performs 𝑊1

maximum pooling and global average pooling on the channel dimension of the input. 

The resulting features are then concatenated, and the weight  is obtained by 𝑊2

convolution and activation operations. 



Fig. S4. Process of CBAM attention module.



Text S2. Calculation of the loss.

During training a deep learning model, the value of the loss function is used to 

evaluate the difference between the predicted results of the current parameters and the 

true results in the training set. The value for the loss function is continuously varied 

throughout the training cycle to guide the model parameters to the appropriate 

direction.

The Complete-IoU loss (CIoU) used by YOLOv5 was improved from IoU, and 

three factors were simultaneously considered: shape cost, distance cost and IoU. It is 

calculated by the following equations:

{ 𝐶𝐼𝑜𝑈 = 𝐼𝑜𝑈 ‒ (𝜌2(𝑏,𝑏𝑔𝑡)
𝑐2

+ 𝛼𝜈)
𝜈 =  

4

𝜋2(arctan
𝑤𝑔𝑡

ℎ𝑔𝑡
‒ arctan

𝑤
ℎ)2

𝛼 =
𝜈

(1 ‒ 𝐼𝑜𝑈) + 𝜈
𝐿𝑜𝑠𝑠𝐶𝐼𝑜𝑈 = 1 ‒ 𝐶𝐼𝑜𝑈

�
where α is a weighting factor, ν is the shape cost, ρ is the Euclidean distance between 

the centre points of the two boxes, and c is the diagonal length of the smallest 

rectangular region that can contain both boxes. CIoU is used to solve the problem that 

the result of Distance-IoU (DIoU) loss is the same as that of IoU loss when the centre 

points of the prediction box coincide with that of the real box. However, the models 

using CIoU loss cannot be optimized when two prediction boxes have the same aspect 

ratio and their centres overlapped with those of the real box.

In SCYLLA-IoU (SIoU), the angle between the prediction box and the real box 

was employed to accelerate the convergence of the model to redefine the distance cost 

as follows:

{ Δ = ∑
𝑡 = 𝑥,𝑦

(1 ‒ 𝑒
‒ 𝛾𝜌𝑡)

𝜌𝑥 = (𝑏𝑔𝑡
𝑐𝑥 ‒ 𝑏𝑐𝑥

𝑐𝑤 )2, 𝜌𝑦 = (𝑏𝑔𝑡
𝑐𝑦 ‒ 𝑏𝑐𝑦

𝑐ℎ )2

𝛾 = 2 ‒ Λ
Λ = sin (2𝛼)

�
where  is the distance cost,  is an angle shown in Fig. S5,  is the weight associated Δ 𝛼 𝛾



with , and  and  are the horizontal and vertical coordinates of the centre point 𝛼 𝑏 𝑖
𝑐𝑥 𝑏 𝑖

𝑐𝑦

of the corresponding box, respectively. The shape loss was also redefined as follows:

{ Ω = ∑
𝑡 = 𝑤,ℎ

(1 ‒ ⅇ
‒ 𝜔𝑡)𝜃

𝜔𝑤 =
|𝑤 ‒ 𝑤𝑔𝑡|

𝑚𝑎𝑥(𝑤,𝑤𝑔𝑡)
, 𝜔ℎ =
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�
where  is the shape cost, and  and  are the width and height of the corresponding Ω 𝑤 ℎ

boxes, respectively. The size of  indicates the attention of the model to shape cost, 𝜃

and its value ranged between 2 and 6. 

The SIoU loss is calculated by the following equation:

{𝑆𝐼𝑜𝑈 = 𝐼𝑜𝑈 ‒
Δ + Ω

2
𝐿𝑜𝑠𝑠𝑆𝐼𝑜𝑈 = 1 ‒ 𝑆𝐼𝑜𝑈�
The total loss is calculated by the following equation:

𝐿 = 𝑊𝑏𝑜𝑥𝐿𝑜𝑠𝑠𝑆𝐼𝑜𝑈 + 𝑊𝑐𝑙𝑠𝐿𝑜𝑠𝑠𝑐𝑙𝑠 + 𝑊𝑜𝑏𝑗𝐿𝑜𝑠𝑠𝑜𝑏𝑗

where ,  and  are the weights of box loss, object loss, and class loss, 𝑊𝑏𝑜𝑥 𝑊𝑜𝑏𝑗 𝑊𝑐𝑙𝑠

respectively.

Fig. S5. Diagram representing the physical meaning of parameters required for 

SIoU loss calculation.



Text S3. Principle of model pruning.

Convolutional neural networks need to determine millions of parameters during 

the training process. This can make the model more complex and increase the time 

needed for detection. In addition, having too many parameters can also result in a 

large model size, which makes it difficult to apply the model to monolithic devices. 

Network pruning is a technique that can be used to remove unimportant channels and 

reduce the size of the model while maintaining its accuracy. The steps for network 

pruning are shown in Fig. S6.

After convolution operation, batch normalization is usually performed to adjust 

the data distribution. The process involves the introduction of scale factor  and bias 𝛾

factor into the batch normalization process:𝛽

𝑥𝑜𝑢𝑡 =
𝑥𝑖𝑛 ‒ 𝜇𝑐

𝜎2
𝑐 + 𝜀

𝛾 + 𝛽

where  and  are the variance and mean of the input data  in a mini-batch, 𝜎2
𝐶 𝜇𝐶 𝑥𝑖𝑛

respectively,  and  are the parameters to be learned, and  is a very small number 𝛾 𝛽 𝜀

that prevents the denominator from reaching zero.

The value of  reflects the importance of the convolution kernel in a given 𝛾

channel. According to the formula above, when the value of  approaches zero, the 𝛾

output of the channel becomes constant; that is, the channel contains few or no image 

features and can be safely removed. However, the general training method seldom 

produces channels with  equal to 0. To obtain a sparse model, a new loss function 𝛾

was introduced:

𝐿𝑛𝑒𝑤 = 𝐿𝑜𝑟𝑖 + 𝜆∑
𝛾 ∈ Γ

𝑔(𝛾)

where  is the loss function of the original network,  is a hyperparameter, and 𝐿𝑜𝑟𝑖 𝜆

 is the L1 regularization.𝑔(𝛾) = |𝛾|

Using the new loss function to train the model can cause the value of  in many 𝛾

batch normalization layers to converge towards 0. The model can then be pruned 

using the pruning process. After pruning, the numbers of output channels and input 



channels for each layer are changed, and the new model requires to be retrained to 

meet accuracy requirements.

Fig. S6. Schematic diagram of the model pruning process.



Fig. S7. The images processed using deep learning algorithms. 

Our method (A) yielded higher detection rate and effectively avoided 

interference, while the output image using Mask R-CNN (B) exhibited lower 

detection rates and lower classification accuracy for droplets influenced by uneven 

illumination.



Table S1: Hyperparameter used for training model.

Number Parameter name Value

1 lr0 0.01
2 lrf 0.1
3 momentum 0.937
4 warmup_epochs 3.0
5 warmup_momentum 0.8
6 warmup_bias_lr 0.1
7 box 0.05
8 cls 0.5
9 cls_pw 1.0
10 obj 1.0
11 obj_pw 1.0
12 iou_t 0.20
13 anchor_t 1.3
14 fl_gamma 0.0
15 hsv_h 0.015
16 hsv_s 0.7
17 hsv_v 0.4
18 degrees 0.0
19 translate 0.1
20 scale 0.5
21 shear 0.0
22 pers[ective 0.0
23 flipud 0.5
24 fliplr 0.5
25 mosaic 1.0
26 mixup 0.001
27 copy_paste 0.01


