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CONVOLUTIONAL NEURAL NETWORK SECTION

Reference Acquisition for Data Augmentation- 100 µM solutions of each pollutant: PY, TP, 

NP, BAP, and ANT were measured separately on the SERS substrate as described above and used 

as the reference spectra.  Five spectra were acquired for each reference. A blank was measured 

using tap (drinking) water. 

Data Preprocessing

The 488-1666 cm-1 range was used for analysis due to its rich SERS content. The raw reference 

spectra were blank-subtracted by scaled subtraction of blank spectra from sample spectra, 

smoothed in MATLAB using a Savitsky-Golay filter (span of 5, polynomial degree 3), and finally 

background subtracted by Savitsky-Golay filter (span of 5, polynomial degree 1).
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Training, Validation, and Optimization Set Generation 

Spectral mixtures were simulated by scaled addition of reference spectra in MATLAB. Data sets 

for training (n=10,000), validation (n=2,000), and optimization (n=6,000) were simulated using 

the same procedure. During data augmentation, one of the five repeats of each reference spectrum 

is randomly selected to simulate the mixture. Firstly, for each of the 5 distinct references, the 

background was separated from raw spectrum by subtracting the preprocessed spectrum (blank-

subtracted, background-subtracted) from the raw spectrum. Next, the raw spectrum was 

normalized by the maximum intensity of the preprocessed spectrum. Then, the normalized, raw 

spectra were multiplied by the simulated scaling factor (label). Finally, the spectra were randomly 

shifted to the left or right in the range [0, 4].  Gaussian noise was added at random power in the 

range [1x10-8, 1x10-3], resulting in a simulated raw spectrum. Finally, the raw spectrum was 

processed by scaled blank subtraction, background subtraction using Savitsky-Golay as described 

above, and normalized by the maximum intensity of processed spectrum so all spectral points are 

in the range [0, 1]. 

Label Generation

Label for each training spectrum consisted of a vector of five scaling factors, corresponding to 

each reference spectrum. Each label vector is summed to 1. Labels were generated by creating an 

evenly spaced calibration curve of one reference in the range [5x10-2, (1-1.5x10-1)]. Concentrations 

of all other references generated randomly such that sum of all labels equaled 1. Then, all labels 

in the vector were set to zero with an independent probability of 20%. Any randomly generated 

label less than the minimum of 5x10-2 was set to zero and the label vector was renormalized to 

sum to 1. This was repeated until a calibration curve was simulated for each distinct reference. The 



resulting labels were used as the first 5 labels for regression models. A 6th label was added to each 

spectrum to denote a normalization factor. This last label was defined as the maximum height of 

the simulated spectrum based on generated labels and normalized references. The normalization 

factor is related to the amount of spectral overlap between the reference spectra. To obtain binary 

labels for classification models, all non-zero labels (first 5) were set to 1. 

Stability of GNS

Figure S1. STEM images of GNS-1 (a) GNS-2 (b), and GNS-3 (c) after 90 days of synthesis. (d) 

UV-Vis absorbance spectra of five different batches of GNS-3.

Figure S2. SERS peak intensity of PY at 1241 cm-1 at 1 µM concentration with five different 

batches of GNS-3. 



Figure S3. SERS spectra of BAP (A) with the concentration ranging from 1 uM to 10 nM. The 

calibration curve for the SERS peak intensity of BAP at 1386 cm-1 from 1 uM to 10 nM 



concentrations (B). The SERS spectra and calibration curve of NP (C, D) TP (E, F).  The SERS 

spectra of ANT (G) with the concentration ranging from 1 uM to 10 nM. The calibration curve for 

the SERS peak intensity of ANT at 1405 cm-1 from 1 uM to 10 nM concentrations (H).



Figure S4. SERS spectra of TP, NP, BAP, ANT, and PY with the concentration ranging from 50 

nM to 10 nM (A-E). 

CNN Architecture Optimization for Classification

CNN architecture was tuned using 5-fold cross validation in Optuna using 40 trials. A n=6,000 

dataset was generated using the above technique with corresponding binary labels. Static 

parameters (Table S1) tuned hyperparameters (Table S2), and optimization visualization (Fig. S1-

S3) are shown below. CNN hyperparameters with the lowest RMSE was used to evaluate the test 

set.

Table S1. CNN static parameters used during CNN optimization for classification and regression 

models.

Static Parameter

Max Pooling (after conv layer) Stride [1 x 2]

Activation Function ReLU (conv layers)

Sigmoid (dense layer)

Dropout 0.25

Optimizer Adam Optimizer

Batch Size 3000



Table S2. Hyperparameters, ranges, and distributions used in tuning of CNN for classification 

and regression models using Optuna for n=40 trials. RMSE of best PLSR trial.

Hyperparameter Variable type Tuning 

distribution

Range/Options Parameter of 

best trial

Kernel Size categorical uniform 6, 12, 24, 48 6

No. Dense nodes categorical uniform 300, 500, 700, 

1000

700

Dropout rate continuous log uniform [5x10-2, 3x10-1] 2.5x10-1

Learning rate continuous log uniform [5x10-4, 2x10-3] 1.24x10-3

Best RMSE score 1.88x10-2

Figure S5. Visualization of hyperparameter importance during optimization of CNN classification 

model. 



Figure S6. Contour plots showing relationships between parameters during CNN classification 

model optimization. 

Figure S7. Visualization of the objective value empirical distribution function (EDF) of the CNN 

classification model optimization study.



CNN Classification Model

The 1D-CNN was built using TensorFlow in Python and is comprised of an input layer, four 1D 

convolutional layers, separated by three max pooling layers, followed by a fully connected dense 

layer with dropout, and an output layer (Fig. S3). The preprocessed SERS spectra is fed to the 

input layer, which passes to the first convolutional layer comprised of 16 kernels of size 6. A 

convolutional layer moves a kernel over the spectrum with a stride of 1 and outputs a feature map 

which is fed to a ReLU nonlinear activation function. A max pooling layer with stride 2 reduces 

dimensionality of the previous layer, decreasing risk of overfitting, and computational burden. 

After four convolutional and four max pooling layers, the data are flattened before being fed into 

the dense layer with a dropout rate of 25%. Dropout is a regularization technique which randomly 

omits certain nodes during training (at a set probability), which reduces chances of overfitting. A 

sigmoid activation function is used on the dense layer. Finally, the output layer produces the 

network’s predictions, consisting of 5 labels between 0 and 1, for multiclass, binary classification. 

The Adam optimizer in TensorFlow was used with a learning rate of 1x10-3 to compile the CNN 

with loss as accuracy. 

Thresholding

The optimal threshold was found separately for each target based on the model predictions on the 

validation set. Each target threshold was set as the threshold with the highest geometric mean 

(√sensitivity*specificity). To map the output labels to a binary classification, the prediction labels 

were thresholder at a 1.71x10-2 for PY, 1.81x10-2 for TP, 6.15x10-1 for NP, 8.42x10-1 for BAP, 

and 9.43 x10-2 for ANT. 



Table S3. CNN architecture and parameters used for evaluation of test set.

Model Evaluation

Model performance was evaluated using precision, recall, and F1 score. F1 score is better at 

evaluating performance of unbalanced datasets. Since the test set contains more than double the 

number of positive samples to negative samples, F1 is a better evaluator of performance than 

accuracy. The binary confusion matrices and ROC curve was plotted and AUC was calculated for 

each pollutant as well as the micro and macro averages. 

Type Kernal 
Size

No. 
Kernals

Activation f. Stride No. Params

Conv 6 16 ReLU 1 112
Max-pooling 2 -- -- 2 0
Conv 6 32 ReLU 1 3104
Max-pooling 2 -- -- 2 0
Conv 6 64 ReLU 1 12352
Max-pooling 2 -- -- 2 0
Conv 6 128 ReLU 1 49280
Max-pooling 2 -- -- 2 0
Flatten -- -- -- -- 0
Fully 
connected 

-- -- ReLU -- 3674300

Dropout -- -- -- -- 0
Fully 
connected 

-- -- Sigmoid -- 3505



Table S4. Performance evaluation of CNN classification model based on target including 

precision, recall, and f1 score. 

Table S5. F1 score of CNN classification model for each of the five targets vs each of the four 

different datasets.

CNN Architecture Optimization for Regression

CNN architecture was tuned using 5-fold cross validation in Optuna using 40 trials. A n=6,000 

dataset was generated using the above technique with corresponding continuous labels. Static 

parameters (Table S1), tuned hyperparameters (Table S2), and optimization visualization (Fig. S4-

Sensitivity  
(%)

Specificity 
(%)

Negative 
predictive 
value (%)

Precision 
(%)

Recall  
(%)

F1 
score 
(%)

PY 89.2 100 78.5 100 89 94
TP 100 91.7 100 96 100 98
NP 92.6 75 81.8 89 93 91
BAP 89 100 100 100 100 100
ANT 76.7 100 56.3 100 77 87
Macro 
average

n/a n/a n/a 97 92 94

Micro 
average

n/a n/a n/a 97 91 94

F1 score (%)
Drinking 
water test 
Set

Drinking water 
sparse test set 

River water 
test set

River water 
sparse test 
set

PY 82 100 89 100
TP 100 89 100 100
NP 89 100 89 86
BAP 100 100 100 100
ANT 75 100 46 89
Macro average 89 98 85 95
Micro average 90 98 88 94



S6) are shown below. CNN hyperparameters with the lowest RMSE was used to evaluate the test 

set.

Figure S8. Visualization of hyperparameter importance during optimization of CNN regression. 

Figure S9. Contour plots showing relationships between parameters during CNN regression model 

optimization. 



Figure S10. Visualization of the objective value empirical distribution function (EDF) of the CNN 

classification model optimization study.

CNN Regression Model

The 1D-CNN was built using TensorFlow in Python with similar architecture to classification 

model. Differences in regression model is the convolutional kernel size of 48, dropout rate of 0.2, 

and learning rate of 5x10-4. Relu was used for activation in all layers including the dense laer.  

activation function is used on the dense layer. Finally, the output layer produces the network’s 

predictions, consisting of 6 labels. The first 5 labels consist of continuous numbers between 0 and 

1 denoting the fractional contribution of each target, for multiclass regression. The last label 

consists of a continuous normalization factor. This factor was defined as the maximum height of 

the simulated reference spectrum before renormalization. 

The Adam optimizer in TensorFlow was used to compile the CNN with loss as mean squared error 

between predicted and true labels. 



Table S6. CNN 

architecture and 

parameters used 

for evaluation of 

test set.

CNN Regression Performance Evaluation 

Predicted normalized spectrum was simulated from predicted labels by a process similar to data 

simulation. Averaged reference spectra are scaled by predicted label and combined to form the 

predicted spectrum. The predicted and actual spectra for each test set were plotted (Fig. S7-S10). 

RMSEspectrum and RMSEconc were calculated for each test set and combined test sets. 

Type Kernal 
Size

No. 
Kernals

Activation f. Stride No. Params

Conv 6 16 ReLU 1 784
Max-pooling 2 -- -- 2 0
Conv 6 32 ReLU 1 24708
Max-pooling 2 -- -- 2 0
Conv 6 64 ReLU 1 98368
Max-pooling 2 -- -- 2 0
Conv 6 128 ReLU 1 393344
Max-pooling 2 -- -- 2 0
Flatten -- -- -- -- 0
Fully 
connected 

-- -- ReLU -- 5249000

Dropout -- -- -- -- 0
Fully 
connected 

-- -- ReLu -- 5005



 

Predicted Spectra for Drinking Water Test Set
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Figure S11. Simulated predicted (blue) and actual (orange) test spectra from the drinking water 

data set from CNN regression model. 



Actual-Predicted Spectra for Drinking Water Test Set
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Figure S12. Difference between CNN regression predicted and actual test spectra from the 

drinking water data set. 



Predicted Spectra for Sparse Drinking Water Test Set
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Figure S13. Simulated predicted (blue) and actual (orange) test spectra from the sparse drinking 

water data set from CNN regression model. 

 



Actual-Predicted Spectra for Sparse Drinking Water Test Set
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Figure S15. Difference between CNN regression predicted and actual test spectra from the sparse 

drinking water data set. 



Predicted Spectra for River Water Test Set
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Figure S16. Simulated predicted (blue) and actual (orange) test spectra from the river water data 

set from CNN regression model. 



Actual-Predicted Spectra for River Water Test Set
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Figure S17. Difference between CNN regression predicted and actual test spectra from the river 

water data set. 



Predicted Spectra for Sparse River Water Test Set
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Figure S18. Simulated predicted (blue) and actual (orange) test spectra from the drinking water 

sparse data set from CNN regression model. 



Actual-Predicted Spectra for Sparse River Water Test Set
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Figure S19. Difference between CNN regression predicted and actual test spectra from the sparse 

river water data set. 

Target Concentration Prediction

The concentration of each pollutant was predicted by dividing the first 5 label predictions by the 

last label, the predicted normalization factor. Then each normalized pollutant contribution was 

scaled by the maximum height of the unnormalized, blank and background-subtracted test 

spectrum. Then the target concentration was found by converting each scaled label based on the 

exponential calibration curve. All resultant negative values were set to 0.


