Supporting information

A dual-response NIR fluorescent probe for separately and continuously

recognizing H₂S and Cys with different fluorescence signals and its applications

Lisha Yue^a, Yin Ai^a, Gang Liu^a, Haichang Ding^{a,*}, Shouzhi Pu^{a,b,*}

^a Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China

^b Department of Ecology and Environment, Yuzhang Normal University, Nanchang 330103, P. R.

China

*Corresponding author: dinghaichang@126.com (H. Ding), pushouzhi@tsinghua.org.cn (S. Pu)

Contents:

- **Fig. S1.** ¹H NMR spectrum of **2**C in CD_2Cl_2 .
- **Fig. S2.** ¹H NMR spectrum of **Cy-S** in CD₃CN.
- Fig. S3. HRMS spectrum of Cy-S in CH₃OH.
- Fig. S4. ¹H NMR spectrum of Cy-N in DMSO- d_6 .
- Fig. S5. HRMS spectrum of Cy-N in CH₃OH.
- Fig. S6. ¹H NMR spectrum of Cy-NP in DMSO- d_6 .
- Fig. S7. ¹³C NMR spectrum of Cy-NP in DMSO- d_6 .
- Fig. S8. HRMS spectrum of Cy-NP in CH₃OH.
- **Fig. S9.** The linear range of **Cy-NP** to H_2S and Cys.
- Fig. S10. HRMS spectra of Cy-NP, Cy-Cys, Cy-H₂S and Cy-NP-NH₂.
- Fig. S11. the sensing mechanism of Cy-NP to H_2S .
- Fig. S12. The structures used for DFT calculations.
- Fig. S13. The response of test strips immersed into different concentration of H₂S solution.
- Fig. S14. Optical images of Cy-NP test paper.
- Fig. S15. Cytotoxicity Assay.

Fig. S16. The emission intensity changes of Cy-NP A) upon addition of Cys at 640 nm excitation. B) upon addition of Cys and H₂S at 640 nm excitation. C) upon addition of H₂S at 400 nm excitation. D) upon addition of Cys and H₂S at 400 nm excitation. E) Change of fluorescence intensity at 640 nm excitation. F) Change of fluorescence intensity at 400 nm excitation.

Table S1. Comparison of Cy-NP with other fluorescent probes.

Scheme S1. Synthetic route of Cy-S, Cy-N, and Cy-NP.

Fig. S2 ¹H NMR spectrum of Cy-S in CD₃CN.

Fig. S3 HRMS spectrum of Cy-S in CH₃OH.

Fig. S5 HRMS spectrum of Cy-N in CH₃OH.

Fig. S6 ¹H NMR spectrum of Cy-NP in DMSO-*d*₆.

Fig. S8 HRMS spectrum of Cy-NP in CH₃OH.

Figure S9. The linear range of Cy-NP to H_2S and Cys.

Fig. S10 HRMS spectra of Cy-NP, Cy-Cys, Cy-H₂S and Cy-NP-NH₂ in CH₃OH.

Fig. S11 the sensing mechanism of Cy-NP to H_2S .

Fig. S12 The structures used for DFT calculations.

Fig. S13 The response of test strips immersed into different concentration of H_2S solution.

Fig. S14 Optical images of Cy-NP test paper after being exposed to pork, beef, and chicken with different time intervals at 277 K in a refrigerator.

Fig. S15 Percentage of viable MCF-7 cells after incubation with different concentrations of Cy-

NP for 24 h.

Fig. S16. The emission intensity changes of Cy-NP A) upon addition of Cys at 640 nm excitation.
B) upon addition of Cys and H₂S at 640 nm excitation. C) upon addition of H₂S at 400 nm excitation. D) upon addition of Cys and H₂S at 400 nm excitation. E) Change of fluorescence intensity at 640 nm excitation. F) Change of fluorescence intensity at 400 nm excitation.

Probe	Excitation mode	Selectivity	Emission (nm)	Detection	Reference
of the	Double	H ₂ S Cys	560 760	0.15 μM 1.4 μM	This work
	Single	Cys/GSH	783	0.16 μ Μ	1
and in the hours	י Single	Cys/Hcy	485	0.86 mM	2
	Double	Cys/Hcy GSH	550 810	94 nM 75 nM	3
	Single	Cys/Hcy	474/694	16 μΜ	4
CCCC H U N N N N N N N N N N N N N N N N N N	Double	Cys/Hcy GSH	520/550 520	0.43 μM 0.36 μM	5
	Double	Cys/Hcy GSH	472/584 542/584	95 nM 39 nM	6
	Single	Cys/Hcy	585	5.4 nM	7
	Double	Cys/Hcy GSH	565/630 630	95.6 nm 39.3 nm	8
	Single	Cys/Hcy GSH	490/580 490	1 μM 5 μM	9

 Table S1. Comparison of Cy-NP with other fluorescent probes for Cys

References

- 1 X. Lu, M. Wu, S. Wang, J. Qin and P. Li, *Talanta*, 2021, 235, 122771.
- 2 H. Zhang, L. Xu, W. Li, W. Chen and Q. Xiao, RSC Adv., 2019, 9, 7955-7960.
- 3 R. Li, H. Kassaye, Y. Pan, Y. Shen, W. Li and Y. Cheng, Biomater. Sci., 2020, 8, 5994-6003.
- 4 H. Lv, X. F. Yang, Y. Zhong, Y. Guo, Z. Li and H. Li, Anal. Chem., 2014, 86, 1800-1807.
- 5 Y. Z. Yang, Z. Y. Xu, L. Han, Y. Z. Fan, M. Qing and N. B. Li, Dyes Pigm., 2021, 184, 108722.
- 6 H. Zhang, B. Wang, Y. Ye, W. Chen and X. Song, Org. Biomol. Chem., 2019, 17, 9631-9635.
- 7 X. Liu, H. Tian, L. Yang, Y. Su, M. Guo and X. Song, Tetrahedron Let., 2017, 58, 3209-3213.
- 8 X. Ren, Y. Zhang, F. Zhang, H. Zhong, J. Wang and X. Liu, Anal. Chim. Acta., 2020, 1097, 245-253.
- 9 X. Song, Y. Tu, R. Wang and S. Pu, Dyes Pigm., 2020, 177, 180270.