Supplementary Material

A sensitive and facile electrochemical paper-based sensor for glucose detection in

whole blood using Pd/CB-Ni@rGO modified electrode

Chim Math,^a Kamolwich Income,^b Kawin Khachornsakkul,^{a, c} Paweenar Duenchay^d and Wijitar Dungchai^a*

^a Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.

^b Office of Primary Industries and Mines, Region 3, Ministry of Industry, Chiang Mai, Thailand.

^c Department of Electrical and Computer Engineering, Tufts University, Medford, MA 02155, USA.

^d Department of Industrial Engineering, Manufacturing Engineering, and Chemical Processes and Environment Engineering, Faculty of Engineering, Pathumwan Institute of Technology 833 Rama 1 Rd., Pathumwan, Bangkok 10330, Thailand

*Corresponding Authors:

E-mail address: wijitar.dun@kmutt.ac.th

Electrodes characterization by Cyclic voltammetry

Fig. S0 Cyclic voltammograms of PBS and 1 mM H_2O_2 in PBS pH 7.4 on (a) bare-SPE, (b) GO, (c) Ni@rGO, (d) CB-Ni@rGO and (e) Pd/CB-Ni@rGO at 100 mV/s of scan rate.

In comparison to Fig. S0 (a), (b), (c), and (d), the PBS in Fig. S0 (e) exhibits a reduction peak that resembles the one observed for H_2O_2 . The reduction peaks of PBS and H_2O_2 show similarities but occur at slightly different potentials, approximately at -0.199 V and -0.24 V. The reason behind the resemblance between the PBS peak and that of H_2O_2 can be attributed to the reduction of the Pd oxide¹⁻⁴.

Electrodes characterization by FTIR

Fig. S1 FTIR spectrum of (a) GO, (b) Ni@rGO, (c) CB-Ni@rGO and (d) Pd/CB-Ni@rGO.

Morphology and size distribution analysis

Fig. S2 SEM image of (a) bare-SPE, (b) GO, (c) Ni@rGO, (d) CB-Ni@rGO, (e) Pd/CB-Ni@rGO, (f) elements analysis by EDS, (g) TEM image of Pd/CB-Ni@rGO and (h) particles size distribution.

Repeatability, reproducibility, and long-term stability study

Fig. S3 (a) Repeatability and reproducibility study of 1 mM H_2O_2 in PBS, pH 7.4 on Pd/CB-Ni@rGO electrode and (b) Long-term stability of Pd/CB-Ni@rGO electrode on 1 mM H_2O_2 in PBS, pH 7.4.

SEM image of blood separation

Fig. S4 SEM image of filter paper after drying overnight (before blood separation): above row (a) flow channel and (b) sample zone containing hemostatic agent, and below row (c) after blood separation and (d) plasma flow channel blood separation zone.

Fig. S5 (a) Chronoamperograms of glucose assay based on proposed Pd/CB-Ni@rGO. Inset; a matrix-matched standard curve with the linear range at 7 to 7140 μ M (r² = 0.99, n = 3) (b) a calibration curve having the matrix-matched fresh blood for blood analysis.

Without hemo	ostatic agent	With hemostatic agent		
Repetition (time)	Current (μA)	Repetition (time)	Current (µA)	
1	-101.00	1	-123.40	
2	-93.63	2	-124.50	
3	-83.31	3	-120.90	
4	-80.51	4	-120.90	
5	-65.32	5	-118.90	

Table S1 Comparing H_2O_2 measurement with and without hemostatic agents and its fouling effect.

Compare with previous studies.

Electrode	Applied potential. (V vs. Ag/AgCl)	Electrolyte	Long term Stability	Selectivity (Interfered by)	Linear range (mM)	LOD (µM)	Ref
Pd/CB-Ni@rGO*	-0.3	PBS, pH 7.4	94.17%, 3 weeks	Not interfered from UA, Glu, Asp, AA, NaCl and BSA	0.007–7.14	0.82	This work
Pd@Pt NCs *	-0.05	PBS	NA	Not interfered from fructose, saccharose, maltose, sorbitol, AA, and UA	2.4–10.6	0.15	5
PB/Ti₃C₂Tx/GOx/Nafion /SPIL-GE (POC) *	-0.05	PBS, pH 7.4	NA	Not interfered from UA, AA, and hemoglobin	0.0–0.50 & 0.0–15.0	24.5	6
Arduino Due and LMP9100-EVM (POC) *	-0.55	PBS, pH 7	80%, 8.57 weeks	Not interfered from AA and UA	1.2-7.8	23	7
Pd-Mn/rGO-GC **	-0.1	0.1 M NaOH	85.58%, 2.86 weeks at 4 °C	Not interfered from DA, H ₂ O ₂ , UA, AA, L- Arginine	0.0161-1.152 & 1.125-4.875	1.25	8
PtPd/PHNG-2 **	-0.15	PBS, pH 7.0	93.05%, 3 weeks	Not interfered from AA, UA, DA and AP	0.1 - 4	1.82	9
Pd ₃ Ag-LBP/C-GCE **	-0.1	0.1 M NaOH	NA	Not interfered from NaCl, AA, AP and UA	1 to 20	-	10
Pd-CSP/C **	-0.05	0.1 M NaOH	NA	Not interfered from NaCl, AA, AP, and UA	2.5–40	1.06	11
Enzymatic modified on red blood cell membrane *	-0.3	PBS, pH 7.4	Low stability due to potential drift	Not interfered from AA, UA, or GA	2.5–40	1060	12

 Table S2 Comparison of the sensing characteristics of several point of care device (POC) and Pd-based glucose sensors

Electrode	Applied potential. (V vs. Ag/AgCl)	Electrolyte	Long term Stability	Selectivity (Interfered by)	Linear range (mM)	LOD (µM)	Ref
PdNS/f-CNT-SPCE **	+0.3	PBS, pH 7.4	NA	(AA), paracetamol (PCM), (DA), and galactose (Gal)	1–41	95	13
Pd-NiAl-LDH-GS **	+0.5	0.1 M NaOH	90%, after 4.29 weeks	<10% interfered from AA, UA, DA, AED, L- Cys, and Gly	0.0005–10	0.234	14
Pd/MnO ₂ -Nickel foams **	+0.45	0.1 M NaOH	95%, 100 CV cycles	Slightly interfere from UA, AA, Mal, DA, LA but at 20 μΜ	0.065-0.455	NA	15
np-PdAuNi-GCE **	0	0.1 M NaOH	92%, 4.29 weeks	AA	0.005-0.1	1.7	16
Pd-CoCNTs -GC **	+0.5	0.1 M NaOH	88.8% <i>,</i> 96 hr	UA, DA and AA	0.01–2.4	1	17

* Enzymatic glucose sensor

** Non-enzymatic glucose sensor

NA: not available

References

- 1. J. Liu, W. Zhou, T. You, F. Li, E. Wang, and S. Dong, Analytical chemistry, 1996, 68, 3350-3353.
- 2. J. Huang, D. Wang, H. Hou and T. You, Advanced Functional Materials, 2008, 18, 441-448.
- J.-M. You, D. Kim, S. K. Kim, M.-S. Kim, H. S. Han and S. Jeon, Sensors and Actuators B: Chemical, 2013, 178, 450-457.
- 4. D. Zhao and C. Xu, J Colloid Interface Sci, 2015, 447, 50-57.
- 5. S.-S. Wang, W.-J. Qiu, T.-P. Wang and C.-L. Lee, Applied Surface Science, 2022, 605.
- W. Niamsi, N. Larpant, P. K. Kalambate, V. Primpray, C. Karuwan, N. Rodthongkum and W. Laiwattanapaisal, Biosensors, 2022, 12.
- S. Azimi, A. Farahani, A. Docoslis and S. Vahdatifar, Anal Bioanal Chem, 2021, 413, 1441-1452.
- M. Waqas, J. Lan, X. Zhang, Y. Fan, P. Zhang, C. Liu, Z. Jiang, X. Wang, J. Zeng and W. Chen, Electroanalysis, 2020, 32, 1226-1236.
- A. Salah, N. Al-Ansi, S. Adlat, M. Bawa, Y. He, X. Bo and L. Guo, Journal of Alloys and Compounds, 2019, 792, 50-58.
- X. Niu, F. Wang, W. Wang, Y. Wang, Y. Huang and J. Zhang, Int J Biol Macromol, 2018, 118, 2065-2070.
- 11. F. Wang, X. Niu, W. Wang, W. Jing, Y. Huang and J. Zhang, Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 87-93.
- I. Kim, D. Kwon, D. Lee, T. H. Lee, J. H. Lee, G. Lee and D. S. Yoon, Biosens Bioelectron, 2018, 102, 617-623.
- 13. A. Ghanam, N. Haddour, H. Mohammadi, A. Amine, A. Sabac and F. Buret, Sensors (Basel), 2022, 22.
- 14. N. Shishegari, A. Sabahi, F. Manteghi, A. Ghaffarinejad and Z. Tehrani, Journal of Electroanalytical Chemistry, 2020, 871.
- 15. R. Ponnusamy, A. Gangan, B. Chakraborty, D. J. Late and C. S. Rout, J Phys Chem B, 2018, 122, 7636-7646.
- 16. L. Lu and J. Kang, Mikrochim Acta, 2018, 185, 111.
- B. Huang, Y. Wang, Z. Lu, H. Du and J. Ye, Sensors and Actuators B: Chemical, 2017, 252, 1016-1025.