Supporting Information

"One Stone, Two Birds" - A Mitochondria-Targeted Fluorescent Probe for Detection of Viscosity and HSO₃⁻ in Living Cells

Buyue Zhang ^a, Lei Shi ^{a,*}, Xiaoying Ma ^a, Dawei Yang ^b, Hongxia Sun ^b, Yalin Tang ^b, Xiufeng Zhang ^{a,*}

 ^a Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
 ^b National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

* Corresponding author.

Lei Shi, Email: slbuct@163.com;

Xiufeng Zhang, Email: zhangxf@ncst.edu.cn

Fig. S2. ¹H NMR of **Hcy-NT**.

Fig. S3. MS of Hcy-NT.

Fig. S4. The absorption spectra of Hcy-NT (10 μ M) in different solvents.

Fig. S5. (A) The absorption spectrum and (B) fluorescence intensity of Hcy-NT (10

 μ M) in different pH buffers. λ_{ex} =419 nm.

Fig. S6. (A) The absorption and (B) fluorescence spectra of Hcy-NT (10 μ M) with HSO₃⁻ in DMSO/PBS (V/V=1/99, pH=7.2). λ_{ex} =419 nm.

Fig. S7. The specificity of Hcy-NT (10 μM) to HSO₃⁻ (80 μM) against other species (100 μM) in DMSO/PBS (V/V=1/99, pH=7.2). 0. Control; 1. NaCl; 2. KCl; 3. KI; 4. NaHCO₃; 5. KNO₃; 6. Na₂HPO₄; 7. Na₂CO₃; 8. Na₂SO₄; 9. Na₂S₂O₃; 10. AcONa; 11. CaCl₂; 12. FeSO₄; 13. MgSO₄; 14. BaCl₂; 15. ZnCl₂; 16. AlCl₃; 17. Cys; 18. GSH; 19.

Glucose; 20. ATP; 21. NaHSO₃; 22. Na₂S₂O₃+GSH. λ_{ex} =419 nm.

Fig. S8. The competition of Hcy-NT (10 μM) to HSO₃⁻ (80 μM) with other species
(100 μM) in DMSO/PBS (V/V=1/99, pH=7.2). 0. Control; 1. NaCl; 2. KCl; 3. KI; 4.
NaHCO₃; 5. KNO₃; 6. Na₂HPO₄; 7. Na₂CO₃; 8. Na₂SO₄; 9. Na₂S₂O₃; 10. NaOAc; 11.
CaCl₂; 12. FeSO₄; 13. MgSO₄; 14. BaCl₂; 15. ZnCl₂; 16. AlCl₃; 17. Cys; 18. GSH; 19.

Glucose; 20. ATP. λ_{ex} =419 nm.

Fig. S9. The time-dependent curve of Hcy-NT (10 μ M) to HSO₃⁻ (80 μ M) in

DMSO/PBS (V/V=1/99, pH=7.2). λ_{ex} =419 nm.

Fig. 10. Response effect of Hcy-NT (10 $\mu M)$ with HSO3 $^{-}$ (80 $\mu M)$ under different pH

buffer. DMSO/Britton-Robinson buffer (V/V=1/99). λ_{ex} =419 nm.

Fig. S11. MS of **Hcy-NT** with HSO₃⁻.

Fig. S13. The fluorescence spectrum of Hcy-NT (5 μ M) co-incubated with nystatin (10 μ M) in 37°C in DMSO/PBS (V/V=1/99, pH=7.2). λ_{ex} =419 nm.