Supplementary Material

Sensitive detection of synthetic cannabinoids in human blood using magnetic polydopamine molecular imprinted polymer nanocomposites

Jiajia Li^a, Yong Wang ^{a,b}, Anran Liu^a, Songqin Liu^{a,*}

*Corresponding authors:

Dr. Songqin Liu, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device (CMD), Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China. Email: liusq@seu.edu.cn

a. Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device (CMD), Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China.

b. Institute of Forensic Science and Technology of Nanjing Public Security Bureau, Nanjing, 210012, P. R. China.

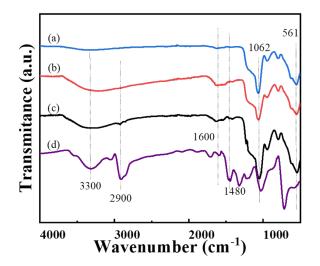


Figure S1. FT-IR spectra of (a) Fe₃O₄@SiO₂ NPs (b) PDA@Fe₃O₄ NIP, (c) PDA@Fe₃O₄ MIP with 9CH embedded and (d) 9CH.

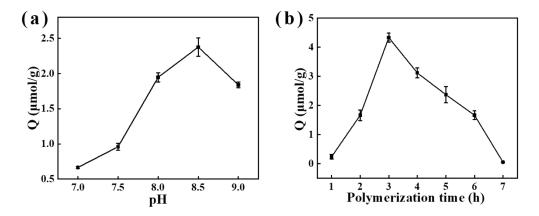


Figure S2. Optimization of (a) pH and (b) polymerization time for the synthesis of PDA@Fe₃O₄ MIP

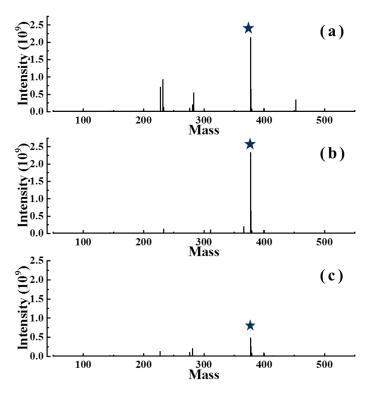


Figure S3. Mass spectrometry is used to analyze the content of 5F-PB-22 in human blood. (a) without MIP pretreatment, (b) extracted by PDA@Fe₃O₄ MIP, and(c) extracted by PDA@Fe₃O₄ NIP.

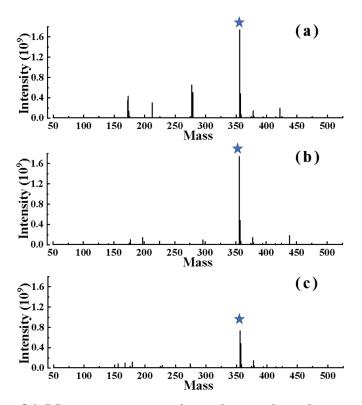


Figure S4. Mass spectrometry is used to analyze the content of JWH-122 in human blood. (a) without MIP pretreatment, (b) extracted by PDA@Fe₃O₄ MIP, and(c) extracted by PDA@Fe₃O₄ NIP.

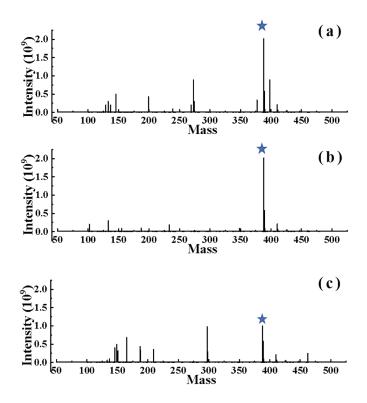


Figure S5. Mass spectrometry is used to analyze the content of EAM-2201 in human blood. (a) without MIP pretreatment, (b) extracted by PDA@Fe₃O₄ MIP, and(c) extracted by PDA@Fe₃O₄ NIP.

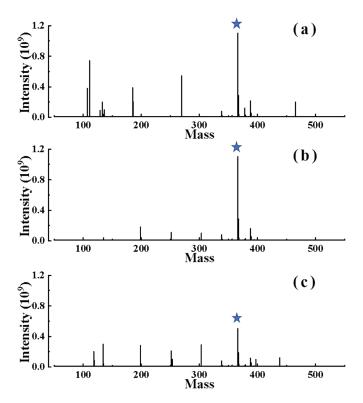


Figure S6. Mass spectrometry is used to analyze the content of APINACA in human blood. (a) without MIP pretreatment, (b) extracted by PDA@Fe₃O₄ MIP, and(c) extracted by PDA@Fe₃O₄ NIP.

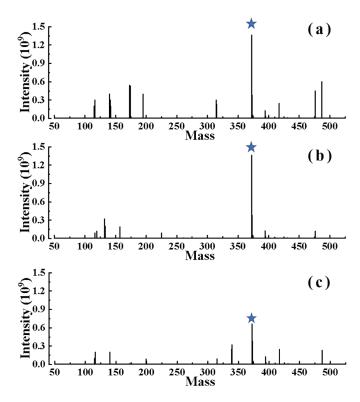


Figure S7. Mass spectrometry is used to analyze the content of JWH-081 in human blood. (a) without MIP pretreatment, (b) extracted by PDA@Fe₃O₄ MIP, and(c) extracted by PDA@Fe₃O₄ NIP.

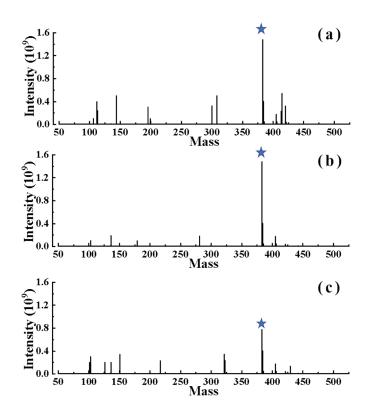


Figure S8. Mass spectrometry is used to analyze the content of STS-135 in human blood. (a) without MIP pretreatment, (b) extracted by PDA@Fe₃O₄ MIP, and(c) extracted by PDA@Fe₃O₄ NIP.

HPLC parameters					
Columns	Agilent Eclipse plus C18 (3 x 100 mm x 2.1 μm)				
Eluent	A: Methanol B:5 mmol Ammonium formate /0.1% Methanoic acid				
Injection Volume	10 µL				
Flow Rate Column temperature	500 μL/mL 40 °C				

Table S1: Conditions for liquid chromatography

MS parameters					
Polarity	Positive				
Ionization source	Electrospray Ionization				
Sweep gas flow rate	2 arb				
Spray voltage	3.5 kV				
Sheath gas flow rate	45 arb				
Aux gas flow rate	10 arb				
Aux gas heater temp	400 °C				
Capillary temp	320 °C				
Resolution	70000				
Automatic gain control (AGC) target	2e6				
Collision energy (CE)	40 eV				
Scan range	50 to 400 m/z				
Maximum IT	100 ms				

Table S2: Conditions for mass spectrometry

Compounds	RT	Precursor ion	Fragmentation ions
	(min)	$[M+H]^{+}(m/z)$	(m/z)
JWH-122	10.37	356.2010	214.1227, 169.0649
JWH-081	9.82	372.1954	214.1227, 185.0597
EAM2201	5.70	388.2069	232.1130, 183.0804
5F-PB-22	8.15	377.1662	232.1133, 144.0444
STS-135	15.26	383.2486	232.1133, 135.1169
APINACA	8.34	366.2540	135.1168, 107.0855

 Table S3. Mass spectrometric characterization parameters of six synthetic cannabinoids

Entry	Fe ₃ O ₄ (mg)	DA (mg)	9CH (mg)	Q (µmol·g ⁻¹)
1	10	5	10	4.33
2	10	7	10	5.74
3	10	10	10	4.12
4	10	15	10	5.34
5	10	7	10	4.21
6	10	7	20	5.55
7	10	7	30	6.26
8	10	7	40	6.07

Table S4. Optimization of the ratio of Fe₃O₄, DA and 9CH

Other synthesis conditions: polymerization time = 3 h, polymerization of Tris Buffer (10 mL, pH = 8.5) solution.

The concentration of each SC is 1 $\mu g/mL$ for the adsorption capacity evaluation.