Supporting Information

Substituted kynurenic acid derivatives as fluorophore-based probes for D- and L-

amino acid oxidase assays and their in vitro application in eels

Tatsuya Sakamoto, Mayu Onozato, Hiroshi Sugasawa, and Takeshi Fukushima*

Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510, Japan

*Corresponding author:

Takeshi Fukushima, Ph. D.

Faculty of Pharmaceutical Sciences, Toho University

2-2-1 Miyama, Funabashi-shi, Chiba 274-8510, Japan

Tel: +81-47-472-1504; Fax: +81-47-472-1504; E-mail: t-fukushima@phar.toho-u.ac.jp

Table of contents

S. 1 Chemicals for compound synthesis

S. 2 Synthesis and identification

S. 2.1 Phenyl-substituted kynurenic acid (KYNA) derivatives

Scheme S1 Synthetic route of phenyl-substituted KYNA fluorophores

- ➤ Ethyl 6-bromokynurenate (1)
- ➢ 6-Bromokynurenic acid (2, Br-KYNA)
- ➢ 6-Phenylkynurenic acid (3a, Ph-KYNA)
- ➢ 6-(2-Methylphenyl)kynurenic acid (3b, 2-MePh-KYNA)
- ► 6-(4-Methylphenyl)kynurenic acid (**3c**, 4-MePh-KYNA)
- ➢ 6-(2,6-Dimethylphenyl)kynurenic acid (3d, 2,6-diMePh-KYNA)
- ► 6-(3,5-Dimethylphenyl)kynurenic acid (**3e**, 3,5-diMePh-KYNA)

S. 2.2 2-MePh-D, L-kynurenine (KYN)

- Scheme S2 Synthetic route of 2-MePh-D- and -L-KYN
 - > 1-(2-Amino-5-bromophenyl)-2-chloroethan-1-one (4)
 - > 2-Acetamido-4-(2-amino-5-bromophenyl)-4-oxobutanoic acid (5)
 - > 2-Acetamido-4-(4-amino-2'-methyl-[1,1'-biphenyl]-3-yl)-4-oxobutanoic acid (6)
 - ► 5-(2-Methylphenyl)- D, L-kynurenine (2-MePh-D, L-KYN)

S. 3 Supplementary experiments and results

S. 3.1 Excitation, fluorescence, and UV-Vis absorption spectra

Fig. S1	a) Excitation (dashed line) and fluorescence (solid line) spectra and b) UV-			
	Vis absorption spectrum of MeS-KYNA.			
Fig. S2	a) Excitation (dashed line) and fluorescence (solid line) spectra and b) UV-			
	Vis absorption spectrum of Ph-KYNA.			
Fig. S3	UV-Vis absorption spectrum of 2-MePh-KYNA.			
Fig. S4	a) Excitation (dashed line) and fluorescence (solid line) spectra and b) UV-			
	Vis absorption spectrum of 4-MePh-KYNA.			
Fig. S5	a) Excitation (dashed line) and fluorescence (solid line) spectra and b) UV-			
	Vis absorption spectrum of 2,6-diMePh-KYNA.			
Fig. S6	a) Excitation (dashed line) and fluorescence (solid line) spectra and b) UV-			
	Vis absorption spectrum of 3,5-diMePh-KYNA.			
Fig. S7	a) Excitation (dashed line) and fluorescence (solid line) spectra and b) UV-			
	Vis absorption spectrum of 2-MePh-D-KYN.			

S. 3.2 pH-dependence of 2-MePh-KYNA fluorescence

Fig. S8Fluorescence intensity of 2-MePh-KYNA (mean values in duplicate) at
different pH environments.

S. 3.3 Determination of enzyme kinetic parameters using HPLC-UV

Fig. S9Chromatogram after enzymatic reaction with D-amino acid oxidase (DAO)(50 μU DAO + 2000 μM 2-MePh-D-KYN, 37 °C, 1 h).

S. 3.4 Certification of enantio-purity of 2-MePh-D, L-KYN

S. 3.5 Amino acid determination

Fig. S10 Eel plasma levels of D, L-Ser and D, L-Ala (mean values in duplicate).

S. 4 Supplementary Tables

Table S1	Tested solvents and their physical properties
Table S2	Maximum excitation and emission wavelengths (λ_{ex} and $\lambda_{em})$ and
	fluorescence intensity of 2-MePh-KYNA in each solvent

S. 5 References

S. 1 Chemicals for compound synthesis

Special-grade hexane, methanol (MeOH), 35% HCl, 99.5% ethanol (EtOH), 85% phosphoric acid (H₃PO₄), glacial acetic acid (AcOH), ethyl acetate (AcOEt), toluene, sodium bicarbonate (NaHCO₃), sodium hydroxide (NaOH), potassium bicarbonate (K₂CO₃), potassium iodide (KI), potassium hydroxide (KOH), potassium dihydrogen diphenylether (Ph₂O), 2-methylphenylboronic phosphate $(KH_2PO_4),$ acid, 4methylphenylboronic acid, 3,5-dimethylphenylboronic acid, diethyl acetylenedicarboxylate, cobalt(II) chloride hexahydrate (CoCl₂·6H₂O), D-aminoacylase "AMANO", diethylamine, HPLC-grade formic acid, and first-grade anhydrous Na₂SO₄ were purchased from FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan). Palladium(II) diacetate $(Pd(OAc_2)),$ 2-(dicyclohexylphosphino)-2'-(dimethylamino)biphenyl (DavePhos), phenylboronic acid, and 2,6dimethylphenylboronic acid, chloroacetonitrile, anhydrous aluminum trichloride (AlCl₃), trichloride boron in dichloromethane. sodium ethoxide (NaOEt), 1.8diazabicyclo[5.4.0]undec-7-ene (DBU), and diethyl acetamidomalonate were purchased from Tokyo Chemical Industry (Tokyo, Japan). Dry dimethoxyethane (DME) was purchased from Kanto Kagaku (Tokyo, Japan). Acylase I from Aspergillus melleus was purchased from Sigma-Aldrich Co., Ltd. (St. Louis, CA, USA). Water was purified using a Milli-Q Labo system (Nihon Millipore Co. Ltd., Tokyo, Japan).

S. 2 Synthesis and identification

NMR spectra were recorded on a JMS-ECS 400 spectrometer (JEOL Ltd., Tokyo, Japan). The chemical shift (ppm) was referenced using the residual solvent peak.¹ Mass spectra were recorded using a time-of-flight mass spectrometer (JMS-100LP "AccuTOF LCplus", JEOL Ltd.) equipped with an ESI ion source. Melting points (m.p.) were measured using a MEL-TEMP II[®] capillary melting point apparatus (Laboratory Devices, Holliston, MA, USA). Overviews of the compound synthesis are shown in **Schemes S1** and **S2**.

S. 2.1 Phenyl-substituted kynurenic acid (KYNA) derivatives

Scheme S1 Synthetic route for the phenyl-substituted KYNA fluorophores.

Ethyl 6-bromokynurenate (1)

2H, Ar*H*), 6.68 (s, 1H, Ar*H*), 4.41 (q, J = 7.1 Hz, 2H, OC*H*₂CH₃), 1.35 (t, J = 7.1 Hz, 3H, OCH₂CH₃); ¹³C-NMR (101 MHz, DMSO-D6) δ 176.3, 161.9, 138.9, 138.1, 135.3, 127.2, 126.8, 122.1, 116.9, 110.4, 62.7, 13.9.

6-Bromokynurenic acid (2, Br-KYNA):

Compound 1 (10.0 mmol) and KOH (45.0 mmol) were dissolved in 50% H₂O/EtOH (40 mL), and the mixture was stirred at r.t. for 2 h. The solution was acidified with 2 M HCl to precipitate **2**. The precipitate was filtered, washed with H₂O, and dried under reduced pressure to furnish a pale orange solid (89% yield). *m/z* 267.96456 (calcd for [M+H] 267.96093); m.p. 283– 286 °C; ¹H-NMR (400 MHz, DMSO-D6) δ 12.16 (s, 1H, OH), 8.14 (d, J = 2.3 Hz, 1H, ArH), 7.91 (d, J = 8.9 Hz, 1H, ArH), 7.86–7.83 (m, 1H, ArH), 6.65 (s, 1H, ArH); ¹³C-NMR (101 MHz, 5% NaOD-D2O) δ 174.9, 172.8, 156.7, 147.4, 132.5, 129.4, 127.4, 125.4, 116.9, 107.1.

6-Phenylkynurenic acid (3a, Ph-KYNA):

Br-KYNA (1.02 mmol), phenylboronic acid (1.14 mmol), and K_2CO_3 (2.05 mmol) were dissolved in H₂O (50 mL). A catalytic amount (~5 mg) of Pd(OAc)₂ was added to the solution followed by stirring for 3 h. The solution was diluted with 1 M HCl. The precipitate was filtered, washed with H₂O, and dried under reduced pressure to afford a white solid (96% yield). *m/z* 266.07989 (calcd for [M+H] 266.08172); m.p. 271–273 °C; ¹H-NMR (400 MHz, 5% NaOD-D2O) δ 7.98 (s, 1H, Ar*H*), 7.48 (s, 2H, Ar*H*), 7.32 (d, J = 7.3 Hz, 2H, Ar*H*), 7.07 (t, J = 7.7 Hz, 2H, Ar*H*), 6.97 (t, J = 7.3 Hz, 1H, Ar*H*), 6.53 (s, 1H, Ar*H*); ¹³C-NMR (101 MHz, 5% NaOD-D2O) δ 175.0, 174.0, 156.4, 148.2, 140.0, 135.5, 129.1, 128.6, 128.1, 127.5, 126.8, 126.3, 120.7, 106.9.

6-(2-Methylphenyl)kynurenic acid (3b, 2-MePh-KYNA):

Br-KYNA (2.00 mmol), 2-methylphenylboronic acid (2.19 mmol), and K₂CO₃ (10.6 mmol) were dissolved in H₂O (50

CO₂H

mL). Pd(OAc)₂ (10.3 µmol) was added to this solution, which was then refluxed for 1 h. The solution was diluted with 1 M HCl. The precipitate was filtered, washed with H₂O, and dried under reduced pressure to afford a white solid (85% yield). *m/z* 280.09846 (calcd for [M+H] 280.09737); m.p. 255–259 °C; ¹H-NMR (400 MHz, DMSO-D6) δ 12.06 (s, 1H, OH), 8.01 (d, J = 8.7 Hz, 1H, ArH), 7.96 (d, J = 2.1 Hz, 1H, ArH), 7.71 (dd, J = 8.7, 2.3 Hz, 1H, ArH), 7.32–7.23 (m, 4H, ArH), 6.66 (s, 1H, ArH), 2.23 (s, 3H, CH₃); ¹³C-NMR (101 MHz, DMSO-D6) δ 177.6, 163.8, 140.4, 139.8, 139.0, 136.8, 134.8, 133.5, 130.5, 129.7, 127.6, 126.1, 125.6, 124.3, 119.6, 109.8, 20.2.

6-(4-Methylphenyl)kynurenic acid (3c, 4-MePh-KYNA):

Br-KYNA (1.00 mmol), 4-methylphenylboronic acid (1.32 mmol), and K₂CO₃ (2.34 mmol) were dissolved in H₂O (50 mL). A catalytic amount (~5 mg) of Pd(OAc)₂ was added to this solution, which was then stirred for 1 h. The solution was diluted with 1 M HCl. The precipitate was filtered, washed with H₂O, and dried under reduced pressure to furnish a white solid (quant.). *m/z* 280.09906 (calcd for [M+H] 280.09737); m.p. 274–278 °C; ¹H-NMR (400 MHz, DMSO-D6) δ 12.03 (s, 1H, OH), 8.24 (t, J = 1.1 Hz, 1H, ArH), 7.99 (s, 2H, ArH), 7.61 (d, J = 8.2 Hz, 2H, ArH), 7.27 (d, J = 8.2 Hz, 2H, ArH), 6.62 (s, 1H, ArH), 2.32 (s, 3H, CH₃); ¹³C-NMR (101 MHz, 10% METHANOL-D4/PYRIDINE-D5) δ 179.8, 165.5, 148.9, 142.1, 139.9, 137.4, 131.4, 130.0, 127.0, 127.0, 124.0, 123.1, 120.0, 110.7, 20.7.

6-(2,6-Dimethylphenyl)kynurenic acid (3d, 2,6-diMePh-KYNA):

Br-KYNA (2.11 mmol), 2,6-dimethylphenylboronic acid (2.25 mmol), and K₂CO₃ (10.4 mmol) were dissolved in 50%

H₂O/DME (20 mL). Pd(OAc)₂ (0.243 mmol) and DavePhos

(0.166 mmol) were added to the solution, which was then refluxed under an argon atmosphere for 40 h. The product was purified by reversed-phase chromatography (ODS, 50% MeOH/0.1 M phosphate buffer, pH 7.5). The target fraction was concentrated and

acidified with HCl to precipitate **3d**. The precipitate was filtered, washed with H₂O, and dried under reduced pressure to afford a white solid (62% yield). *m/z* 294.11436 (calcd for [M+H] 294.11302); m.p. 257–260 °C; ¹H-NMR (400 MHz, DMSO-D6) δ 12.06 (s, 1H, O*H*), 8.04 (d, J = 8.5 Hz, 1H, Ar*H*), 7.78 (d, J = 2.1 Hz, 1H, Ar*H*), 7.49 (dd, J = 8.5, 2.1 Hz, 1H, Ar*H*), 7.18–7.10 (m, 3H, Ar*H*), 6.68 (s, 1H, Ar*H*), 1.94 (s, 6H, C*H*₃); ¹³C-NMR (101 MHz, DMSO-D6) δ 177.5, 163.8, 140.4, 139.2, 139.0, 136.1, 135.4, 133.7, 127.4, 127.3, 125.8, 124.3, 120.2, 109.9, 20.6.

6-(3,5-Dimethylphenyl)kynurenic acid (3e, 3,5-diMePh-KYNA):

Br-KYNA (0.996 mmol), 3,5-dimethylphenylboronic acid (1.04 mmol), and K₂CO₃ (2.76 mmol) were dissolved in

H₂O (50 mL). A catalytic amount (~5 mg) of Pd(OAc)₂ was

added to the solution, which was refluxed for 1 h. The solution was diluted with 1 M HCl. The precipitate was filtered, washed with H₂O, and dried under reduced pressure to afford a pale-yellow solid (89% yield). *m/z* 294.11384 (calcd for [M+H] 294.11302); m.p. 273–275 °C; ¹H-NMR (400 MHz, DMSO-D6) δ 12.06 (s, 1H, OH), 8.27 (t, J = 1.4 Hz, 1H, ArH), 8.01 (d, J = 1.4 Hz, 2H, ArH), 7.33 (s, 2H, ArH), 7.01 (s, 1H, ArH), 6.65 (s, 1H, ArH), 2.35 (s, 6H, CH₃); ¹³C-NMR (101 MHz, 10% METHAOL-D4/PYRIDINE-D5) δ 167.8, 153.1, 130.8, 127.6, 127.4, 126.2, 124.6, 119.3, 117.0, 114.2, 112.6, 110.8, 107.5, 116.2, 112.6, 110.8, 107.5, 116.2, 112.6, 110.8, 107.5, 116.2, 112.6, 110.8, 107.5, 116.2, 116.2, 116.2, 116.2, 116.2, 116.2, 116.2, 116.2, 116.2, 116.2, 116.2, 116.2, 117.0, 114.2, 117.0, 114.2, 117.0, 114.2, 117.0, 114.2, 117.0, 114.2, 117.0, 117.0, 114.2, 117.0,

97.8, 8.6.

S. 2.2 2-MePh-D, L-kynurenine (KYN)

Scheme S2 Synthetic route for 2-MePh-D-KYN and 2-MePh-L-KYN.

1-(2-Amino-5-bromophenyl)-2-chloroethan-1-one (4):

Boron trichloride (*ca.* 1 M, in dichloromethane, 72 mL), AlCl₃ Br Cl (75.1 mmol), and chloroacetonitrile (5 mL) were added to a

solution of 4-bromoaniline (66.3 mmol) in toluene (72 mL) at r.t. The mixture was refluxed under an argon atmosphere for 16 h. Then, 0.5 M HCl (100 mL) was added to quench the reaction, and the solution was cooled to r.t. The target compound was extracted in CHCl₃ (200 mL \times 3). The organic layer was then dried (Na₂SO₄), filtered, and

evaporated to dryness. Toluene (50 mL) and hexane (200 mL) were added to solidify the residue. The supernatant was discarded and the residue was dried under reduced pressure to afford **4** as a brown solid (14% yield). *m/z* 247.95136 (calcd for [M+H] 247.94778); m.p. 129–132 °C; ¹H-NMR (400 MHz, CHLOROFORM-D) δ 7.72 (d, J = 2.3 Hz, 1H, Ar*H*), 7.36 (dd, J = 8.8, 2.2 Hz, 1H, Ar*H*), 6.60 (d, J = 8.9 Hz, 1H, Ar*H*), 6.35 (s, 2H, N*H*₂), 4.64 (s, 2H, C*H*₂); ¹³C-NMR (101 MHz, CHLOROFORM-D) δ 191.6, 149.9, 137.9, 132.7, 119.3, 116.2, 106.8, 46.3.

2-Acetamido-4-(2-amino-5-bromophenyl)-4-oxobutanoic acid (5):

Compound **4** (37.1 mmol), diethyl acetamidomalonate (38.0 Br mmol), NaOEt (77.6 mmol), NaI (3.96 mmol), and DBU (3

mL) were dissolved in EtOH (100 mL). The solution was refluxed for 3 h and transferred to a separating funnel. Saturated NaHCO₃ (100 mL) was then added and the product was extracted with CHCl₃ (100 mL×3). The organic layer was dried with Na₂SO₄, and the solvent was evaporated under reduced pressure. The residue was partially purified by chromatography (silica gel, 50% AcOEt/hexanes) to afford a crude α -substituted diethyl acetamidomalonate intermediate. The intermediate and NaOH (103 mmol) were dissolved in H₂O (100 mL). The mixture was refluxed for 30 min, AcOH (10 mL) was added to it, and the resultant mixture was refluxed for 1.5 h. The mixture was transferred to a separating funnel and extracted with AcOEt (100 mL×4). The organic layer was dried with Na₂SO₄, and the solvent was evaporated under reduced pressure. The residue was partially purified using chromatography (ODS, AcOH/H₂O/MeOH [0.1:50:50]) and recrystallised in H₂O to furnish compound **5** (9.5% yield). *m/z* 329.01680 (calcd for [M+H] 329.01369); m.p. 177–180 °C; ¹H-NMR (400 MHz, DMSO-D6) δ 12.59 (s, 1H, CO₂H), 8.11 (d, J = 8.0 Hz, 1H, ArH), 7.84 (d, J = 2.3 Hz, 1H, ArH), 7.36 (dd, J = 8.9, 2.3 Hz, 1H, ArH), 7.32 (s, 2H, NH₂), 6.75 (d, J = 8.9 Hz, 1H, NHAc), 4.70–4.65 (m, 1H, α -CH₂), 3.35-3.33 (m, 2H, β-CH₂), 1.81 (s, 3H, Ac); ¹³C-NMR (101 MHz, DMSO-D6) δ 197.5, 173.1, 169.1, 150.2, 136.8, 132.9, 119.4, 117.5, 104.6, 48.0, 40.3, 22.4.

2-Acetamido-4-(4-amino-2'-methyl-[1,1'-biphenyl]-3-yl)-4-oxobutanoic acid (6):

Compound **5** (2.09 mmol), 2-methylphenylboronic acid (2.24 mmol), and K₂CO₃ (4.20 mmol) were dissolved in 50% H₂O/MeOH (20 mL). A catalytic amount (~5 mg) of Pd(OAc)₂ was added to the solution. The mixture was stirred at r.t. for 1 h and refluxed for another 2 h. The remaining solution was acidified with HCl and passed through an ODS chromatography column (50% H₂O/MeOH as mobile phase). The target fraction was concentrated to afford **6** as a white solid (59% yield). *m/z* 341.14693 (calcd for [M+H] 341.15013); m.p. 177–180 °C; ¹H-NMR (400 MHz, DMSO-D6) δ 12.55 (s, 1H, CO₂H), 8.10 (d, J = 7.8 Hz, 1H, AcNH), 7.64 (d, J = 2.1 Hz, 1H, Ar*H*), 7.29–7.24 (m, 4H, Ar*H*)), 7.23–7.21 (m, 2H, N*H*₂), 7.21– 7.18 (m, 1H, Ar*H*), 6.84 (d, J = 8.7 Hz, 1H, N*H*Ac), 4.74–4.69 (m, 1H, α -C*H*), 3.43–3.33 (m, 2H, β -C*H*₂), 2.26 (s, 3H, PhC*H*₃), 1.81 (s, 3H, Ac); ¹³C-NMR (101 MHz, DMSO-D6) δ 198.3, 173.2, 169.1, 150.1, 140.8, 135.2, 134.8, 131.2, 130.3, 129.5, 127.3, 126.8, 126.0, 116.9, 115.9, 48.0, 40.3, 22.4, 20.4.

5-(2-Methylphenyl)-D, L-kynurenine (2-MePh-D, L-KYN):

Compound **6** (1.11 mmol), D-aminoacylase (105 mg), and CoCl₂ · 6H₂O (12.7 mg) were dissolved in 50 mL H_2

phosphate buffer (0.1 M, pH 8.4). The solution was stirred at 37 °C for 185 h. The product was separated via chromatography (ODS, AcOH/H₂O/MeOH, 0.1:50:50), where fractions containing 2-MePh-D-KYN and the L-isomer of **6** were obtained. 2-MePh-D-KYN was concentrated and recrystallised with water to furnish pure 2-MePh-D-KYN as a pale-yellow solid (45% yield). The L-isomer of **6** was concentrated to dryness and dissolved in 50 mL phosphate buffer (0.1 M, pH 8.4). Acylase I (101 mg) and CoCl₂• $6H_2O$ (12.1 mg) were added to it, and it was stirred at 45 °C for 18 h. The resultant 2-MePh-L-KYN was purified in the same manner as the D-form (51% yield). [**2-MePh-D-KYN**] m/z 299.13497 (calcd for [M+H] 299.13957); m.p. 214–216 °C; ¹H-NMR (400 MHz, DMSO-D6) δ 7.60 (d, J = 2.1 Hz, 1H, Ar*H*), 7.28–7.19 (m, 7H, Ar*H* and N*H*₂),

6.84 (d, J = 8.7 Hz, 1H, Ar*H*), 3.63 (dd, J = 8.6, 3.5 Hz, 1H, α-C*H*), 3.52 (dd, J = 17.9, 3.7 Hz, 1H, β-C*H*₂), 3.29 (dd, J = 17.9, 8.5 Hz, 1H, β-C*H*₂), 2.25 (s, 3H, C*H*₃); ¹³C-NMR (101 MHz, DMSO-D6) δ 199.3, 169.2, 150.0, 140.7, 135.1, 134.8, 131.0, 130.3, 129.4, 127.3, 126.7, 126.0, 116.8, 116.1, 49.9, 20.3; [**2-MePh-L-KYN**] *m*/*z* 299.14318 (calcd for [M+H] 299.13957); m.p. 214–215 °C; ¹H-NMR (400 MHz, DMSO-D6) δ 7.60 (d, J = 2.1 Hz, 1H, Ar*H*), 7.29–7.17 (m, 7H, Ar*H* and N*H*₂), 6.84 (d, J = 8.5 Hz, 1H, Ar*H*), 3.61 (dd, J = 8.6, 3.5 Hz, 1H, α-C*H*), 3.52 (dd, J = 17.7, 3.5 Hz, 1H, β-C*H*₂), 3.27 (q, J = 8.8 Hz, 1H, β-C*H*₂), 2.25 (s, 3H, C*H*₃); ¹³C-NMR (101 MHz, DMSO-D6) δ 199.4, 169.1, 150.0, 140.7, 135.1, 134.8, 131.0, 130.3, 129.4, 127.3, 126.7, 126.0, 116.8, 116.1, 49.9, 20.3.

S. 3 Supplementary experiments and results

S. 3.1 Excitation, fluorescence, and UV-Vis absorption spectra

The samples were prepared by dissolving KYNA derivatives in PBS solution at 10 μ M. Excitation and fluorescence spectra were plotted with dashed and solid lines, respectively.

Fig. S1 a) Excitation (dashed line) and fluorescence (solid line) spectra and b) UV-Vis absorption spectrum of MeS-KYNA.

Fig. S2 a) Excitation (dashed line) and fluorescence (solid line) spectra and b) UV-Vis absorption spectrum of Ph-KYNA.

Fig. S3 UV-Vis absorption spectrum of 2-MePh-KYNA. The excitation and fluorescence spectra are shown in Fig. 3 in the main text.

Fig. S4 a) Excitation (dashed line) and fluorescence (solid line) spectra and b) UV-Vis absorption spectrum of 4-MePh-KYNA.

Fig. S5 a) Excitation (dashed line) and fluorescence (solid line) spectra and b) UV-Vis absorption spectrum of 2,6-diMePh-KYNA.

Fig. S6 a) Excitation (dashed line) and fluorescence (solid line) spectra and b) UV-Vis absorption spectrum of 3,5-diMePh-KYNA.

Fig. S7 a) Excitation (dashed line) and fluorescence (solid line) spectra and b) UV-Vis absorption spectrum of 2-MePh-D-KYN.

S. 3.2 pH-dependence of 2-MePh-KYNA fluorescence

To test the pH-dependence of fluorescence, $10 \ \mu$ L of each 2-MePh-KYNA solution (in DMSO, $10 \ m$ M) was diluted to $10 \ \mu$ M using a 40 mM Britton-Robinson buffer (pH was adjusted at 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12). The fluorescence intensities (ex. 340 and em. 418 nm) were recorded at different pH values using an F-7000 spectrofluorometer.

As shown in Fig. S8, a decrease in fluorescence was observed at pH 4–5 and 10–11. The fluorescence intensity was maintained at its maximum at a pH range of 5–10, including the physiological pH (around 7).

Fig. S8 Fluorescence intensity of 2-MePh-KYNA (mean values in duplicate) at different pH values.

S. 3.3 Determination of enzyme kinetic parameters using HPLC-UV

A HPLC-UV system was used equipped with two LC-10ADVP pumps, a CTO-10ASVP column oven, an SPD-20A UV-vis detector (Shimadzu Corp., Kyoto, Japan), a GL-7420 autosampler (GL Sciences Inc., Tokyo, Japan), and a Cadenza CD-C18 (4.6×150 mm, 3 μm) separation column (Imtakt Corp., Kyoto, Japan).

The mobile phases A and B were 0.05% H₃PO₄ and CH₃CN, respectively. The mobile phase gradient was as follows: B: 3% (0–2 min), 3–100% (2–15 min), 100% (15–20 min), and initialization for the next analysis (20–30 min).

The flow rate, column temperature, injection volume, and detection wavelength were 1.0 mL/min, $40 \degree \text{C}$, $1.0 \ \mu\text{L}$, and 254 nm, respectively.

Fig. S9 Chromatogram after the enzymatic reaction with DAO (50 μ U DAO +

2000 µM 2-MePh-D-KYN, 37 °C, 1 h).

S. 3.4 Certification of the enantiopurity of 2-MePh-D, L-KYN

An HPLC equipped with a chiral column was used to certify the enantiopurity of 2-MePh-D-KYN and 2-MePh-L-KYN. The following equipment and settings were used: Pump: PU-4180 (JASCO Corp.); column oven: CO-2065PLUS (JASCO Corp.); detector: L-400H (Hitachi High-Tech Corp., Tokyo, Japan); autosampler: AS-4050i (JASCO Corp.); column: CHIRALPAK[®] ZWIX (+) (4 × 250 mm, 3 μ m); column temperature: Room temperature; injection volume: 10 μ L; detection: UV 254 nm; flow rate: 0.5 mL/min; mobile phase: 40 mM formic acid and 20 mM diethylamine in [MeOH/H₂O (4/1)].

S. 3.5 Amino acid determination

The amino acid levels in the eel plasma were determined using LC-MS/MS after diastereomeric derivatisation using (R)-CIMA-OSu according to a previously reported method.^{2,3} The samples for analysis were prepared based on a previously reported method.³

Fig. S10 Eel plasma levels of D, L-Ser and D, L-Ala (mean values in duplicate).

S. 4 Supplementary Tables

Solvents	Abbreviation	Viscosity	Dielectric	pKa	Protic/Aprotic
		(mPa•s)	constant		
methanol	MeOH	0.54^{4}	33 ⁵	15.54 ⁶	protic
ethanol	EtOH	1.08^{4}	24 ⁵	16 ⁶	protic
ethylene glycol	EG	16.1 ⁶	37.7 ⁵	14.77^{6}	protic
glycerine	Glyc	934 ⁷	42.5^{5}	14.4^{8}	protic
ethyl acetate	AcOEt	0.4^{9}	6 ⁵	-	aprotic
tetrahydrofuran	THF	0.44 ⁹	7.5 ⁵	-	aprotic
2-propanol	IPA	2.04^{4}	19 ⁵	16.5^{10}	protic
dimethyl	DMSO	1.99 ⁷	46.7 ⁵	-	aprotic
sulfoxide					
water	H ₂ O	0.89^{7}	80.1 ⁵	14^{10}	protic
acetonitrile	CH ₃ CN	0.34 ⁵	37.5 ⁵	-	aprotic
2,2,2-	TFE	1.73^{11}	8.55 ¹²	12.4313	protic
trifluoroethanol					

 Table S1
 Tested solvents and their physical properties

 $\label{eq:second} \mbox{Table S2} \qquad \mbox{Maximum excitation and emission wavelengths } (\lambda_{ex} \mbox{ and } \lambda_{em}) \mbox{ and FLI of } 2\mbox{--}$

MeP
MeP

	Solvents	λ_{ex} (nm)	λ_{em} (nm)	FLI
1	МеОН	348	410	301
2	EtOH	350	391	376
3	EG	350	403	1161
4	Glyc	341	410	2024
5	IPA	350	417	275.1
6	H ₂ O	341	416	4943
7	TFE	340	419	5503
8	AcOEt	302	372	75
9	THF	303	373	36.3
10	DMSO	300	365	22.5
11	CH ₃ CN	307	386	88

S. 5 References

- G.R. Fulmer, A.J.M. Miller, N.H. Sherden, H.E. Gottlieb, A. Nudelman, B.M. Stoltz, J.E. Bercaw, K.I. Goldberg, NMR chemical shifts of trace impurities: Common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist, *Organometallics*, 2010, 29, 2176–2179.
- T. Sakamoto, M. Onozato, S. Uekusa, H. Ichiba, M. Umino, M. Shirao, T. Fukushima, Development of derivatization reagents bearing chiral 4-imidazolidinone for distinguishing primary amines from other amino acids and application to the liquid chromatography-tandem mass spectrometric analysis of miso, *J. Chromatogr. A*, 2021, 1652, 462341.
- M. Onozato, H. Nakanoue, T. Sakamoto, M. Umino, T. Fukushima, Determination of D- and L-amino acids in garlic foodstuffs by liquid chromatography-tandem mass spectrometry, *Molecules*, 2023, 28(4), 1773.
- 4. E.R.H. Walter, J.A.G. Williams, D. Parker, Solvent polarity and oxygen sensitivity, rather than viscosity, determine lifetimes of biaryl-sensitised terbium luminescence, *Chem. Commun.*, 2017, **53**, 13344–13347.
- 5. S.L. Murov, Properties of solvents used in organic chemistry, http://murov.info/orgsolvents.htm#Chemical_Properties (accessed July 14, 2023).
- P. Ballinger, F.A. Long, Acid ionization constants of alcohols. II. Acidities of some substituted methanols and related compounds^{1,2}, *J. Am. Chem. Soc.*, 1960, **82**, 795– 798.
- A. Haring, A. Morris, M. Hu, Controlling morphological parameters of anodized titania nanotubes for optimized solar energy applications, *Materials*, 2012, 5, 1890– 1909.
- 8.
 PubChem,
 Compound
 summary:
 Glycerol,

 https://pubchem.ncbi.nlm.nih.gov/compound/Glycerol (accessed July 14, 2023).
- T. Jarusuwannapoom, W. Hongrojjanawiwat, S. Jitjaicham, L. Wannatong, M. Nithitanakul, C. Pattamaprom, P. Koombhongse, R. Rangkupan, P. Supaphol, Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers, *Eur. Polym. J.*, 2005, **41**, 409–421.
- 10. D. Evans, D.H. Ripin, pKa values compilation, https://organicchemistrydata.org/hansreich/resources/pka/pka_data/evans_pKa_table

<u>.pdf</u> (accessed July 14, 2023).

- 11. K.-S. Kim, H. Lee, Densities, viscosities, and surface tensions of the trifluoroethanol + quinoline system, *J. Chem. Eng. Data*, 2002, **47**, 216–218.
- H.J.M. Al-Agealy, S.S. Al-Obaidi, S.R. Abbas, Theoretical investigation of electronic transfer rate for Au metal contact with bathocuproine BCP dye, *Mater. Sci. Forum*, 2021, **1039**, 363–372.
- 13. P. Ballinger, F.A. Long, Acid ionization constants of alcohols. I. Trifluoroethanol in the solvents H₂O and D₂O, *J. Am. Chem. Soc.*, 1959, **81**, 1050–1053.