NaYF₄: Yb/Ho Upconversion nanoprobe incorporated gold nanoparticle (AuNP) based FRET immunosensor for the "Turn-on" detection of Cardiac Troponin I

Merin K Abraham¹, Anju S Madanan¹, Susan Varghese¹, Ali Ibrahim Shkhair¹, Geneva Indongo¹, Greeshma Rajeevan¹, Vijila N S¹, Dr Sony George^{*}

Supporting Information

Figure S1. The emission spectra of synthesised NaYF₄: Yb/Ho UPNPs in different solvents : Dimethylformamide(DMF), Dimethyl sulphoxide (DMSO), Phosphate Buffer Saline (PBS)

Figure S2. The DLS plot of synthesised Upconversion nanoparticle obtained as ~41.1 nm.

Figure S3. High resolution X-ray photoelectron spectra (XPS) of NaYF₄:Yb/Ho UPNPs recovoluted spectrum of **a.**O1s,**b.**C 1s,**c.**F 1s, **d.**Na 1s,**e.**Ho 3d,**f.**Y 3d,**g.**Yb 4d, **h.** Survey spectrum of XPS data.

Figure S4. The zeta potential plot of synthesised amino functionalised APTES@SiO2-NaYF₄:Yb,Ho UCNPs obtained as +2.7 mV.

Figure S5. The DLS plot of synthesised gold nanoparticle (AuNPs) obtained as ~52.8 nm

Figure S6. The zeta potential graph of synthesised gold nanoparticle (AuNPs) obtained as -1.7mV.

Figure S7. The emission spectra of amino-functionalised APTES@SiO₂ NaYF₄: Yb,Ho upconversion nanoparticles (red), and the antibody-CTnI conjugated APTES@SiO₂ NaYF₄:Yb,Ho upconversion nanophosphors.(blue) dissolved in PBS medium. (λ_{ex}=980 nm, λ_{em}=540 nm,655 nm)

S8.

Figure S8. The spectral overlap of UV Visible absorption spectra of synthesised gold nanoparticle (AuNPs) and amino functionalised APTES@SiO₂-NaYF₄: Yb/Ho UCNP system.

Figure S9. The DLS plot of synthesised Antibody conjugated APTES@SiO₂ NaYF_{4:} Yb,Ho Upconversion nanoparticle obtained as ~238.6 nm.

S10.

Figure.S10. The zeta potential analysis of Antibody conjugated APTES@SiO₂ NaYF_{4:} Yb,Ho Upconversion nanoparticle was obtained as +2 mV.

Figure S11. A. The bar diagram depicting the turn-on response of synthesised Antibody conjugated AuNP-APTES@SiO₂ NaYF₄: Yb,Ho UCNPs on addition of antigen cTnI (1.9 ng/mL) at different days (from Day 1-5) and blank experiment with PBS buffer is also noted. **B.** The time dependent response of Antibody conjugated AuNP-APTES@SiO₂ NaYF₄: Yb,Ho UCNPs towards 1.9 ng/mL of Anti-cTnI.

S12.

S11.

Figure S12. The DLS plot of synthesised Antibody conjugated APTES@SiO₂ NaYF_{4:} Yb,Ho UCNPs on addition of cTnI is obtained as ~361.5 nm.

Table	S1.
-------	-----

Sample	Added concentration.	Found concentration	Recovery percentage
	(ng/mL)	(ng/mL)	(%)
Concentrated serum	0.65	0.641	98.61
	0.97	1.00	103.9
	1.28	1.54	120
10 times diluted serum	0.65	0.72	111.6
	0.97	1.44	148
	1.32	0.25	76.8
100 times diluted	1.32	0.34	104
serum	0.97	0.87	90.1
	1.28	1.25	97.8

Table S1. The cTnI content of spiked human serum samples

Table S2.

SL.	Sensing Probe	Signal	LoD	Reference
No				
1.	Gold nanorod-heparin system	Colorimetry	0.4 ng/mL	1
2.	Gold nanoparticle system	Colorimetry	0.2 ng/mL	2
3.	Graphene Quantum dot	Fluorescence	0.19 ng/mL	3
4.	Europium chelate	Fluorescence	2 ng/mL	4
	nanoparticle			
5.	NaYF ₄ : Yb, Er heterogenous	Upconversion	3.14 ng/mL	5
	UC immunoassay			
6.	NaYF ₄ : Yb, Er UCNPs	Upconversion	0.13 ng/mL	6
	immunoassay			
7.	NaYF ₄ : Yb, Er UCNPs based	Upconversion	30 ng/L	7
	lateral flow immunoassay			
	(LFIA)			
8.	APTES@SiO ₂ NaYF _{4:} Yb,	Upconversion	0.05 ng/mL	This work
	Ho UCNPs/AuNP system			

Table S2. The comparison table depicting the previous reports for the detection of cTnI

References

- 1 V. Raj and S. Alex, *Gold Bull*, , DOI:10.1007/S13404-020-00287-W.
- 2 X. Liu, Y. Wang, P. Chen, A. McCadden, A. Palaniappan, J. Zhang and B. Liedberg, *ACS Sens*, 2016, 1, 1416–1422.
- 3 D. Bhatnagar, V. Kumar, A. Kumar and I. Kaur, *Biosens Bioelectron*, 2016, **79**, 495–499.
- 4 M. L. Järvenpää, K. Kuningas, I. Niemi, P. Hedberg, N. Ristiniemi, K. Pettersson and T. Lövgren, *Clinica Chimica Acta*, 2012, **414**, 70–75.
- N. Sirkka, A. Lyytikäinen, T. Savukoski and T. Soukka, *Anal Chim Acta*, 2016, 925, 82–87.
- 6 K. Raiko, A. Lyytikäinen, M. Ekman, A. Nokelainen, S. Lahtinen and T. Soukka, *Clinica Chimica Acta*, 2021, **523**, 380–385.
- S. Bayoumy, I. Martiskainen, T. Heikkilä, C. Rautanen, P. Hedberg, H. Hyytiä, S. Wittfooth and K. Pettersson, *Scientific Reports 2021 11:1*, 2021, 11, 1–9.